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executive functions predict 
verbal fluency scores in healthy 
participants
Julia Amunts1,2 ✉, Julia A. camilleri1,2, Simon B. eickhoff1,2, Stefan Heim3,4 & Susanne Weis1,2

While there is a clear link between impairments of executive functions (EFs), i.e. cognitive control 
mechanisms that facilitate goal-directed behavior, and speech problems, it is so far unclear exactly 
which of the complex subdomains of EFs most strongly contribute to speech performance, as measured 
by verbal fluency (VF) tasks. Furthermore, the impact of intra-individual variability is largely unknown. 
This study on healthy participants (n = 235) shows that the use of a relevance vector machine approach 
allows for the prediction of VF performance from EF scores. Based on a comprehensive set of EF scores, 
results identified cognitive flexibility and inhibition as well as processing speed as strongest predictors 
for VF performance, but also highlighted a modulatory influence of fluctuating hormone levels. These 
findings demonstrate that speech production performance is strongly linked to specific EF subdomains, 
but they also suggest that inter-individual differences should be taken into account.

Executive functions (EFs) refer to a set of cognitive processes that allow for goal-directed behavior through the 
regulation of various cognitive subprocesses. Since EFs permeate behavior, they also impact daily activities as well 
as social and personal development, including school or job success1. The importance and pervasiveness of EFs 
has led different fields of study to investigate these control mechanisms with the goal of differentiating the vari-
ous subdomains of EFs. This, in turn, has resulted in a number of different conceptualizations based on different 
approaches, all attempting to subdivide EFs into different domains. While a consensus does not yet exist about 
how exactly to subdivide and name EFs, there is general agreement that there are three core EFs: (1) cognitive 
flexibility, (2) working memory and (3) inhibition1 (but see Karr et al.2,3). Higher-order EFs, such as reasoning, 
planning and problem solving, are then built on the basis of these subdomains.

The various sub-domains of EFs have been shown to be impaired in a number of neurological and psychi-
atric diseases, such as attention-deficit/hyperactivity disorder (ADHD)4, Parkinson’s disease5, depression6 
and schizophrenia7. Different diseases present their own typical EF deficits and clinical diagnosis attempts to 
assess the specific patterns of the disease. For example, in the case of Parkinson’s disease, patients suffer from 
difficulties in dual-tasking which is reflected in the deficient combination of memorizing and manipulation of 
thoughts and tasks8 but also in impaired speech characterized by semantic paraphasias and reduced word fluency 
due to a lack of EFs5,9. To assess these symptoms different test batteries have been developed. These batteries, 
which include tests tapping into the different EF sub-domains, are used for neuropsychological assessment in 
both clinical settings and lab-based environments. Commonly used batteries are the Delis-Kaplan Executive 
Function System (D-KEFS) and the Vienna Test System, both of which offer a wide range of tests probing each 
of the EF sub-domains and have been independently validated10–12. Commonly used tasks tapping into the 
different sub-domains of EFs comprise the Wisconsin Card Sorting test (WCST), Tower of London (ToL) and 
Trail-Making test (TMT) to assess cognitive flexibility5,13,14, n-back tasks and the Corsi block tapping test to cover 
the sub-domain of working memory15,16 and the Stop-signal task or the Stroop test (color-word interference) to 
probe the sub-domain of inhibition. All of these are commonly used in the clinical5,17 as well as in the scientific 
context14,18. Importantly, due to the overlap of the different domains of EFs, these tests cannot be assumed to 
target one specific domain of EFs only.
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Beside subdomain-specific EF tests, clinical and research test batteries also include a speech-based task, 
namely the verbal fluency (VF) task but the explicit involvement of different EF subdomains in the VF task 
is reported controversially especially when considering inter-individual differences19. The well-established and 
often-used VF test assesses the number of words generated in a given time (usually 60 seconds) and has been 
found to be a sensitive measurement for testing EFs in both non-clinical groups19 as well as in neurological 
patients20. VF tests mainly comprise two types of tasks: The phonemic/lexical VF, requiring the generation of as 
many words as possible beginning with a specific letter (e.g. C, F); and semantic VF, in which the examinee is 
asked to produce words that belong to a specific semantic category (e.g. fruits, animals). Additionally, most VF 
tests include a switching task in which words from two different categories are produced in an alternating order21.

The relationship between VF and the various subdomains of EFs has frequently been investigated in both 
healthy controls19,22–24 and patients17,25. Concerning the relationship between VF and working memory, some 
studies showed that better working memory performance leads to less perseveration errors26 and a higher total 
score of produced words in the VF task22,27. However, a clear link between working memory and VF performance 
has so far not been found19,28. Similarly, the relationship between VF and response inhibition is not clear yet. 
While some studies report lower scores in VF concomitating with a decline of inhibition performance22 other 
studies failed to find a link between VF and inhibition20,29. Finally, regarding the relationship between VF and 
cognitive flexibility, studies report a positive correlation of switching between categories in VF tasks and cognitive 
flexibility performance21. However, there are also findings which indicate that there is no relationship between 
EFs and VF performance30.

Altogether, results concerning the relationship of EFs and VF are ambiguous. This might, at least partly, be 
based on inter-individual variability of both EFs and VF. For example, a pronounced effect of age was identified 
by multiple studies showing a significant negative correlation between age and the different aspects of EFs as 
well as VF performance31–34. Furthermore, fluid intelligence has been found to be related to the performance in 
EFs tasks tapping into the subdomains of planning and reasoning and35. In contrast, inhibition was shown to be 
independent of intelligence in children with problems performing attention tests36.

The complex involvement of EFs in VF performance has also been shown to be modulated by the influence 
of inter-individual variability like dynamically varying hormonal levels. Especially sex hormones like estradiol 
and progesterone have been shown to influence performance in EFs tasks37,38. It was shown that cognitive per-
formance varies during the different phases of the menstrual cycle with high progesterone and estradiol levels 
leading to faster reaction times and better accuracy37,39. Moreover, cortisol, which is mostly associated with stress, 
appears to impact EFs, but literature addressing this topic is ambiguous. On the one hand, studies found a posi-
tive relationship e.g. between cortisol level and working memory40 or cortisol level and performance in cognitive 
flexibility tasks41 in men. On the other hand an inverse relationship was found in cognitive flexibility tasks in 
women41 and in working memory performance42. Additionally to the influence on EFs varying hormonal levels 
could be also linked to VF performance43. To investigate the role of varying hormonal levels studies implement 
different procedures: While some inject specific hormones and assess the change of cognitive functions due to this 
injection44,45 other studies analyze intra-individual differences measuring the naturally varying hormonal level 
at different points of time37,40. Test data of EFs and VF are commonly analyzed with classical statistical methods. 
For example, correlation analyses have been previously used to investigate the relationship of VF and specific 
subdomains of EFs46. Other studies have investigated group differences between patients and healthy controls to 
e.g. examine sex differences in VF strategies19 or to explain the relationship of memory and VF in patients with 
Alzheimer’s disease28. Furthermore, factor analysis has also been applied to investigate common cognitive struc-
tures of VF performance24,30.

Considering previous literature investigating the relationship of EFs and VF in more detail it is obvious that 
each work contributes to a better understanding of this relationship but generalizing this knowledge is still 
difficult. Specifically, these limitations are e.g. due to the small subject size or reduced EF test batteries which 
does not represent overall EF performance. Generalizability is also restricted due to the applied methods. All 
the above-mentioned methods are applied to investigate within-sample effects to understand the theoreti-
cal hypothesis-driven neuropsychological relationship between VF performance and EFs. However, it is so far 
unclear to what extend VF task performance reflects the different subdomains of EFs. To address this question, 
more advanced statistical methods should lead to a more detailed insight into the complexity of VF performance. 
Machine learning models can be used to characterize complex behavior with the ultimate goal of identifying and 
predicting psychiatric diseases47,48. In contrast to classical statistical analyses, these prediction analyses use large 
sample sizes and a high number of variables as well as a cross-validation approach by training a model on part of 
the dataset and then validating it on unseen data. Applying machine learning methods on a wide variety of EF 
tests enables to capture the complex and non-linear relationship of EFs and VF performance.

To contribute to a deeper understanding of the so far inconclusive relationship between EFs and VF, the 
present study used a machine learning approach to investigate to what extent VF performance can be explained 
by subdomain-specific EF tests. We hypothesize that VF performance can be explained by a conglomeration of 
cognitive flexibility, working memory and inhibition test scores, which is further modulated by individual varia-
tions of fluctuating hormone levels.

Methods
Participants. The age of the 253 healthy participants was ranging from 20–55 years (mean age 35.3 ± 11.0, 
99 males). Participants were monolingual German speakers and received different levels of education (finished 
middle school: 10, professional school/job training: 70, finished high school with a university-entrance diploma: 
76, university degree: 97). Participants were recruited in North Rhine-Westphalia (Germany) via social networks 
and the Forschungszentrum Jülich mailing list. Testing sessions took place at the Forschungszentrum Jülich, with 
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a duration of 150–180 minutes depending on the time needed for instructions and the speed with which the par-
ticipants passed the tests. A remuneration fee of €50 was paid.

Data collection. Data was collected by four different examiners, all of whom conducted several pilot testings 
and were instructed by the study leader to ensure a common standard. The examiner gave standardized instruc-
tions before starting each test and help was provided by the examiner whenever the participant had any questions 
regarding the instructions or tests. The testing session included 13 EF tests and 3 semantic VF tasks. The EF test 
battery consisted of computerized versions of neuropsychological tests covering domains of inhibition, working 
memory and cognitive flexibility. Ten of these tests were taken from the Vienna Testsystem test battery and three 
were designed with PsyToolkit49. In this study, we assessed commonly used EF tests like the Stroop and TMT. We 
used a broad selection of EF tests to cover all subdomains of EFs and to detect most influencing tests and their 
variables. A complete list of the tests is shown in Table 1.

Results of the neuropsychological tests can be seen in Table 2.
The semantic VF tasks were based on the Regensburger Wortflüssigkeitstest50. This test is a standardized neu-

ropsychological assessment that has been thoroughly tested for reliability, validity and objectivity50. Due to 

Measure Description Main variables

Cognitive flexibility/Planning

Trail-Making test

The task consists of 2 parts. In part A, numbers from 1–25 are displayed on the screen in 
a haphazard fashion. The task consists of clicking on the numbers in sequential order as 
quickly as possible. In part B numbers from 1–13 and letters from A-L are presented on 
the screen. participnts must click on the numbers and letters alternately and in ascending 
order.

Errors in part A/B, 
difference part B-A, 
quotient B/A

Raven’s Standard 
Progressive 
Matrices

Eight items that form one pattern are shown to the participants. The task requires the 
participants to identify one missing item out of 6 choices to complete the pattern. The 
difficulty of recognizing each pattern increases during the course of this test.

Process time, correct items

Wisconsin Card 
Sorting test

Four stimulus cards illustrating different geometrical figures are presented. These cards 
differ in the number, color and form of the figures. The task is to match one additional 
card to one of the four cards using the correct rule (match for number, colour or form 
of figure) without knowing which rule is applied.Thus, participants are required to shift 
rules accordingly.

Number of perseveration/
non-perseveration errors

Tower of London
Three rods are presented on the screen: The left rod holds three balls, the middle rod two 
balls and the right rod one ball. The participants are asked to move the balls from the 
starting state to ta target position using a minumum number of moves.

Planning ability, number of 
correct respones

Cued task 
switching

A coloured figure is presented on the screen. Participants are required to respond to 
either the color or figure task. Figure task: Particpants press matching button (left or 
right) depending on the type of the figure (triangle or rectangle); colour task: Particpants 
press matching button (left or right) depending on the colour of the figure (blue or 
yellow).

Number of incongruent/
congruent errors

Working memory/Attention

N-back non verbal
A sequence of 100 abstract successive figures are presented to the particpants. The task 
consists of indicating whether the current stimulus matches the figure shown two turns 
back (2-back paradigm).

Number of correct and false 
responses

Non-verbal 
learning test

Nonsensical, irregular, and geometric figures are presented on the screen. In the course 
of the test some figures are shown multiple times. For each figure the participants has to 
decide whether the current figure has already appeared or whether this figure is being 
shown for the first time.

Correct/false responses, 
sum of difference between 
correct minus false 
responses, process time

Corsi block 
tapping test

Nine irregularly arranged cubes are presented to the participants. A cursor touches a 
certain number of cubes in a specific order; The task is to repeat the given sequence 
correctly. The length of the sequence increases the more correct sequences the particpants 
complete.

Block span, correct/false 
items, error types (omission, 
sequence mistake)

WAF-G (divided 
attention)

The participants are required to focus on two geometric figures and one auditory 
stimulus. At a certain interval the stimuli change their intensitiy (figure gets lighter and/
or auditory stimulus gets higher). The participants have to respond when two stimuli 
become lighter/higher twice in a row.

Mean reaction time, number 
of false alarm, missed items

WAF-R (spatial 
attention)

Four triangles are presented in four spatial positions (similar to Posner paradigm). The 
participants are required to react if a triangle changes intensity (gets darker). In the 
neglect test a interfering/matching visual cue is given but this cue do not always indicate 
the correct answer.

Mean reaction time, number 
of false alarm, missed items

Inhibition

Stop-signal task
The test consists of two parts: 1) The participants are asked to respond to the direction of 
an arrow stimulus. 2) The participants have to repeat task as in previous step but should 
withhold their motoric response whenever they hear an auditory signal.

Stop-signal reaction time, 
stop-signal delay, number of 
different error types

Simon task
The participants are asked to press the right button if they read the word "right" and the 
left button if they read the word "left". The words are either presented on the right or left 
part of the screen. The reaction time of the participants is usually longer whenever the 
stimlus is incongruent to its position (e.g. the word "left" is on the right side of the screen).

Interference reaction time, 
incompatible/compatible 
errors

Stroop test

Names of colors (e.g., "blue", "green", or "red") are displayed on the screen in a color 
which is not denoted by the name (i.e., the word "blue" is printed in red). The test 
consists of two conditions: 1) Naming - participants are asked to respond to the colour 
of the words; 2) Reading - participants are asked to respond to the meaning of the word 
with naming. A baseline measure is taken at the start of the test to assess reading and 
color naming (color and word refer to the same concept).

Baseline time of naming 
and reading, reading 
interference, naming 
interference, errors

Table 1. Overview of executive function test battery.
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language-specific differences in the frequency and usage of letters and categories51 this German version of VF task 
was used. Two of the tasks were simple semantic VF tasks in which the participant had to name animals (t1) and 
jobs (t2). The third semantic VF task was a switching task in which the participant switched between fruits and 
sports (t3) within the same task. Each of the three tasks was performed for 2 minutes. The VF tasks were presented 
with Presentation software (Neurobehavioural Systems) and the participant’s responses were recorded automati-
cally. Following the testing session, the recorded speech was transcribed and words were coded manually as being 
either correct answers or errors. The number of correct words were counted for each task (t1, t2, t3) and the sum 
score of total number of correct words across all three VF tasks was used in all further analyses. To broadly repre-
sent VF performance, the sum of all VF tasks was selected to include different aspects of the task. This variety of 
VF performance is beneficial to build a machine learning model which is complex enough to reflect the complex 
patterns of VF performance.

In addition to the main test set of EFs and VF tasks, phenotypical data was collected through questionnaires 
to gather information regarding the physical and psychological well-being of the participants. These question-
naires included the Beck Depression Inventory (BDI-II) (Beck, Steer & Brown, 1996) which was used to collect 
information regarding depressive symptoms. Saliva samples were collected at the beginning and at the end of the 
test session. The two saliva samples of each subject were sent to an external lab which pooled both samples before 
carrying out analysis for cortisol, progesterone, estradiol and testosterone. Additionally, the testing session also 
comprised further speech tests (word-picture interference task, picture description, spontaneous speech), for 
which results will not be reported here, as they will be independently analyzed. This additional data will then be 
described in a subsequent paper. Moreover, we aim to publish a data paper which will describe all aspects of data 
collection, test selection and testing procedure in detail while also making this data publicly available.

Collection and analyses of the data presented here was approved by the ethics committee of the Heinrich-Heine 
University Düsseldorf. We confirm that all experiments were performed in accordance with relevant guidelines 
and regulations. Moreover, informed consent was obtained from all participants.

Data analysis. The original dataset of 253 participants was reduced to 235 due to missing data of some par-
ticipants (94 males; 101 participants were aged between 20–31, 70 between 32–43, 64 between 44–55). From all 
EF tests 72 variables (Supplement 1) were extracted based on the features provided by the Vienna Testsystem and 
PsyToolkit49. VF performance was represented by the sum score of correct words across all VF tasks.

Two independent analyses were computed. In a first analysis, Spearman correlations were computed to ana-
lyze the relationship of each EF variable and VF sum scores. Here, a reduction of the 70 EF variables was used. 
Specifically, EF variables were selected based on the EF test manuals provided by the Vienna Testsystem in 10/13 

Variable M ± SD Min - Max

Age 35.33 ± 11.04 20–55

Education 4.05 ± 0.90 2–5

Cortisol 0.12 ± 0.08 0.001–0.42

Estradiol 3.61 ± 5.27 0.01–44.7

Progesterone 65.09 ± 93.62 6.25–940.97

Testosterone 79.96 ± 99.5 2.41–597.61

Trail Making Test Difference part A-B [sec] 7.60 ± 6.25 −3.32–40.57

Raven’s Progressive Matrices Correct items 27.86 ± 3.3 14–32

Wisconsin Card Sorting Test Perseveration errors 7.91 ± 3.45 4–24

Tower of London Planning ability 7.51 ± 2.20 1–12

Cued Task-Switching Switch costs (reaction time switch tasks - reaction 
time in non-switch tasks) 0.05 ± 0.08 −0.15–0.39

N-back nonverbal Correct items 8.40 ± 2.94 1–14

Non-verbal learning Test Sum of difference between correct minus false 19.54 ± 7.78 −4–35

Corsi Block Tapping Test Block span 5.68 ± 1.10 3–9

WAF-G (divided attention) False alarm (crossmodal) 3.10 ± 4.86 0–34

WAF-R (spatial attention) Errors 3.61 ± 3.38 0–18

Stop-Signal Task Stop signal reaction time (mean reaction time - 
mean stop signal delay) [sec] 0.21 ± 0.07 0.03–0.50

Simon Task Reaction time difference (reaction time 
incongruent - reaction time congruent items) [sec] 0.03 ± 0.04 −0.14–0.16

Stroop Test Reading interference [sec] 0.14 ± 0.08 −0.04–0.50

Stroop Test Naming interference [sec] 0.13 ± 0.08 −0.02–0.46

Semantic Verbal Fluency sum1 36.77 ± 8.30 19–57

Semantic Verbal Fluency sum2 26.08 ± 6.60 11–45

Semantic Verbal Fluency sum3 21.98 ± 4.34 8–34

Semantic Verbal Fluency sum all sum1 + sum2 + sum3 84.83 ± 15.45 50–125

Table 2. Neuropsychological data of participants.
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EF tests. In cases where multiple main variables were provided by the Vienna Testsystem, the main variable was 
selected based on previous literature investigating EF performance. In contrast to the Vienna Testsystem, tests run 
within Psytoolkit are not standardized and thus do not come with associated test manuals. Thus, the selection of 
main variables of tests designed with Psytoolkit (3/13) were selected based on previous literature.

Considering the influence of sex and age on the performance in EF and VF tasks19,22,34 data were adjusted for 
these variables by linear regression and analyses were computed with the residuals.

In a second analysis, the possibility of predicting VF from EF scores was investigated by applying supervised 
learning via a sparse (relevance vector machine; RVM) and non-sparse (partial least squares; PLS) model using 72 
EF variables (Supplement 1). Generally speaking, sparse models aim to reveal a sparse structure and detect cor-
relations among redundant features52. Specifically, RVM is based on the Support Vector Machine (SVM) but is a 
Bayesian sparse technique which allows for the prediction of a specific target value from a set of different features. 
In contrast, PLS is similar to principal components regression and is based on covariance. Results given in the 

Figure 1. Plots of significant correlations of executive function tests and total verbal fluency sum score. The 
performance in verbal fluency task is represented by the total number of correct words produced across all 
three semantic VF tasks (t1 + t2 + t3).The negative correlation in plot b-f are due to the divergent direction of the 
scores since these variables describe different types of errors, reaction or process times (the higher the worse the 
performance) while the performance in the verbal fluency is represented by the total amount of correct items 
(the higher the better).

Figure 2. Correlation of true and predicted verbal fluency sum scores applying Relevance Vector Machine 
algorithm.
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main manuscript focus on the RVM approach, while results for the PLS analysis are given in the supplement. Sex 
and age were regressed out from VF score and from EF data in a cross-validation consistent way.

Before running the prediction analysis, data was transformed to z-scores. A 10-fold cross-validation was then 
performed for which the data set was randomly split into 10 sets, 9 of which were used for training while the 10th 
set was held back and used to perform the prediction in previously unseen data. Ten replications of the 10-fold 
cross-validation were performed and thus 100 prediction models were computed. Prediction performance was 
assessed by computing the correlation between real and predicted values.

Beside testing statistical significance of prediction performance, we also examined which specific EF fea-
tures significantly impact prediction performance. To determine which EF features (EF test variables) contribute 
most strongly to the prediction, we employed an approximate permutation test procedure, in which associations 
between features (total set of EF variables) and labels (VF sum score of each participant) were randomized. That 
is, the VF performance score was randomly permuted while the feature matrix was kept unchanged. The RVM 
analysis was repeated for each permutation and accuracies for 100 permutations were used to construct an empir-
ical null distribution for each feature, which was used to compute the statistical significance of the contribution of 
each feature as the proportion of permutated labels achieving a better prediction than then original labels.

Results
Correlations between executive function scores and verbal fluency performance. The correla-
tion analyses identified multiple significant results which are shown in Fig. 1.

The highest negative correlation coefficient can be seen between the number of missed items in WAF-G 
and the VF performance (r = −0.21; p = 0.0009) indicating that a better performance in divided attention is 
associated with a higher VF score. Likewise, inhibition ability measured by the naming interference variable of 
the Stroop test (r = −0.20; p = 0.001) shows a negative correlation with the VF score. This result indicates that 
participants who successfully inhibited proponent behavior in the Stroop task perform better in the VF task. 
Additionally, abstract reasoning assessed with the Raven’s Progressive Matrices test (SPM) reveals a positive cor-
relation (r = 0.19; p = 0.003) to VF performance indicating a demand of cognitive flexibility and planning while 
generating words from a specific category. Similar results were found for the TMT (r = −0.14; p = 0.029) and the 
number of perseveration errors in the WCST (r = −0.14; p = 0.032) which particularly reflect the involvement of 
cognitive flexibility and working memory in the VF task. Additional to the EF battery we also found a significant 
negative correlation of the VF tasks and the Cortisol level of the subjects (r = −0.13; p = 0.042).

Prediction of verbal fluency performance from EF scores. The correlation of true and predicted val-
ues was r = 0.28 (p < 0.0001) (Fig. 2).

In order to quantify the contribution of the different EFs variables to VF performance, features with significant 
model weights in the approximate permutation test were identified. As can be seen in Fig. 3, 8 features belonging 
to 4 different EF tests and 2 hormones were identified.

The EF feature with the highest impact on the prediction analysis is “mean reaction times” of unannounced 
items of the spatial attention test WAF-R. The RVM analysis also revealed another “reaction time” feature of 
WAF-R which represents “reaction time” in items with a long stimulus onset asynchrony. The influence of atten-
tion on VF performance was also shown in a feature of WAF-G assessing the number of missed items in a divided 
attention test. These results show that participants reacting faster in attention tests also perform better in the VF 
task, identifying overall reaction speed and correctness as a central component in VF performance. Since WAF-R 
is not only assessing attention but also includes inhibitory requirements, these results highlight the role of atten-
tion and inhibition during VF performance. The explicit role of inhibition can be also detected in the variable 
“naming interference” of the Stroop test indicating that inhibition is an essential component to successfully pro-
duce words within or between two different categories. The analysis also revealed the predictive meaningfulness 
of cognitive flexibility and planning, by showing that “non-perseveration errors” in WCST and “process time” in 
SPM contribute essentially to the prediction analysis. The WAF-R was the only test presenting more than one var-
iable represented in the most predictive features, both of which contain reaction time information. With regards 
to non-EF features, the RVM analysis also identified stress hormone cortisol and sex hormone estradiol as highly 
predictive variables (Fig. 3).

Figure 3. Features displaying strongest impact on prediction analysis.
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Corresponding results of the PLS analysis revealed a correlation of true and predicted values of r = 0.35 
(p < 0.0001). However, in contrast to the results of the RVM analysis, approximate permutation test did not 
reveal any significant p-values identifying specific EF features. Detailed results of the PLS analysis are given in the 
Supplementary Material (Supplement 2).

Discussion
The aim of the study was to elucidate to what extent VF performance can be explained by different subdomains 
of EFs and which types of EF variables contribute most strongly to the prediction of VF performance. In a first 
step, we correlated the different EF scores with the number of correctly produced words across the three semantic 
VF tasks. This analysis revealed significant correlations between SPM, Stroop, TMT, WCST, WAF-G, WAF-R 
and the VF task performance. These EF tests tap into two EF domains, namely cognitive flexibility and inhibi-
tion. We further investigated the relationship of EF scores and VF by prediction analyses to gain insight into the 
contribution of the different EF test variables. We showed that EF data predict VF performance and that beside 
cognitive flexibility and inhibition, reaction time and attention play important roles in predicting VF perfor-
mance. Additionally, hormonal influences were identified as meaningful parameters to predict VF performance, 
highlighting the influence of inter-individual differences in VF performance. We first discuss the results in the 
direct context of the different EF subdomains cognitive flexibility, inhibition and working memory. Secondly, the 
involvement of EFs in the VF task is discussed in a more general context addressing the role of attention as well 
as the meaningfulness of reaction times. Finally, the influence of varying hormonal levels illustrates the impact of 
inter-individual differences on VF performance.

Multiple tests within the domain of cognitive flexibility were shown to be related to VF performance. The 
highest correlation was found for the SPM test followed by TMT and WCST. While the correlation analysis 
revealed a relationship of these tests with VF performance, the prediction analysis confirms the importance of the 
features describing errors in WCST. Additionally, the prediction analysis highlights the component of processing 
speed during SPM which was not identified by correlation analysis. In congruence with these results, previous 
studies have linked VF with cognitive flexibility21,53,54. Paula et al.21 investigated this relationship in healthy adults, 
using simple and switching semantic VF tasks and three different EF tests, including the TMT. They found that 
this particular measure of cognitive flexibility correlated well with both simple and switching VF tasks. The influ-
ence of cognitive flexibility on VF was also examined in a study by Troyer et al.54 who discussed the importance of 
cognitive flexibility assuming that two different abilities are needed for VF: (1) verbal memory for the creation of 
clusters and production of words belonging to a specific subcategory; (2) strategic search and cognitive flexibility 
which enables shifting between clusters54.

It should be noted that the present results concerning the SPM might have to be treated with caution since 
this test also encompasses aspects of fluid intelligence55–57. Due to the relationship between EFs and fluid intelli-
gence58,59, it may not surprise that fluid intelligence also impacts VF performance as has been shown in studies on 
schizophrenia60 and bipolar disorder patients61 as well as healthy controls60.

Altogether, considering that three out of five cognitive flexibility tests contribute to VF performance, the pres-
ent results point to a crucial influence of cognitive flexibility on VF performance, especially to cluster words and 
switch between categories.

In addition to the domain of cognitive flexibility, inhibition tests were also identified to play a role in VF per-
formance. Specifically, both the correlation analyses and prediction analysis revealed that the naming interference 
of the Stroop test is related to VF. Previous studies report ambiguous results when investigating the relation-
ship between inhibition and speech production. For example, a positive correlation between inhibition, assessed 
with a stop-signal task, and the reaction time in picture naming46 was found but could not be validated in VF 
tasks23. Discussing these ambiguous results, the authors suggest that while stop-signal tasks measure the partici-
pant’s ability stopping a planned response (response inhibition), VF tasks tend to involve the ability of suppressing 
the activation of competitive target responses (selective inhibition). In the present study selective inhibition was 
assessed by the Stroop test. In the naming subtask of the Stroop test the participant is asked to name the color in 
which the word is printed. Incongruent items, in which the color of the word does not match the written word 
evoke a longer reaction time, indicating that prepotent responses (i.e. the meaning of the written word) have to 
be suppressed. This is very similar to the kind of inhibitions that participants are challenged with in the VF task 
when needing to suppress words which have already been produced. In accordance with previous literature24, the 
present suggests that selective inhibition, specifically as reflected in the naming interference of the Stroop test, is 
a key parameter to drive VF performance. An alternative interpretation of the naming interference of the Stroop 
test and the total number of words produced in the VF task relates to the association between verbal processing 
speed and dominance of word reading. Individuals with a high verbal processing speed can be assumed to also 
show a stronger dominance of word reading then those with slower verbal processing. This stronger dominance 
of word reading, in turn, can be expected to go along with a stronger interference effect in the STROOP task, thus 
explaining the correlation between naming inference in the STROOP task and VF performance.

In addition to cognitive flexibility, working memory and inhibition we also investigated the role of attention 
in VF performance. While divided attention (WAF-G) was linked to VF performance in the correlation analysis, 
multiple variables of the spatial attention test (WAF-R) and divided attention test (WAF-G) contributed to VF 
performance in the prediction analysis.

Previous studies also described attention as a crucial cognitive function to perform VF54. In particular, it could 
be shown that divided attention particularly impacts the switching component of the VF tasks. At first glance, 
the influence of the spatial attention test on the speech task might be surprising since there are no spatial require-
ments in the VF task. Nevertheless, we assume that beside the component of attention per se the involvement of 
inhibition which is also part of this task might also have an effect on these results. With respect to the relationship 
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of VF and divided attention, results are consistent with previous literature highlighting the influence of divided 
attention especially in the VF switching task54. To sum up, attention might be a crucial aspect for performing VF 
task. In particular, we hypothesize that attention is a fundamental and permanent cognitive requirement during 
updating the current status of already produced words as well as being efficient in producing words within or 
between two.

Surprisingly, the present study did not find a relationship between working memory and VF performance in 
both the correlation and prediction analysis. However, previous studies investigating the involvement of working 
memory in VF tasks also report ambiguous results: For example, one study assessing a digit-span and spatial-span 
test did not find a significant relationship between working memory and VF28. However, other studies have 
reported results that indicate updating of information and working memory performance have a high impact on 
VF scores23,62,63. Additionally, another study found the relationship between memory performance and VF to be 
specific to women19. The missing link between working memory and VF in the current study might be the type 
of variable which was selected to represent VF performance. Here, the sum of correctly produced words was used 
as the main measure of VF performance. While measuring VF performance, this variable does not contain infor-
mation about the types of errors that occur during the VF task. Although word repetitions (perseveration errors) 
did not count as correct produced words this error type is not analyzed separately. However, perseveration errors 
are described as a sensitive indicator of working memory performance. Additionally, the relationship between 
working memory and VF performance measured with the total sum of words has so far been mainly investigated 
in patients or older participants22,27 but rarely in healthy controls. Thus, we assume that the number of correct 
produced words might be less meaningful to reflect working memory in healthy controls than error-specific 
parameters like perseveration errors.

In general, prediction results reveal specific EF tests and variables which are closely linked to VF performance. 
Besides differences in the strength of the relationship between certain EFs and VF, the EF test constructs them-
selves might also have partially influenced analysis. In particular, the reliability of some EF tests is discussed con-
troversially64,65. Thus, some EF tests might not represent actual EF performance well and such a poor reliability of 
EF test might be reflected in the relationship of EF to VF as studied here.

Comparing correlation and prediction analyses, crucial differences in the results were observed. At first 
glance, the EF tests identified in the prediction analyses are similar to those of the correlation analyses but include 
additional variables. Specifically, the prediction analyses reveal a number of additional variables that measure 
how fast participants completed the tests and how many errors they made. While there is limited literature about 
the influence of processing speed in cognitive tasks on VF performance, some studies have addressed processing 
speed in general in the context of cognitive functions66,67. Another study found relationships between processing 
speed, working memory, inhibition and VF scores24. Additionally, poorer processing time has been associated 
with poorer cognitive performance in older adults66. The association between processing speed and EFs has been 
also observed in patients with depression67. In line with these findings, another study investigated the role of 
processing speed in schizophrenia patients and suggest that especially in working memory tasks assessing speed 
might be helpful to detect patterns of schizophrenia68. In respect to VF performance, processing speed was iden-
tified as being closely related to speech production31 and is reported as a predictor for VF in ageing69. Based on 
previous literature and our present findings, we assume that processing speed is a general aspect involved in both 
EFs tests and VF tasks. Particularly, it can be assumed that due to the time limit of 2 minutes in the VF tasks par-
ticipants are zealous to name as many words as possible. This general behavior might also be relevant in EF tests. 
Thus, we suggest that processing speed and reaction times indicate that people acting fast in cognitive tasks also 
perform more successfully in VF tasks than participants thinking more in detail about their answer. Additionally, 
we assume that the complex influence of processing speed on VF performance might be beyond what can be 
described as a linear relationship. This might explain why the impact of speed is detectable in the prediction com-
putation but was not found the correlation analysis.

In addition to the relationship between EFs and VF this study also assessed the influence of hormonal fluc-
tuations to investigate the influence of inter-individual differences. The results showed that the stress hormone 
cortisol and the sex hormone estradiol have a high impact on VF performance. In line with other studies44,45 our 
analyses indicates that there is a negative correlation between cortisol level and the performance in cognitive 
functions. However, previous studies have also linked an increase of cortisol to better cognitive performance40,41. 
To our knowledge, rather little is known about the influence of estradiol on VF performance. However, studies 
investigating the influence of estradiol on EFs show that higher estradiol levels particularly leads to better per-
formance in shifting and cognitive flexibility tasks37,39. Moreover, a link between hormonal contraceptives and 
VF performance43 has been shown. These results demonstrate that women taking hormonal contraception and 
consequently having significantly lower estradiol and progesterone levels, perform worse in the VF task than the 
control group43. The high impact of cortisol and estradiol in the prediction analysis suggest that fluctuating hor-
mones are essential parameters for predicting VF performance and that intra-individual differences in hormone 
levels need to be considered when examining the relationship of cognitive functions and speech production tasks. 
Thus, it shows that although EF test variables are closely related to VF performance VF is a complex construct 
which is also driven by hormones and attention.

Our prediction analyses yielded important insights into the relationships between EFs, VF and inter-individual 
differences. However, some open questions remain concerning both inter-individuality and speech related topics. 
Firstly, due to the fact that inter-individuality influences both EFs and VF performance, further studies would 
benefit from gathering additional inter-individual parameters. For example, a test for assessing intelligence might 
be useful to control for the influence of intelligence on each test, especially on the SPM, making it possible to 
better differentiate the impact of cognitive flexibility on VF performance. Secondly, intra-individual differences 
could be further investigated by gathering saliva samples at two different time points. In this study saliva sam-
ples of each participant were pooled. A comparison of the hormones level before and after testing might help to 
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provide insights into individual strategies dealing with stress. Beside inter-individual influences of hormonal 
levels on EFs41, studies also report intra-individual variety e.g. due to different phases of the menstrual cycle38. 
Therefore, an analysis of hormonal levels within each participant taken at different time points could reveal an 
additional dimension representing intra-individual differences.

Considering speech-specific issues, a vocabulary test could contribute to better understand inter-individual 
differences. Previous studies showed that the vocabulary size has a positive impact on VF performance54,70. 
Moreover, additional parameters reflecting VF performance could help to gain deeper insights of searching strat-
egies during VF tasks. In particular, semantic analyses provide details of clustering and switching24 and could 
indicate the participant’s strategies which could then be linked to EF performance.

A more general consideration is related to the predictive methods as used in this study. An independent data 
set assessing the same variables that were used in the study does not yet exist. Thus, it was not possible to validate 
our results in a totally independent dataset. Instead, we applied 10-fold cross-validation by repeatedly training 
the model on parts of the data while keeping a subset out as a validation sample. However, we are aware of the 
need to validate our results in an independent dataset to better generalize our results and suggest a replication of 
this study on an independent sample which could prevent study-specific biases. However, due to the broad and 
specific collection of the EF test battery finding a similar data set could be difficult. An additional independent 
dataset with similar EF tests could be used to test split-half reliability investigating the construct of EF tests. Due 
to the high number of participants which is needed to apply machine learning methods it was not possible to split 
our data in two groups and running the prediction analysis on the split data. The ambiguous results of the RVM 
and PLS analysis also need to be considered. While both approaches revealed a significant correlation between 
true and predicted values, the PLS approach did not identify any significant features (Supplement 2). This might 
be due to the fact that PLS is a non-sparse machine learning method, which will include all features in the predic-
tion model. In contrast, it is the nature of sparse models like RVM to build the prediction model based on most 
relevant features only.

Due to the high number of participants and the large battery of EF tests this study provides a detailed view on 
the involvement of EFs in VF tasks and examines the influence of fluctuating hormones. It investigated to what 
extent EF tests can represent semantic VF performance and shows that cognitive flexibility and inhibition are the 
main domains involved in performance on the VF task. Additionally, attention seems to be a central component 
of the VF task. The most striking observation to emerge from the data analysis was the new and more detailed 
view of the EF tests and variables that are best at predicting VF performance. While correlation analyses provided 
first insights into the relationship of EFs and VF, the prediction analyses revealed the importance of speed param-
eters. In particular, our results suggest that beside the influence of specific EFs, more general components such as 
attention and speed are crucial aspects of successful VF performance. These results also highlight the advantage 
of the prediction analysis since it revealed concrete variables of EF tests which also represents cognitive abilities 
not directly linked to specific EF subdomains or representing standard variables.

A better understanding of the cognitive demands that are required for the successful performance of VF tasks 
can potentially lead to a more wide-spread use of VF tests in the clinical context, thus EF tests that tend to be 
time-consuming and inaccurate. Additionally, VF tests tend to better reflect real-life conditions than lab-based EF 
batteries. A detailed knowledge of meaningful test variables could later on lead to insights into which subdomains 
of EFs could be replaced by VF tasks and which subdomains of EFs still have to be assessed by additional EF tests. 
This link between EF and VF represents a first step towards a speech-based EF-test. Furthermore, it indicates that 
in investigating the relationship of EF and VF the complex construct of VF performance should be considered in 
research and clinical context.

Furthermore, taking the influence of varying hormonal levels into account our study suggests that beside 
inter-individual differences intra-individual fluctuations could play an important role in evaluating VF perfor-
mance in clinical context.
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