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Assessing the severity of psoriasis 
through multivariate analysis of 
optical images from non-lesional 
skin
Mantas Žurauskas1,2,9, Ronit Barkalifa1,2,9, Aneesh Alex1,3, Marina Marjanovic1,2,5,6, 
Darold R. Spillman Jr.1,2, Prabuddha Mukherjee1,2, Craig D. neitzel7, Warren Lee7, 
Jeremy Medler7, Zane Arp1,3, Matthew cleveland8, Steve Hood1,8 ✉ & 
Stephen A. Boppart1,2,4,5,6 ✉

Patients with psoriasis represent a heterogeneous population with individualized disease expression. 
Psoriasis can be monitored through gold standard histopathology of biopsy specimens that are painful 
and permanently scar. A common associated measure is the use of non-invasive assessment of the 
Psoriasis Area and Severity Index (PASI) or similarly derived clinical assessment based scores. However, 
heterogeneous manifestations of the disease lead to specific PASI scores being poorly reproducible and 
not easily associated with clinical severity, complicating the efforts to monitor the disease. To address 
this issue, we developed a methodology for non-invasive automated assessment of the severity of 
psoriasis using optical imaging. Our analysis shows that two-photon fluorescence lifetime imaging 
permits the identification of biomarkers present in both lesional and non-lesional skin that correlate 
with psoriasis severity. This ability to measure changes in lesional and healthy-appearing skin provides 
a new pathway for independent monitoring of both the localized and systemic effects of the disease. 
Non-invasive optical imaging was conducted on lesions and non-lesional (pseudo-control) skin of 33 
subjects diagnosed with psoriasis, lesional skin of 7 subjects diagnosed with eczema, and healthy skin 
of 18 control subjects. Statistical feature extraction was combined with principal component analysis 
to analyze pairs of two-photon fluorescence lifetime images of stratum basale and stratum granulosum 
layers of skin. We found that psoriasis is associated with biochemical and structural changes in non-
lesional skin that can be assessed using clinically available two-photon fluorescence lifetime microscopy 
systems.

Psoriasis, a chronic immune-mediated disease, is characterized by skin and/or joint manifestations along with 
systemic inflammation1, and affects approximately 7.4 million adults in the United States2. Many biochemical and 
immunological markers have been suggested for assessing the severity of psoriasis, but none have as yet been gen-
erally accepted3. The basic characteristics of psoriasis lesions—redness, thickness, and scaliness provide a means 
of visually assessing the severity of psoriasis. The current gold standard for assessment of extensive psoriasis has 
been the Psoriasis Area and Severity Index (PASI)4. The PASI is a measure of the average redness, thickness, and 
scaliness of the lesions weighted by the area of involvement. While the PASI or similarly derived scores are widely 
used measure in clinics, these do have a number of limitations5, one of which is poor sensitivity to changes in 
relatively small areas of inflammation6. PASI and similar scores are difficult to interpret and compare because 
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they entangle the systemic effects of the disease and local severity of individual lesions7. Histopathological exam-
ination can objectively assess disease severity or the effects of the different treatment methods at the epidermal, 
dermal, and vascular levels8. Histopathology, however, is invasive, time consuming, and can leave permanent 
scars. Additionally, histopathological examination can only obtain information from a limited number and extent 
of tissue areas, and does not allow for longitudinal monitoring of disease progression9.

In recent years, significant advancements have been made in optical imaging technologies suitable for in vivo 
studies. Among these, multiphoton microscopy (MPM) has been widely used in research studies related to appli-
cations in dermatology9–13. However, all of the studies employing optical microscopy so far have relied on target-
ing and imaging of sub-millimeter patches of psoriatic lesions that have inherent structural heterogeneity. In this 
paper, we present results suggesting that changes associated with psoriasis can be observed in non-lesional skin 
of psoriasis patients, which is also much less heterogeneous. The aim of this paper is to demonstrate the potential 
of label-free optical microscopy for the assessment of psoriasis in a clinical setting. In particular, we compared 
our quantitative optical measurements with clinical scoring systems such as PASI and local inflammation severity 
(LIS). We utilized a commercial optical medical imaging system (MPTflex CARS, JenLab GmbH, Germany)14 
based on two-photon excited autofluorescence (AF) and fluorescence lifetime imaging microscopy (FLIM) to 
obtain optical skin biopsies, non-invasively and label-free, from human subjects diagnosed with psoriasis and 
eczema, along with healthy volunteers. Furthermore, we collected two separate sets of images from psoriasis 
patients – one set of images from visibly inflamed sites and the other from a contralateral site on the body that 
showed no visible signs of inflammation, and appeared otherwise visually indistinguishable from the skin of a 
healthy volunteer. This paper refers to these two subsets of images as “psoriasis” and “pseudo-control”.

Optical biopsies collected from study subjects presented cellular and sub-cellular structural information based 
on femtosecond multiphoton (two-photon) excitation of fluorescent biomolecules like nicotinamide adenine 
dinucleotide (phosphate) (NAD(P)H), flavins, porphyrins, elastin, and melanin. As previously reported, FLIM 
measures fluorescence lifetimes of fluorophores to generate image contrast, and can be used as a marker for 
metabolic, biochemical, and morphological changes in vivo10,11,15–17. Therefore, the FLIM modality was utilized 
to monitor metabolic changes in the imaged skin regions. Using a fully automated analysis pipeline, statistical fea-
tures were extracted from the optical biopsies describing structural and biochemical/metabolic properties of skin 
in each study group. Principal component analysis (PCA) of the extracted features identified clear clusters that 
were separated along principal component 1 and correlated with skin condition. This suggests that the rotation 
matrix derived from PCA could be used to form a basis for computing a numerical score for quantifying disease 
severity. To our knowledge, this is the first clinical study to demonstrate the use of non-invasive optical imaging 
to monitor and quantify systemic inflammation and biomarkers in psoriasis subjects from images of clear skin 
areas without visible signs of inflammation. The local effects of psoriasis were observed and evaluated through 
imaging the psoriasis lesions, while systemic inflammation effects were observed and quantified through imaging 
and analysis of visibly clear skin areas of psoriasis patients. The study demonstrates the potential of non-invasive 
optical imaging to obtain “optical biopsy” data through 2-photon fluorescence lifetime imaging. This data can 
then be further analyzed to assess the changes associated with psoriasis. These unique capabilities can potentially 
be utilized as a possible tool in clinical settings for monitoring disease progression, or the intended disease regres-
sion following drug treatment regimens.

Results
Optical biopsy of different skin layers. Endogenous fluorophores in human skin such as NAD(P)H, 
flavins, porphyrins, elastin, keratin, and melanin enabled label-free imaging (Fig. 1a–d) and visualization of cel-
lular and sub-cellular details of different skin layers in vivo. As shown in Fig. 1e (2PF/SHG), cellular features in 
different sub-layers of skin such as the SG, stratum spinosum (SS), SB, and upper dermis (UD) were compared 
among the 4 study groups. Optical biopsies could detect several skin changes associated with psoriasis. First, 
keratinocytes in the SG and SS layers of psoriatic lesional skin (Fig. 1e9,e10) appeared inflamed, and perinuclear 
accumulation of autofluorescence signal was observed in these cells. In addition, cellular features corresponding 
to various skin layers in psoriatic lesions (Fig. 1e9–e12) were observed in images from deeper depths, compared 
to control skin (Fig. 1e1–e4) and non-lesional skin (Fig. 1e17–e20), suggesting epidermal thickening in psoriasis. 
Presence melanin is evident in Fig. 1e3,e7,e19,e23. The intensity images show the melanin caps, and the FLIM 
images show the short fluorescence lifetime of melanin18.

While images presented in Fig. 1e were chosen as representative for each condition, it would be difficult, if not 
impossible, to accurately determine skin condition through subjective visual analysis of these images. This is a key 
motivation for developing the automated multivariate analysis presented in this paper.

As shown in previous studies10,15, fluorescence lifetime depends on the chemical composition of the imaged 
region, and is an indicator of the metabolic state of the cells in that region. Figure 1e shows FLIM images of dif-
ferent skin layers from the 4 study groups. Psoriatic skin (Fig. 1e13–e16) shows an increased mean fluorescence 
lifetime at different skin layers, compared with control (Fig. 1e5–e8) and pseudo-control skin (Fig. 1e21–e24). 
These observed changes in the FLIM signal suggest biochemical and metabolic alterations occurring in the pso-
riatic skin. Optical biopsies of skin lesions from eczema subjects (Fig. 1e25–e32) showed optical characteristics 
similar to the changes observed in psoriatic skin.

Correlating optical image data with clinical diagnosis. The image set was quantified and extracted 
features were individually scaled to have zero mean and unit variance prior to principal component analysis 
(PCA). Individually the extracted features can provide some differentiation between control, pseudo-control, 
psoriasis, and eczema groups (see Fig. 2(c–j)). However, there is still clear overlap within groups if only individual 
features are considered. This is somewhat expected, as the patient groups are heterogeneous and not controlled 
for age, gender, or for the precise imaging location on the skin (presence of hair follicles, dermal papillae, etc.).
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Figure 2a depicts a scatterplot of the first two principal components that account for 51% of the variance in 
the dataset. Here, the three groups – control, pseudo-control, and psoriasis subjects, form distinct clusters along 
a spectrum, which is differentiated predominantly along PC1. When eczema patients are included in the anal-
ysis (Fig. 2b), they appear to form a cluster that overlaps with the pseudo-control and psoriasis clusters at their 
interface.

Correlating optical image data with the clinical scoring system. We further explored the data 
extracted from optical images to test how optical data correlated with the PASI scores that were assigned by a 
dermatologist. For the PCA depicted in Fig. 4a,b, each data point represents a psoriasis patient. Here we used the 

Figure 1. Optical biopsies of different skin layers. (a) Commercial optical medical imaging systems utilized 
for in vivo skin imaging. (b,c) Coupling imaging head to skin. (d) Representative digital photos of (left to right) 
healthy skin of control subjects, lesional skin of subject diagnosed with psoriasis, pseudo-control (non-lesional) 
skin of subject diagnosed with psoriasis, and lesional skin of subject diagnosed with eczema. (e) 2PF/SHG and 
FLIM images of different skin layers, (SG – stratum granulosum, SS – stratum spinosum, SB – stratum basale, 
UD – upper dermis). Scale bar in (e) represents 40 μm, inset numerical values in (e) represent the depth of 
imaging below the skin surface.
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information from images of inflamed areas and non-inflamed areas (see Methods) to investigate their correlations 
with PASI scores. Therefore, only patients that had all this information recorded were included in this analysis.

To improve visualization and partially mitigate the ambiguity associated with comparing the slight variations 
of PASI scores, we assigned patients to one of two groups, each representing about one-half of the cohort: high 
PASI score [10 to 29] and low PASI score [1 to 9]. As depicted in Fig. 4a, these two groups form two partially 
overlapping clusters. We further investigated outliers, and found that the local inflammation severity (LIS) also 
affects the position of each data point, pushing points to the right along the PC1 axis. Figure 4b shows the two 
newly defined groups that include the LIS assessment along with the PASI score. Better separation of clusters and 
more granular differentiation between PASI scores is expected if other factors such as age, skin type, and imaging 
location on the body could be accounted for in larger future studies.

Discussion
The potential of label-free multimodal optical imaging methods in objective and quantitative disease assessment 
of psoriasis has been explored, following the hypothesis that morphological, metabolic, and biochemical changes 
detected by optical imaging can be used as quantitative biomarkers for disease severity and progression. From a 
histological point-of-view, early-to-advanced stages of psoriasis demonstrate epidermal thickening with loss of 
the granular cell layer, and formations of mounds of parakeratosis, which is thought to result from a markedly 

Figure 2. Principal component analysis with kernel density estimates reveals distinct clusters of different 
skin conditions separated mostly along PC1. (a) Low values of PC1 correspond to healthy skin in the control 
group. Increasingly higher values of PC1 indicate the spectrum of skin conditions transitioning from healthy 
to pseudo-control to psoriasis. (b) Eczema patients form a cluster at the interface between pseudo-control and 
psoriasis clusters. Outliers can be explained by errors induced by severe artifacts caused by subject movements 
during image acquisition. Shaded areas show estimated kernel density map for the corresponding groups. (c–j) 
Box plots, summarizing the extracted features used for principal component analysis.
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shortened cellular turnover time19. In line with classical histological analyses, the optical biopsies in this study 
were able to detect signs of intercellular inflammation and epidermal thickening in psoriatic skin, in comparison 
to control and non-lesional skin. Additionally, in both psoriasis and eczema, a notably altered 2PF signal distri-
bution was observed within keratinocytes in the SG layer. In skin lesions of both psoriasis and eczema, NAD(P)
H autofluorescence, NADH autofluorescence signal accumulated around nuclei, compared with non-lesional 
skin and control skin, supporting previous demonstrations20. NAD(P)H is predominantly located within mito-
chondria, as previously shown by immunohistochemical studies and fluorescence microscopy20. Our results are 
supported by these previous findings of perinuclear mitochondrial accumulation in inflammatory skin diseases. 
Thickening of the epidermis in psoriasis has been attributed to the increased proliferation of keratinocytes. These 
cells proliferate and mature rapidly, with increased mitotic activity, a further indicator of the hyper-proliferative 
nature of this condition19. Analysis of fluorescence lifetime in this study provided a direct insight into the meta-
bolic state of the studied keratinocytes and revealed a shift towards a longer lifetime in all layers of inflamed skin 
(Fig. 5f,g), indicating an altered metabolic state for the keratinocytes20, in addition to other metabolic cell and 
tissue changes yet to be explored.

In this study, we mostly rely on two parameters to differentiate the contributions to the autofluorescence 
signal –fluorescence lifetime parameters for two dominant components. Earlier studies demonstrate that mul-
tiple endogenous fluorophores such as NAD(P)H, keratin, melanin, etc. can contribute to the autofluorescence 
signal18,20–22. In this study, we were limited to measuring the contributions of two dominant components by the 
signal-to-noise ratio of measured signals. While measuring two dominant components is clearly beneficial to our 
study, more advanced instrumentation capable of providing better SNR would permit fitting more components. 
Alternatively, further analysis using deep learning based approaches could harness correlations between local 
morphological structures and FLIM data to provide better insight into the biochemical environment.

Figure 4. Optical image data correlates with PASI score and LIS score. (a) Local severity of psoriasis forms two 
clusters based on severity. (b) Outliers can be explained by high LIS score. Shaded areas show estimated kernel 
density map for corresponding groups.

Figure 3. Enrollment, data collection, and usage. Flowchart shows study enrollment, study groups, and the 
percentage of useful data collected in each study group.
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At present, there are no specific biomarkers that can accurately predict psoriasis progression and therapeutic 
response. Many efforts have been made to identify psoriasis biomarkers, however, none have yet to be translated 
into routine clinical practice23. In this study, computational analysis of the morphological and metabolic optical 
image datasets employing a fully automated feature extraction algorithm was used to define a set of statistical 
features targeted to potential biomarkers of skin changes in the background of psoriasis. These features include 
changes in mitochondrial distribution, skin scattering, skin thickness, and local metabolism levels detected by 
FLIM.

We found that the several key features were contributing towards differentiation of different subjects. Features 
derived from fluorescence lifetime (Average fluorescence lifetime τ2 SB, Average fluorescence lifetime τ2 SG, 
Standard deviation of average fluorescence lifetime τ2 SB, Standard deviation of average fluorescence lifetime τ2 
SG) can be associated with the biochemical environment in the areas imaged. Furthermore, skin thickness as 
measured through the “Distance SG to SB” parameter is a known biomarker for psoriasis. Additionally, Average 
entropy reflects structural uniformity of the area imaged and skin scattering (as signal-to noise ratio at the imag-
ing site is affected by scattering-induced losses).

As psoriasis results from a complex interaction between genetic, environmental, and immunological factors, 
each image feature separately could not provide enough separation between different disease groups – control, 
pseudo-control, and psoriasis groups. However, by combining all the identified optical biomarkers, the three 
groups could readily be separated, and formed distinct clusters along a spectrum, predominantly along the PC1 
axis. To our knowledge, this is the first study to demonstrate the ability to use optical imaging to track systemic 
inflammation markers that appear in otherwise healthy-looking skin (pseudo-control) in psoriasis patients.

In daily clinical practice, it is often difficult to distinguish certain variants of psoriasis and eczema. This holds 
especially true for skin lesions on the palm or scalp, and for psoriasis mechanically altered by scratching24. With 
eczema patients included in our analysis, their corresponding optical signatures appear to form a cluster that 
falls at the interface between the pseudo-control and psoriasis groups, suggesting that both conditions appear 
as inflamed by optical assessment, with lower levels of inflammation in eczema in comparison to the psoriatic 
skin. However, no significant separation was observed between eczema and psoriasis subjects due to the limited 
number of eczema patients. Future studies including larger numbers of eczema subjects are needed for the devel-
opment of clear differential assessment using these optical imaging techniques.

Combined optical imaging biomarkers (PC1) showed a positive correlation with PASI score (Pearson correla-
tion coefficient = 0.49), the current gold standard clinical scoring system for psoriasis.  A significant correlation 
was also shown (Pearson correlation coefficient 0.57) when combining the PASI score and the LIS score, sup-
porting the reported limitation of the PASI score alone for its poor sensitivity to changes for relatively small areas 

Figure 5. Optical image biomarker quantification. (a–d) Representative images from a typical data cube that 
was interrogated during analysis. Each subject was represented by 2-photon fluorescence images from (a,b) SG 
and SB layers, and (c,d) corresponding fluorescence lifetime data, here shown as average fluorescence lifetime. 
The dimensionality of the dataset was reduced by image feature extraction. (e–l) Normalized estimated kernel 
density estimates for the distribution of measured features across the dataset.
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of involvement. In studies involving treatment of localized psoriasis plaques, lesion assessments are generally 
performed that also measure redness, thickness, and scaliness of target plaques6. Disease assessment using optical 
imaging targets specific skin areas objectively, and offers a significant added value to observer-based all body PASI 
assessment.

In conclusion, we present a fully automated assessment of optical skin biopsies, based on 2-photon fluores-
cence lifetime microscopy images, from the SG and the SB layers. This optical assessment permits assigning a 
numerical score that can non-invasively and objectively quantify skin condition and clearly separate control, 
pseudo-control, and psoriasis groups. This assessment correlates well with the current gold standard clinical 
scoring system (PASI) and may even be more accurate and sensitive to local disease severity as well. These unique 
optical imaging capabilities are of immediate relevance to future studies of inflammatory skin conditions such 
as psoriasis and eczema, and may also be used as a tool for monitoring disease progression or regression in the 
clinical setting following various drug treatment regimens.

Methods
patient recruitment. A total of 18 healthy human subject volunteers and 40 patients (Fitzpatrick skin 
type II and III) who were undergoing a routine dermatological exam were enrolled in this study (See Fig. 3). 
Among the patients, 33 were diagnosed with psoriasis and 7 were diagnosed with eczema. Physicians diagnosed 
the state of the diseases in each patient and assigned a PASI score and a LIS score for manifestation in the inves-
tigated skin areas.

Optical biopsies were acquired from lesional and non-lesional skin areas of psoriasis subjects, lesional skin in 
eczema subjects, and healthy skin in control subjects. Physician consultation notes were used to collect clinical 
and demographic information for each subject. The patient imaging protocol was approved by the Institutional 
Review Board (IRB) at Carle Foundation Hospital (reference number 16090) and the healthy volunteer imaging 
protocol was approved by the IRB at the University of Illinois at Urbana-Champaign (reference number 11012). 
Informed consent was obtained from participants prior to any study procedure. All methods were carried out in 
accordance with the relevant guidelines and regulations.

Psoriasis Area and Severity Index (PASI) and Local Inflammation Severity (LIS) scores. Psoriasis 
Area and Severity Index (PASI) scores were assigned by the treating dermatologist by calculating the BSA (Body 
Surface Area) covered with lesions and making an assessment of the severity of lesions in four body regions: head, 
upper limbs (right and left), trunk, and lower limbs (right and left). The severity consisted of assessing lesion 
erythema (redness), induration (thickness), and scaling. The severity score for each region was reached by adding 
scores for redness, thickness, and scale, each of which was graded from 0 to 4, giving a maximum score of 12. An 
area and severity score for each region was calculated by multiplying the area score by the severity score (mini-
mum = 0; maximum ∗ =6 12 72). All calculations were combined into a single score (PASI Score). While the 
PASI score alone is not typically used for clinical decisions, PASI scores of less than 10 indicate mild psoriasis, and 
scores higher than 10 typically indicate moderate to severe cases25.

The Local Inflammation Severity (LIS) Score was assigned to each psoriasis patient by one of the participating 
dermatologists based on the digital photos of the diseased imaged area, and scored on a scale of 1–10, with 10 
being the most severe.

Optical biopsies. We captured optical biopsy images using the procedure described in10. A commercial opti-
cal medical imaging system (MPTflex CARS, JenLab GmbH, Germany) was utilized to collect optical biopsies 
in this study (Fig. 1a). For generating optical images, the excitation wavelength of the femtosecond laser was 
set to 760 nm and in situ laser power was set to 30 mW, which is well below ANSI Z136.1 (2014) safety limits26. 
The light was focused through a 40x 1.35 NA objective. Autofluorescence signals within the spectral range of 
405 nm–600 nm were detected. For full details of the imaging system please refer to (Weinigel et al.)14. MPTflex 
is a CE marked class 1 M /IIa medical product that has been used in numerous clinical studies in Europe and the 
U.S.9,27–29.

Forty (40) optical sections were taken in 5 μm steps from the stratum corneum (SC) to the upper dermis 
(UD), down to a depth of 200 μm, with spatial resolutions of <0.5 μm horizontally and <2 μm vertically. The lat-
eral field of view was 200 μm × 200 μm. The time required to acquire each volumetric dataset was approximately 
10 minutes per imaging site. We acquired images from a single location per patient in eczema patients and healthy 
volunteers, and acquired imaged from one location from inflamed and one location from a non-inflamed con-
tralateral site in psoriasis patients. The imaging locations for the psoriasis patients were chosen from an inflamed 
area without excessive scabbing and another one from a contralateral site. If multiple areas were available, then 
the area that was most accessible for the optical imaging head was selected. For healthy volunteers, imaging loca-
tions on the left dorsal forearm were chosen.

image analysis pipeline. After all images were acquired, the fluorescence lifetime information from 2PF 
images was extracted using SPCImage software (Becker and Hickl GmbH, Germany). A feature extraction algo-
rithm was implemented using Python 3.7 and scientific data libraries Scikit-image, Scipy and Numpy, Pandas, and 
Scikit-learn were used for data processing and analysis. Matplotlib and Seaborn libraries were used for plotting.

For feature extraction, statistical analysis of whole frames was employed to enable a reproducible data anal-
ysis pipeline that did not rely on unreliable segmentation of noisy image data. In particular, the omission of the 
segmentation step permitted comparison of datasets that were affected by lateral motion artefacts that would 
otherwise distort the shape of individual cells. Once the depths of interest were selected from the original data 
cubes, the statistical approach enabled the implementation of an unbiased and fast data analysis pipeline, which 
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did not require manual intervention. After extracting multiple features from the datasets representing each sub-
ject (Fig. 5a–d), we evaluated the results and selected the features that were not co-linear, and work well as bio-
markers, providing at least some separation between different target groups. Figure 5(e–l) shows the normalized 
estimated kernel density estimate for the distribution of different features across the entire dataset. Here, we will 
briefly describe the feature extraction methods.

Fluorescence lifetime information was extracted using SPCImage software with a double-exponential decay 
model: = +τ τ− −f t a e a e( )

t t
1

( / )
2

( / )1 2 , where t is time, a is amplitude and τ is the lifetime of an exponential compo-
nent. To increase the signal-to-noise ratio, a binning factor of =n 4 was used, resulting in a moving window of 

+ ⋅ +n n(2 1) (2 1) pixels used for calculating the decay trace at each image pixel. The average lifetimes for two 
dominant components, τ1 and τ2, as well as the standard deviation of lifetime distributions within the frame, were 
extracted and saved for further analysis.

The 2PF images contain information about skin structure with cellular and sub-cellular resolution. Previous 
studies have suggested that local inflammation causes mitochondrial clustering30. In 2PF images, mitochondrial 
clusters appear as sharp, well-defined structures, increasing the high spatial frequency content of the image. 
Therefore, we used Fourier analysis to assess a spatial frequency content, measuring a ratio of high-to-medium 
spatial frequencies for each image. To do this, a two-dimensional fast Fourier transform (2-D Transform (FFT) 
was calculated for each image, and a radial average of absolute intensity values was computed for pixels (px) con-
fined by two annuli representing a medium spatial frequency zone ( =r px141 , =r px242 ) and a high spatial 
frequency zone ( = =r px r px24 , 361 2 ). Low spatial frequencies were excluded as they do not contain the infor-
mation about the cellular composition of the skin. Very high spatial frequencies were also excluded as they are 
severely affected by noise. In this paper, we refer to the average of the ratio between medium and high spatial 
frequencies as the Fourier parameter.

Entropy is the measure of the degree of randomness in an image. To reduce the impact of uneven illumination 
profiles across each frame, we first calculated the entropy using a circular structuring element with a radius of 2 px, 
and then computed the average value for the whole frame. Variations in skin thickness were captured by measur-
ing the imaging depth of the SG layer, as well as the distance between the SG and SB layers. The axial depth values 
were read from metadata that was saved during the imaging sessions. For examining the correlations between 
optical data and skin condition, we used the following 8 features: Fourier parameter at the SB; average fluores-
cence lifetime τ1 at the SB; average fluorescence lifetime τ2 at the SB; standard deviation of fluorescence lifetime τ1 
at the SB; standard deviation of fluorescence lifetime τ2 at the SG; imaging depth at the SG; optical distance from 
SB to SG, and the entropy at the SG. For examining the correlations between optical data and PASI score, we used 
the following 5 features: optical distance from the SB to SG in the inflamed area; ratio between optical distances 
from the SB to SG in the inflamed area and pseudo-control area; ratio of percentages of fluorescence originating 
from the component with fluorescence lifetime τ2 at the SG in the inflamed area and pseudo-control area; ratio of 
the Fourier parameter at the SB in the inflamed area and pseudo-control area, and the percentage of fluorescence 
originating from the component with fluorescence lifetime τ1 at the SB.
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