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temperature elevation in tissue 
detected in vivo based on statistical 
analysis of ultrasonic scattered 
echoes
Michio takeuchi1,2 ✉, Toshihiko Sakai1, Gabor Andocs3,4, Keizo takao2,5, Ryo nagaoka6 & 
Hideyuki Hasegawa6 ✉

it is demanded to monitor temperature in tissue during oncological hyperthermia therapy. in the 
present study, we non-invasively measured the temperature elevation inside the abdominal cavity and 
tumour tissue of a living rat induced by capacitive-coupled radiofrequency heating. In the analysis of 
ultrasound scattered echoes, the Nakagami shape parameter m in each region of interest was estimated 
at each temperature. the nakagami shape parameter m has temperature dependence; hence, the 
temperature increase inside tissue specimens can be detected with the m values. By carrying out in vivo 
experiments, we visualized the temperature increase inside the abdominal cavity and tumour tissue of 
living rats using two-dimensional hot-scale images indicating the absolute values of the ratio changes 
of the m values. In both the abdominal cavity and tumour tissue, the brightness in the hot-scale images 
clearly increased with increasing temperature. The increases in brightness in the hot-scale images imply 
the temperature elevations inside the abdominal cavity and tumour tissue of the living rats. the study 
results prove that the acoustic method we proposed is a promising method for monitoring changes in 
the internal temperature of the human body under hyperthermia treatment.

Non-invasive measurement of internal body temperature distribution has great potential in the medical field. In 
particular, internal body temperature distribution is the most important parameter for carrying out oncological 
hyperthermia therapy safely, correctly, and effectively. However, currently, hyperthermia therapy is conducted 
without monitoring internal body temperature, including the temperature of malignant tumour tissue, in almost 
all cases. There is no realistic method to non-invasively detect internal body temperature distribution during 
heating under therapy except for operating a magnetic resonance imaging (MRI) device. Although it is well 
known that internal body temperature can be detected by an MRI instrument1–5, an MRI device is adopted as an 
internal body temperature detector by only one hyperthermia device (BSD-2000 3D/MR; Pyrexar Medical, Salt 
Lake City, UT, USA)6. Unfortunately, this hyperthermia device is not preferred among oncological hyperthermia 
societies because of its high price. A major trend is that oncological hyperthermia therapy devices require an 
invasive temperature measurement system using a thermocouple or a fibre optic temperature sensor. However, 
nobody actually monitors the internal body temperature by inserting a sensor probe into the tumour tissue. 
A realistic method to non-invasively measure the temperature distribution inside the human body has been 
demanded by oncological hyperthermia societies for three decades.

In addition, many researchers have proposed a solution using ultrasound technologies instead of using an 
MRI instrument. There is a major engineering trend to detect internal body temperature based on the tempera-
ture dependence of ultrasound propagation speed7–12. Those studies have achieved success in detecting a temper-
ature increase inside biological tissue in in vitro and ex vivo situations. However, the temperature increase can not 
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be measured precisely by the acoustic method with ultrasound propagation speed in in vivo situations because 
body motion and pulsation exist. In this method, the temperature change is estimated with a known ultrasound 
propagation path length and propagation time. It is unrealistic to estimate precise axial displacement along the 
ultrasound propagation path using a B-mode image in an in vivo situation.

On the other hand, it was reported that some statistical properties obtained by statistical analysis of ultra-
sound backscattered echoes can be applied to quantify liver diseases13–16, detect scatterer size and density in a 
tumour17–19, and classify breast lesions20,21; hence, some research groups found that the statistical parameters 
obtained from analysis of ultrasound scattered echoes have the potential to detect temperature distribution inside 
biological tissue specimens22–26. Moreover, a computer simulation study has demonstrated that one of the sta-
tistical parameters, the Nakagami shape parameter m, is strongly related to the scatterer concentration in the 
medium27; thus, it is predicted that the Nakagami shape parameter m changes with a change in the medium vol-
ume due to thermal expansion or contraction of medium containing scatterers. Our research group has focused 
on the possibility of non-invasively monitoring the temperature distribution inside the human body with the 
temperature dependence of the Nakagami shape parameter m for oncological hyperthermia treatment. We previ-
ously reported phantom and ex vivo study results22,23. We presented that it is important to avoid the influence of 
deformation resulting from a temperature elevation in soft tissue specimens to select a proper size of a region of 
interest (ROI) in the estimation of the shape parameter of the Nakagami distribution22. In that study, temperature 
changes inside soft tissue with deformation could be detected as a two-dimensional hot-scale image indicating 
absolute values of ratio changes of m values, α, estimated with some ROI sizes that were assumed to be larger 
than the amount of displacement of the soft tissue22. The study result implies that internal temperature changes 
under in vivo conditions can be expressed as hot-scale images indicating absolute values of ratio changes of m 
values estimated by selecting proper ROI sizes with consideration of the displacement due to body motion and 
pulsation. Furthermore, it was shown in our previous study that variations in the Nakagami shape parameter m 
due to a change in temperature depend on an initial m value23. By taking into account the initial m value depend-
ence, we proposed a new parameter αmod. that was elicited by adding the multiplying factor varying as a function 
of the initial m value to absolute values of ratio changes of m values, α23. Furthermore, the temperature gradient 
inside a locally heated real soft tissue specimen with no thermal lesions was visualized with two-dimensional 
αmod. maps more clearly than that visualized using the previous method with α23. In this study, we present an 
in vivo study result showing that the temperature elevation inside the abdominal cavity and tumour tissue of a 
living rat induced with capacitive-coupled radiofrequency (RF) current heating was detected by hot-scale images 
indicating absolute values of ratio changes of m values, αmod..

Results
temperature elevation inside tissue detected in vivo by ultrasound scattered echoes in healthy 
rat. In the healthy rat experiment, an Slc:SD female living rat was heated from 30.0 to 41.0 °C by RF current. 
Ultrasound scattered echoes from the abdominal cavity of the rat were measured. In addition, temperatures inside 
the abdominal cavity were detected with fibre optic temperature sensor probes. Figure 1(a,b) show the experimental 
setup and the schematic of the experimental setup for the healthy rat experiment. In the healthy rat experiment, the 
temperature measured at Point 2 is defined as a reference temperature. The temporal variations in temperature inside 
the abdominal cavity and on the surface of the skin under the electrode of the living rat during heating are shown in 
Fig. 2(a). As seen in Fig. 2(a), temperatures at each point varied with ripples due to the RF current generator being 
paused briefly each time ultrasound scattered echoes were measured. The temperature increase from the non-in-
duced state ΔT at each point is plotted as a function of the reference temperature in Fig. 2(b).

Figure 3 shows typical grey-scale B-mode images obtained from the abdominal cavity of the rat at reference 
temperatures of 30.0 and 40.0 °C and histograms of envelopes of the ultrasonic echo signal. The red solid line indi-
cates the Nakagami distribution function in Fig. 3. In the B-mode images, there is a non-negligible deformation 
between each reference temperature. The displacement seen in the B-mode images is thought to be due to body 
motion or pulsation during heating. In our previous study22, it was presented that the calculation of absolute val-
ues of ratio changes of m values can be done correctly by selecting a proper ROI size even when deformations are 
observed in biological tissue specimens. Thus, we carried out statistical analysis estimating the Nakagami shape 
parameter m and absolute values of ratio changes of m values, αmod., with a relatively large ROI set at 1.8 × 1.8 
mm2 to prevent the effect of displacement caused by pulsation and body motion in this study, thereby creating156 
ROIs for statistical analysis. The Nakagami shape parameter m was estimated by statistical analysis as follows. 
First, analytic signals were elicited by applying the Hilbert transformation to measured ultrasonic RF signals, and 
envelope signals were obtained. Then, the histograms of envelopes in each ROI were created by setting the ROI 
size at 1.8 × 1.8 mm2. The Nakagami distribution function is expressed by
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where Γ(∙) and U(∙) are the gamma function and unit step function, respectively, r is the amplitude of envelopes 
of ultrasound scattered echoes, m is the Nakagami shape parameter, and Ω is a scaling parameter. Finally, the 
Nakagami shape parameter m for each ROI was estimated by fitting the Nakagami distribution function to the 
histogram of the envelope of the ultrasonic scattered echoes (see Fig. 3). The normalized mean squared error 
(NMSE) was calculated to evaluate the goodness of fitting of the Nakagami distribution function to the histo-
grams. NMSE was calculated as
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Figure 1. (a) Photograph of the experimental setup for the healthy rat experiment. (b) Schematic of the 
experimental setup for the healthy rat experiment.

Figure 2. (a) Variations in the temperature inside the abdominal cavity and on the surface of the skin of the rat. 
(b) Temperature increase inside the abdominal cavity and on the surface of the skin from non-induced state ΔT 
as a function of the reference temperature.
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where M and h(ri) are the number of bins and the height of bin at each amplitude of envelopes of ultrasound 
scattered echoes. Mean values of NMSE of 156 ROIs at each reference temperature are listed in Table 1. The mean 
value of NMSE for the abdominal cavity is approximately 0.15. Meanwhile, the mean value of NMSE for the 
tumour tissue is approximately 0.04. The mean values of NMSE for the abdominal cavity and the tumour tissue 
are suitably small. In the study of Gambin and Kruglenko24, the goodness of fitting of the Nakagami distribution 
function to histograms of envelopes of ultrasonic RF signals scattered from biological tissue specimens was evalu-
ated with NMSE. In the cited study, the values of NMSEs were from approximately 0.12 to 0.22. At the same time, 
in the present study, internal temperature changes in the biological tissue specimens were well detected using the 
Nakagami shape parameter. Therefore, the Nakagami distribution was considered to be a suitable approximation 
model.

To express the temperature increase inside the abdominal cavity by the variation of brightness on a 
two-dimensional hot-scale image indicating absolute values of ratio changes of m values, the specific parameter 
αmod. was calculated using

Figure 3. Grey-scale B-mode images of the abdominal cavity at reference temperatures of T = 30.0 and 40.0 
°C and representative histograms of envelopes obtained by setting the ROI size at 1.8 × 1.8 mm2 and fitting 
the Nakagami distribution function to the histogram. The red solid line indicates the Nakagami distribution 
function.

Abdominal cavity Tumour tissue

Reference 
temperature (°C) NMSE

Reference 
temperature (°C) NMSE

30.0 0.1495 35.5 0.0428

31.0 0.1519 36.5 0.0428

32.0 0.1550 37.5 0.0413

33.0 0.1613 38.5 0.0402

34.0 0.1577 39.5 0.0417

35.0 0.1582 40.5 0.0427

36.0 0.1523 41.5 0.0418

37.0 0.1466 42.5 0.0414

38.0 0.1615

39.0 0.1398

40.0 0.1468

41.0 0.1314

Table 1. Mean values of NMSE for the abdominal cavity and tumour tissue.
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where mTR and mT are the Nakagami shape parameters m at a baseline temperature and each temperature, respec-
tively, and γ denotes the multiplying factor. In our previous ex vivo study23, it was clearly shown that the magni-
tude of the change in the Nakagami shape parameter (Δm) due to a temperature rise has a dependence on the 
initial m value at a baseline temperature; furthermore, Δm due to a temperature rise increases with increasing 
initial m value. Therefore, the ratio changes of m values were amplified with compensation considering the ini-
tial m values. In this study, the multiplying factor γ varying as a function of the initial m value was defined to be 
proportional to m−1 as

γ =m
m
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The hot-scale images indicating the absolute values of ratio changes of m values, αmod., for the abdominal cav-
ity calculated using Eqs. (3) and (4) with the baseline temperature of TR = 30.0 °C are shown in Fig. 4. Note that 
the hot-scale images indicating the absolute values of ratio changes of m values, αmod., were constructed by com-
paring the Nakagami shape parameter m at a baseline temperature to m at each temperature estimated in each 
ROI with an overlap ratio of 0% between ROIs. In the hot-scale images, the overall increase in αmod. brightness 
with increasing reference temperature is clearly observed. The increase in αmod. brightness implies a temperature 
elevation in the abdominal cavity induced by RF current.

temperature elevation inside tumour tissue detected in vivo by ultrasound scattered ech-
oes. In real therapy treatments, the oncological hyperthermia device is applied to the tumour tissue. Therefore, 
an experiment to detect temperature increases inside tumour tissue should be conducted in our study. In the 
experiment on tumour tissue, heterotopic tumour tissue was grown around the right femoral region of a Slc:SD 
female rat. Ultrasound scattered echoes from the tumour tissue were measured while the tumour tissue was 
heated from 35.5 to 42.5 °C. The experimental setup, a close-up photo around the tumour tissue, and the sche-
matic of the experimental setup for the tumour tissue experiment are shown in Fig. 5(a–c). In the tumour tis-
sue experiment, we used temperatures measured at Point 5 as a reference temperature. Figure 6(a) shows the 
variations in the temperature inside the tumour tissue and the surface of the skin of the rat during heating. 
The temperature increase from the non-induced state ΔT at each point is plotted as a function of the reference 
temperature in Fig. 6(b). In Fig. 6(b), the ΔT distribution inside the tumour tissue is intricate, not systematic, 
as expected from the positional relationship between electrodes and the tumour tissue. ΔT at point 6 increases 
steeply in Fig. 6(b). Moreover, ΔT at point 6 is approximately one and half times larger than ΔT at points 4 and 

Figure 4. Grey-scale B-mode image of the abdominal cavity and hot-scale images indicating absolute values of 
ratio changes of m values, αmod., estimated by setting the ROI size at 1.8 × 1.8 mm2 for the abdominal cavity at 
each reference temperature.
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Figure 5. (a) Photograph of the experimental setup for the tumour tissue experiment. (b) Close-up photograph 
of tumour tissue. (c) Schematic of the experimental setup for the tumour tissue experiment.

Figure 6. (a) Variations in the temperature inside the tumour tissue and on the surface of the skin of the rat. (b) 
Temperature increase inside the tumour tissue and on the surface of the skin from non-induced state ΔT as a 
function of the reference temperature.
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5. A computer simulation study predicted that the temperature distribution inside muscle, tumour tissue, brain, 
and some organs induced non-locally by electrical energy under in vivo conditions is significantly complex, and 
hotspots occur28. It is presumed that non-uniform heating is caused by inhomogeneous dielectric and/or thermal 
properties of organs and muscle. Hence, it is thought that the tumour tissue was heated up non-uniformly by the 
RF current and that a few hotspots existed inside the tumour tissue in this study.

Grey-scale B-mode images obtained from the tumour tissue at reference temperatures of 35.5 and 42.5 °C and 
histograms of envelopes with the Nakagami distribution function fit (red solid line) at different ROIs are shown 
in Fig. 7. The shallow region below approximately 5 mm in the B-mode images for the tumour tissue experiment 

Figure 7. Grey-scale B-mode images of tumour tissue at reference temperatures of T = 35.5 and 42.5 °C 
and representative histograms of envelopes obtained by setting the ROI size at 1.8 × 1.8 mm2 and fitting the 
Nakagami distribution function to the histogram. The red solid line indicates the Nakagami distribution 
function.

Figure 8. Grey-scale B-mode image of tumour tissue and hot-scale images indicating absolute values of ratio 
changes of m values, αmod., estimated by setting the ROI size at 1.8 × 1.8 mm2 for the tumour tissue at each 
reference temperature.
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is indistinct. In the tumour tissue experiment, we conducted a statistical analysis of ultrasound scattered echoes 
on the area enclosed with the dotted red line in Fig. 7. The hot-scale m-parameter images for the tumour tissue 
drawn by setting the baseline temperature at 35.5 °C are shown in Fig. 8. In the hot-scale images, the overall tem-
perature elevation inside the tumour tissue with increasing reference temperature was observed as an increase in 
the αmod. brightness as well as the results of the healthy rat experiment.

Discussion
The hot-scale images indicating the absolute values of ratio changes of m values, αmod., show the overall increases 
in temperature inside the abdominal cavity and the tumour tissue of the living rats. To evaluate the increase in 
αmod. with increasing temperature inside the abdominal cavity and the tumour tissue quantitatively, the mean 
value of αmod. on the analysis area of the ultrasonic RF signal was calculated at each reference temperature. 
Figure 9(a) shows the mean values of αmod. for the abdominal cavity of the healthy rat and the tumour tissue plot-
ted as a function of the reference temperature. The error bar indicates the standard error of the mean of αmod. in 
Fig. 9(a,b). The mean value of αmod. for both the abdominal cavity and the tumour tissue monotonically rises with 
an increase in the reference temperature. Figure 9(b) shows the ΔT dependence of the mean value of αmod. for the 
abdominal cavity and the tumour tissue. We calculated the Pearson correlation coefficient p between the mean 
value of αmod. and ΔT. The coefficient of correlation p shows impressively large positive values, which are 0.99 for 
the abdominal cavity and 0.93 for the tumour tissue. An increase in αmod. indicated a temperature elevation inside 
the abdominal cavity, and the tumour tissue heated by RF current was confirmed quantitatively by the strong 
correlation between αmod. and ΔT in this study.

Figure 9. (a) Mean value of αmod. plotted as a function of reference temperature for the abdominal cavity and 
tumour tissue. (b) ΔT dependence of the mean value of αmod. for the abdominal cavity and tumour tissue.

Figure 10. (a) Close-up photograph of the tumour tissue. (b) Cross-section of the tumour tissue.

https://doi.org/10.1038/s41598-020-65562-4
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Finally, since it was reported that a thermal lesion in soft tissue could be detected by changes in the Nakagami 
shape parameter29, it should be clarified that the increase in αmod. was not caused by heat-induced denaturation 
inside the tumour tissue due to the RF current being passed in this study. To observe the cross-section of the 
tumour tissue, the tissue was cut along the plane of ultrasound scanning after we completed the experiment. 
Figure 10(a) shows a close-up photo of the tumour tissue that was separated from the rat body. The cross-section 
of the tumour tissue is shown in Fig. 10(b). No visible transmutation was observed on the cross-section of the 
tumour tissue. Therefore, it can be concluded that the temperature elevation inside the tumour tissue of a living 
rat induced by RF current heating was detected by the hot-scale images, indicating the absolute values of ratio 
changes of m values.

In this study, we propose that our acoustic method is useful for detecting temperature elevations in tumour 
tissue heated by RF current in vivo. In our future study, the quantitative relationship between αmod. and ΔT should 
be investigated using a wide variety of tumour tissues to establish a method to measure the absolute value of ΔT 
in vivo.

Methods
In this study, we conducted in vivo experiments using two Slc:SD female rats, which weighed approximately 
0.3 kg. One was arranged for an experiment measuring ultrasound scattered echoes from the abdominal cavity 
(healthy rat experiment), and the other was arranged for an experiment with malignant tumour tissue (tumour 
tissue experiment). In the tumour tissue experiment, we prepared 9 L (glioma) cell line-derived heterotopic 
tumour tissue grown around the right femoral region of the Slc:SD female rat. The rats were anaesthetized by 
an inhalation anaesthesia system using isoflurane during the heat treatment in both experiments. In the healthy 
rat experiment, the abdominal cavity was heated from 30.0 to 41.0 °C by the energy of a capacitive-coupled RF 
current at a frequency f = 13.56 MHz between two flexible round-shaped electrodes holding both sides of that 
rat’s body. In the tumour tissue experiment, the tumour tissue was heated from 35.5 to 42.5 °C by passing an 
RF current at the frequency f = 13.56 MHz between the two electrodes holding the rat’s right hind limb includ-
ing the tumour tissue. The electrodes were connected to a custom-built RF generator unit through an imped-
ance matching circuit. The electrodes were water cooled to prevent surface overheating. Reference temperatures 
inside the abdominal cavity and the tumour tissue were measured by inserting fibre optic temperature sensor 
probes (m3300; LumaSense Technologies, Santa Clara, CA, USA). Ultrasonic echoes scattered from the heated 
specimens were measured at 1.0 °C intervals using an ultrasonic measurement system (RSYS0002; Microsonic, 
Kokubunji, Tokyo, Japan) with a linear array transducer (UST-5412; Hitachi-Aloka Medical, Mitaka, Tokyo, 
Japan). The two dimensional size of the scanning area in the specimens was approximately 30 mm in depth and 
25 mm in width. The parameters in the ultrasonic measurement are listed in Table 2. The RF generator emits sub-
stantial electromagnetic waves, and it is strong enough to affect the piezoelectric elements of the transducer. The 
RF generator was paused emitting electromagnetic waves during acquisitions of ultrasonic echoes at the respec-
tive temperatures. The experimental setups for the healthy rat experiment and for the tumour tissue experiment 
are shown in Figs. 1(a) and 5(a). A close-up photo around the tumour tissue is shown in Fig. 5(b). Figures 1(b) 
and 5(c) show the schematic of the experimental setups for the healthy rat experiment and tumour tissue exper-
iment. Points 1–7 in Figs. 1(b) and 5(c) indicate the positions of the tip of each sensor probe in the experimental 
setups for the healthy rat and tumour tissue experiments. In this study, we used temperatures measured at Points 
2 and 5 as a reference temperature for the healthy rat experiments and tumour tissue experiments. It should be 
noted that we measured ultrasound scattered echoes at 1.0 °C intervals by referring to the reference tempera-
tures. The application of RF current was stopped manually every 1.0 °C during acquisition of ultrasonic echo 
signals. After in vivo experiments, hot-scale images of temperature elevation inside specimens were processed 
by conducting statistical analysis of ultrasonic scattered echoes with custom-made software based on MATLAB 
R2018b (The MathWorks, Natick, MA, USA, https://www.mathworks.com/) and Python 3.6.0 (Python Software 
Foundation, DE, USA, https://www.python.org/).

ethical approval. All experiments and procedures involving animals were conducted in accordance with 
the Institutional Animal Experiment Handling Rules as approved by the Institutional Animal Care and Use 
Committee at University of Toyama (A2017OPR-2).

Data availability
The datasets during and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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Pitch of scan lines 200 μm

Number of scan lines 121

Number of samples per scan line 1200

Central frequency 7.5 MHz

Wavelength 0.2 mm

Sampling rate 31.25 MHz

Table 2. Parameters of ultrasonic measurement.
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