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Non-invasive identification of 
swallows via deep learning in high 
resolution cervical auscultation 
recordings
Yassin Khalifa  1, James L. coyle2 & ervin Sejdić1,3,4,5 ✉

High resolution cervical auscultation is a very promising noninvasive method for dysphagia screening 
and aspiration detection, as it does not involve the use of harmful ionizing radiation approaches. 
Automatic extraction of swallowing events in cervical auscultation is a key step for swallowing 
analysis to be clinically effective. Using time-varying spectral estimation of swallowing signals and 
deep feed forward neural networks, we propose an automatic segmentation algorithm for swallowing 
accelerometry and sounds that works directly on the raw swallowing signals in an online fashion. The 
algorithm was validated qualitatively and quantitatively using the swallowing data collected from 248 
patients, yielding over 3000 swallows manually labeled by experienced speech language pathologists. 
With a detection accuracy that exceeded 95%, the algorithm has shown superior performance in 
comparison to the existing algorithms and demonstrated its generalizability when tested over 76 
completely unseen swallows from a different population. The proposed method is not only of great 
importance to any subsequent swallowing signal analysis steps, but also provides an evidence that such 
signals can capture the physiological signature of the swallowing process.

Electronic human activity monitoring devices and wearable technology have evolved in the past decade from 
simple macrodetection of gross events such as the number of steps taken during a walk around the block, to the 
detection of micro-events that exist within each gross event1. As a result, the quantity of data generated by these 
devices has exponentially increased along with the clinical questions arising with this data challenge2. Therefore, 
efforts to automate signal analysis are receiving more attention. Any systematic analysis of signals requires an 
important first step in which individual signal events are demarcated or segmented from one another before 
detailed analysis of signal components can be performed. This necessitates the development of robust automatic 
event detection methods to reduce the number of manual steps in signal analysis, mitigating human error and 
guaranteeing consistent detection criteria3. Event extraction algorithms have been introduced in many appli-
cations including speech analysis4, heart sounds segmentation5, brain signals analysis6, and swallowing activity 
analysis3,7. Many of these algorithms relied on multi-channel data to improve detection quality8,9.

All these applications share a common need of accurately defining the temporal borders (onset and offset) 
of certain events in order to be used for further processing and analysis. Particularly, we are interested in auto-
mated identification of vibratory and acoustic signals demarcating individual swallows using accelerometers and 
microphones3. Such automatic segmentation algorithms are critical for many applications that rely on swallowing 
sounds and vibrations which have been suggested as alternative bedside tools for dysphagia screening10–18, to 
discriminate between patients with healthy and dysphagic swallows10,11.

Dysphagia is a swallowing disorder that frequently follows stroke, neurodegenerative diseases, head and neck 
cancer and head injuries among many other etiologies19. Swallowing physiology and kinematics can be monitored 
and evaluated through various diagnostic imaging tools like endoscopy and ultrasound, but the gold standard 
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is the videofluoroscopic swallowing study (VFSS). A typical VFSS is an X-ray procedure in which patients are 
asked to swallow different materials mixed with barium20. While VFSS is relatively efficient, its disadvantages 
include cost, short swallowing observation duration which fails to capture the variability of swallowing function 
occurring over the course of an entire meal, and limited availability to all clinicians and patients in no-acute care 
settings. It also has other disadvantages including radiation exposure and the need for specialized clinicians and 
equipment19,21. Even with institutional availability, VFSS cannot be used for daily and bedside assessment of 
swallowing12. These limitations increased interest in the use of noninvasive instrumental tools that help identify 
swallowing problems in the bedside and out of standard care settings.

Crude methods have been developed to use instrumentation for dysphagia screening through observing the 
patient’s behavior during swallowing. Instrumental screening acts as an initial evaluation that determines the 
necessity of performing more diagnostic exams such as VFSS. These methods include cervical auscultation which 
relies on a stethoscope to listen to the sounds emanating from the throat during swallowing in a similar way 
to listening to the sound of heart valves, blood flow, and airway. Experiments using cervical auscultation have 
reported subjectivity and low levels of inter-judge agreement when interpreting the sounds in addition to poor 
accuracy and reproducibility22,23. Conversely, high resolution devices which are independent of human auditory 
system, can record a wider spectrum of sounds and vibrations that the human auditory system is incapable of 
perceiving. High resolution cervical auscultation (HRCA) involves placing highly sensitive accelerometer and 
microphone to the anterior neck to capture swallowing vibrations and sounds in order to be objectively analyzed 
through advanced signal processing and machine learning algorithms. HRCA devices can capture multidimen-
sional vibrations and inaudible components of swallowing sounds which with the appropriate analysis, can be 
superior to subjective acoustic analysis via stethoscope.

In recent years, acceleration and sound signals collected during swallowing have been the focus of many stud-
ies for the diagnosis and detection of dysphagia and its symptoms such as aspiration. These studies confirmed 
the presence of shared patterns among healthy swallows and the absence or delay of such patterns in dysphagic 
swallows11,13,24–26. Several studies used the sounds collected from surface microphones for aspiration detection 
and characterization of abnormal swallows through the analysis of power spectrum and distance based tech-
niques27,28. The origin of swallowing vibrations picked through accelerometers has been investigated and corre-
lated to hyolaryngeal excursion14,29 which paved the way for more studies that used swallowing accelerometry to 
evaluate airway protection10,17,30,31. However, most of these studies relied on expert manual segmentation of the 
swallowing signals by visual inspection of the concurrently collected diagnostic exams such as VFSS or repeated 
listening of sound signals.

Many swallowing event detection methods have been introduced in the literature especially for swallowing 
accelerometry. Sejdić et al.3 developed a segmentation algorithm that yielded over 90% accuracy for identify-
ing individual segments for both simulated and real data. Their algorithm used sequential fuzzy partitioning 
of the acceleration signal based on its variance3. The output of partitioning from two orthogonal axes of accel-
eration (anterior-posterior and superior-inferior) was logically combined to achieve better detection of indi-
vidual swallows and the algorithm was designed to deal with non-stationary long signals3. Damouras et al.7 
proposed a volatility-based online swallow detection algorithm that works on raw acceleration signals. This algo-
rithm achieved precision and recall values that are comparable to the results in3 and outperformed k-means 
and density-based spatial clustering of applications with noise (DBSCAN) algorithms32. Moreover, Lee et al.12, 
introduced a pseudo-automatic detection algorithm that depends on simple empirical thresholding of dual-axis 
accelerometry. They achieved high sensitivity, however the temporal accuracy of the detected segments was unac-
ceptable compared to the expert manual segmentation. Other methods used manual segmentation either through 
inspection of acceleration by human experts33 or synchronizing with reference events in simultaneous videofluor-
oscopic studies10,24. Multi-sensor fusion was also used in swallowing segmentation by identifying the most useful 
signal combinations among three types of signals (dual-axis accelerometry, submental MMG, and nasal air-flow) 
achieving accuracies up to 89.6%34.

The purpose of this study is to evaluate the accuracy of spectral estimation and deep neural networks (DNNs) 
in automatic swallowing activity detection in both swallowing accelerometry signals and swallowing sounds. 
Three axes of acceleration and a single channel of swallowing sounds were investigated individually as standalone 
event detectors after which the best system was chosen according to detection quality when compared to the 
expert manual segmentation. Moreover, the used dataset overcomes the limitations of controlled data acquisition 
in the past segmentation studies, including number of subjects, swallowing maneuvers, swallowed materials and 
bolus size which represent most of the conditions common in dysphagia screening. This makes the dataset inves-
tigated in this study, optimal for the validation of such segmentation algorithm. We hypothesize that the proposed 
method will be able to correctly identify around 95% of the swallowing segment in more than 90% of attempts, 
irrespective of the texture or volume of the swallowed material, swallowing maneuver, or patient diagnosis.

Results
A total of 3144 swallows (603 from stroke diagnosed patients and 2541 from other patients) were recorded with 
an average duration of 862.6 ± 277 msec. All the acquired signals (swallowing sounds and acceleration) from the 
microphone, and the three axes of the accelerometer were sampled at 20 kHz. Since numerous physiologic and 
kinematic events occur simultaneously during swallowing recordings (e.g. breathing, coughing), collected signals 
contain vibratory and acoustic information from multiple sources7. To overcome these and other measurement 
errors, we downsampled the entire dataset to 20% of the recorded sampling rate (i.e. 4 kHz instead of 20 kHz)35. 
All four signal streams (microphone, and accelerometer anterior-posterior [A-P], superior-inferior [S-I], and 
medial-lateral [M-L]) were independently considered for swallowing segmentation.
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To simulate the online processing scheme, and since we sought to determine whether automated segmentation 
could replicate gold-standard manual segmentation, a sliding window of size N samples was used to partition 
the signals into time samples. The window size N is considered as the predefined segmentation resolution of the 
system; therefore, we tested different values of N to see the effect of window size on the overall performance of the 
segmentation process. We used sizes of 500 to 1500 (25 to 375 msec) with a step of 100 samples and the selection 
of this range of values came from the fact that the acquired swallowing segments can be represented with the used 
window sizes. Moreover, a typical swallow segment can range in duration from 1 second (4k samples in this case) 
to more than 3 seconds which makes the selected window sizes robust to statistical error and efficient to detect 
the shortest swallows7,36. The algorithm was intended to use only non overlapping windows which reduces the 
number of processed windows and hence makes it suitable for real time operation; however, we considered a 50% 
overlap for all window sizes in order to test its effect on performance. So, four different segmentation models were 
trained and tested based on the four signal lines from microphone and accelerometer, each dependent on the spec-
trogram of underlying signal in order to determine the best window size and the best performing line as in Fig. 1.

All windows were labeled by comparing the start and end times to the timing of manual segmentation done 
by speech language pathologists (SLPs). A window is considered a part of a certain swallow if the the manually 
labeled swallowing segment overlaps with 50% or more of the automatically selected window size as shown in 
Fig. 2. The spectrogram of each window is calculated through the use of short-time Fourier transform (Eq. 1) with 

Figure 1. System’s parameter selection process.

Figure 2. The labeling process of a sample swallow sound signal. Red windows represent the swallow segments 
identified by human expert SLP’s. Green windows represent different positions of the sliding window. The 1st 
and 3rd positions are labeled as swallows due to large overlap.
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5 non-overlapping time samples each of (N/5) length, a fixed length of 512 for the calculated Fourier transform 
and a Hanning window to reduce variance and leakage. This setup provided spectrograms of 257 frequency bins 
and we only used the magnitude of spectrogram in building the model while the phase was not of interest for this 
study. Fig. 3 shows sample signals as picked by the microphone and accelerometer with the onset and offset of the 
swallow segment marked with red dotted lines and an example of a non-swallow segment marked with blue dot-
ted lines. Fig. 4 shows the spectrograms for the two segments (non-swallow and swallow) shown in Fig. 3 which 
basically represent the typical folded input into the DNN for each of the training models described previously. 
The magnitude of each spectrogram was unpacked into a (257 × 5) length vector to be used for the training pro-
cess and prior training, all spectrograms were normalized to unit scale.
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The used window sizes produced 5574 to 20121 swallow windows and 9421 to 280043 non-swallow win-
dows for window sizes 1500(375 msec) and 500(125 msec) respectively. This imbalance between swallows and 
non-swallows comes from the fact that each recording file contains longer blank (background noise) periods 
than swallowing periods. As a result, the balance between both types needed to be restored for the training of 
the system to mitigate bias. Therefore, we used the full set of the swallowing data at each window size and ran-
domly selected an equal group of the non-swallowing data. Single swallows were also separated in order to form 
a smaller dataset so that we could test the system performance over single and other types of swallows (multiple 
and sequential) because the later categories are known to be more complex. The resultant datasets were randomly 
reordered and divided into two parts, 80% for training and 20% for testing.

A DNN was trained to create a feed forward probabilistic model of size 1285 × 1285 × 1 units. The DNN was 
created such that the input layer is the spectrogram vector of each window and the output layer represents the 
synthesized probability of whether the window is a part of a swallow or not. The output layer was configured to 
use the biased-sigmoid as an activation function with zero bias. The DNN was trained using a 100 iterations sto-
chastic gradient descent (SGD)37. In addition, the DNN was configured to use dropout free training along with 
full sweep iterations of SGD.

Fig. 5 shows the results of testing the DNN trained with 80% of the data for the three axes of accelerometer 
(A-P, S-I, and M-L) and microphone signal. At each window size, the performance of swallowing identification is 
shown in terms of accuracy, specificity, and sensitivity. According to Fig. 5, we can clearly see that the best results 
are achieved for A-P acceleration data at window sizes of 800 and 900 (900 and 1000 for the whole dataset). As 

Figure 3. Sample raw sound and acceleration signals as recorded from the sensors attached on the anterior 
neck for each patient. The onset and offset of the swallow segment are marked in red dotted lines and the rest 
are non-swallow segments with the segment marked with the blue dotted lines as an example. (a) Microphone 
signal (b) A-P acceleration signal.

https://doi.org/10.1038/s41598-020-65492-1


5Scientific RepoRtS |         (2020) 10:8704  | https://doi.org/10.1038/s41598-020-65492-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

a result, the 10-fold cross validation model was trained with A-P acceleration 10 times while excluding a ran-
domly selected set of recordings each time for testing (without replacement). The top detection results achieved 
across all folds are shown in Table 1 for the two window sizes and the different overlap criteria. Ninety to 100% 
detection was accomplished for all four overlap ratios across single, multiple, and sequential swallows, and the 
precision of all four overlap ratios for single swallows was greater after post-processing. Multiple and sequential 
swallow detection also increased after post-processing however both the 900 and 1000 window sizes performed 
comparably. Overall, algorithm-based detection was most accurate using the window size of 800 (200 msec) for 
single swallows. On the other hand, using overlapping windows hasn’t had a noticeable effect on the algorithm 
performance except for long window sizes 1100–1500 (>225 msec). For A-P acceleration, the accuracy dropped 
between 1–5% for window sizes 500–1000 when using overlapping but increased with almost 8–12% for window 
sizes larger than 1100. Despite of the changes that overlapping induced to the performance, the best detection 
remains achievable at non-overlapping window sizes of 800–900.

Once we got the best window size and the best performing line of swallowing signals from the parameter 
selection step, we retrained and tested the system using these parameters as the block diagram shows in Fig. 6. 
The whole dataset was divided randomly into 10 equal subsets in terms of recordings and a holdout method is 
repeated 10 times by training with 9 subsets and testing with the remaining one. Furthermore, the segmentation 
masks generated from this step were processed in order to enhance the temporal accuracy of the detection com-
pared to the manual segmentation. This step is intended to check the boundaries of the detected segment and 
add a couple of samples on each side for a better match with SLP segments. The segments added to each side are 
determined through inspection of the area under the spectral estimate curve (AUC) of the swallowing signal 
(summation across frequencies for each time sample). The whole temporal enhancement process is illustrated in 
the flowchart shown in Fig. 7(a). The width of the segment is determined through simple thresholding of the AUC 
in the area around the detected segment with a threshold calculated from statistics of the segment (min and max). 
Figure 7(b) shows the AUC for a swallowing sound signal with swallowing segments annotated with rectangles. 
The inspection area was limited to 2 windows around the borders of each detected segment because more than 
this, will not be reasonable compared to the duration of swallows.

An assessment criterion was defined to validate the results of this segmentation work against the human 
expert manual segmentation as shown in Fig. 8. Manual segmentation defined swallow segments as the duration 
between the time when the leading edge of the bolus passes the shadow cast on the x-ray image by the posterior 
border of the ramus of the mandible (segment onset) and the time the hyoid bone completes motion associated 
with swallowing related pharyngeal activity and clearance of the bolus from the video image (segment offset). 
When patients swallow more than once to clear a single bolus (multiple swallow), the offset was based on the time 
when the hyoid returns to the lowest position before the next hyoid ascending movement associated with a sub-
sequent swallow. A swallow segment was considered correctly identified (auto-detected) if and only if there exists 
a certain percentage overlap between the reference window determined by a human judge performing manual 
segmentation and the window produced by the proposed segmentation algorithm (as shown in Fig. 8(b–e))3. In 
this study, we tested multiple overlap ratios representing two different approaches. The first approach was a fixed 
overlap irrespective to the segment duration and the used overlap included 2 SD below the average swallow dura-
tion (431.89 msec)) and 1 SD below the average swallow duration (675.56 msec). The second approach was using a 
90% and 95% overlap ratio of the manually measured duration for the compared segment. Otherwise the swallow 
was deemed to be incorrectly segmented (as shown in Fig. 8(f,g)). In addition to this assessment criterion, we 
used accuracy, specificity, and sensitivity to evaluate the overall performance of the segmentation process.

Figure 4. Spectrogram of non-swallow and swallow segments for both acceleration and sound.
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The algorithm also achieved 85.3 ± 12.5% sensitivity and 83.8 ± 9.5% specificity per each of the dataset 
records. These values were calculated over the whole dataset after removing the visually uncovered parts from 
records. The values came close to the anticipated results from the initial trials at Fig. 5. There may have been a 

Figure 5. Quality measurements of the full run for the system. (a) Accuracy. (b) Specificity. (c) Sensitivity.

Overlap Ratio Property

Single Swallows Multiple & Sequential Swallows

800 (200 msec) 900 (225 msec) 900 (225 msec) 1000 (250 msec)

2 SD below Average
Detected Swallows 100% 98.8% 96.5% 96.4%

Average Duration (msec) 1461 ± 499.5 1564 ± 472.9 1335 ± 893.8 1474.1 ± 956.1

1 SD below Average
Detected Swallows 100% 97.7% 94.5% 95.3%

Average Duration (msec) 1504.1 ± 465.7 1599.2 ± 452.3 1382.2 ± 631.6 1495.6 ± 644.2

90%
Detected Swallows 98.3% 90.8% 93.4% 94.2%

Average Duration (msec) 1495.2 ± 355.9 1580.6 ± 270.4 1392 ± 625.8 1475.4 ± 366.5

95%
Detected Swallows 98.3% 90.8% 93.1% 94.2%

Average Duration (msec) 1495.2 ± 355.9 1580.6 ± 270.4 1391.6 ± 625 1475.4 ± 366.5

Table 1. Detection measurements for the top two configurations.
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slight drop in sensitivity and specificity due to misclassification at the borders of each swallow, in addition to the 
unlabeled swallows treated as false positives. These values go up to more than 90% for the clean records that don’t 
contain these pause areas and/or weren’t logged to have any visually missed events. Figure 9 shows the results of 
applying the segmentation algorithm on one of the clean records. It can be clearly seen that the algorithm success-
fully captured all the swallowing events in the signal and didn’t misidentify any part of the signal including the 
hyoid bone motion event prior to the last swallow (Fig. 9 lower right corner).

In order to further explore the performance of the proposed segmentation framework, it was evaluated as well 
in a standard clinical setup during the workflow of an ongoing swallowing experiment. A total of 76 swallows with 
an average duration of 1011 ± 216 msec, were used to test the proposed system for the detection of the onset and 

Figure 6. Flow of the training (a) and testing (b) paths of the proposed system.

Figure 7. Temporal enhancement process: (a) shows the flowchart of the process. (b) A sample area under the 
spectrogram curve of a swallowing mic signal.
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Figure 8. Possible swallow segmentation results. (a) Sample swallowing sound signal and definition of the 
swallowing segment (in blue). (b–e) Examples of correctly identified swallow segments (in red). (f,g) Examples 
of incorrectly identified swallow segments.

Figure 9. A clean A-P acceleration record. The red segments represent swallows as labeled by SLP. Black boxes 
are segments detected by the algorithm. Images on each corner are simultaneous VFSS snapshots of the signal 
events.
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offset of pharyngeal swallows after being trained over the full 3144 swallows dataset mentioned previously. The 
used swallows in this validation procedure were meant to be completely unseen in order to test the robustness and 
generalizability of the proposed segmentation algorithm and never used in anyway in the training process. Both 
training and evaluation were performed using the best performing window size (800) and only the A-P accel-
eration. The segmentation framework presented interesting results when tested on the swallows from the inde-
pendent clinical study where 97.4% of the swallows were correctly detected when considering an overlap window 
of 2 SD below the average swallow duration calculated from the original dataset, 84.2% of the swallows for 1 SD 
below average swallow duration, and 65.8% of the swallows when considering overlap ratios of 90% or more.

The videofluoroscopy instrument was controlled by a radiologist who had a switch to stop the imaging proce-
dure when there was no bolus administered to the patient in order to reduce the radiation dose. This pausing in 
the x-ray machine operation caused the collected videos to have static frames for long periods with no visual clue 
about the events occurring while vibratory and acoustic data continued to be recorded. These events included 
swallows, talking, coughing, and head motion occuring between elicited swallow events. Without the visual 
help of VFSS, these events cannot be labeled; hence, included in the evaluation of this segmentation procedure. 
However, the algorithm was applied to these areas after training to see if it would pick up any of these events. 
This, alongside with the presence of unexplained false positives, necessitated manual inspection and validation 
of the segmentation results against the videos and logs kept by research associates collecting the swallow data. A 
trained rater validated each event detected by the algorithm in order to identify the origin of non-swallow events 
as a qualitative assessment for the proposed algorithm. More than 6500 detected segments were analyzed and val-
idated visually against the videos and session logs for a window size of 900 and a 90% overlap criterion. The out-
comes of the analysis (Table 2) show that the algorithm captured more than 94% of the swallows which is nearly 
a match with the results of the whole dataset in Table 1. Moreover, the rater reported that the algorithm success-
fully detected 353 swallows that were not captured/labeled in videos. The visually uncovered events reported in 
Table 2, are the segments detected by the algorithm during video pause times with no reference in session logs.

Discussion
The results confirmed our hypothesis that the proposed algorithm can correctly and without human interven-
tion, detect 95% of known swallow durations in more than 90% of attempts across simple (clean swallows) and 
complex (non-swallow activity co-occurring with swallows) swallow events. We can clearly see from Fig. 5 that 
training a DNN with the spectral estimate for the raw swallowing vibrations of a single channel can produce accu-
racies as low as 26.1% and up to 97.6% on window level over the whole dataset. In addition, the system showed 
robustness in terms of true positive and true negative rates. The best performing channel was the A-P acceler-
ometer axis with an average accuracy of 89.44% for single swallows (75.9% for the whole dataset) and superior 
sensitivity and specificity which is comparable to the results in7. The performance of other channels was close to 
the A-P axis, but the lowest performance was given by feeding the network with the spectrogram of the SI axis for 
all considered quality measurements.

The selection of proper window size highly depends on signal temporal characteristics which is obviously clear 
in the demonstrated results. We stated that the whole set of collected swallows is on average of 862.6 ± 277 msec. 
This makes the best window size to detect these swallows, located around the middle of used range (800–1000) 
because each swallow can be represented as integer multiples of the selected window in this range especially 
since we did not use any overlap between the sliding windows. This effect is most highly illustrated in the results 
of the A-P acceleration where the accuracy, true negative and true positive rates increase to their maximum at 
window size of (900–1000) and then drop sharply. They return to increase after this drop because the window size 
increases and approaches multiples of the effective values mentioned before. The effect is almost the same with 
other components of acceleration and microphone signals.

The temporal accuracy of detection was examined as well for the best two systems with window sizes of 800 
and 900 for single swallows (900 and 1000 for the whole dataset) and validated against the manual segmenta-
tion by SLPs as shown in Table 1. Among the examined assessment criteria, we found that a 2 SD below average 
swallow duration criterion as the minimum overlap (431.89 msec ≈47% of average swallow duration) between 
the detected and manually segmented swallows, is very low considering the duration of the examined swallows, 
however it gives excellent detection results. So, we tested 1 SD below the average duration (675.56 msec ≈73.5% 
of average swallow duration) as well as 90% and 95% minimum overlap. The average duration of detected seg-
ments in the three criteria are close in duration and all of them are not far from the average duration of the actual 

Event type Details Total count

Swallowing events
Detected by the algorithm 2225

Undetected by the algorithm 128 2353

Non-swallowing events

Reduced oral containment 
(Premature Spillage) 38

1275
Hyoid bone movement 434

Coughing 134

Head and neck movement 266

Unexplained 403

Visually uncovered events 2936

Table 2. Outcomes of the manual validation of automatic segmentation results.
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segments. Moreover, the fluctuations in segment duration are considered very convenient compared to the length 
of segments. Therefore, all of these criteria proved to deliver excellent automated detection accuracy of swallow 
events without human intervention.

Encouragingly, the system has also shown promising segmentation quality when applied on completely 
unseen data collected from different group participants with control parameters that were not included in the 
main dataset under investigation. Despite these promising results, there is a little drop in the number of swallows 
correctly segmented considering different overlap windows when compared to the original dataset. The reason 
behind this drop in performance may be returned to the fact that there is actually a difference in the average 
swallow duration between the two datasets (a little longer in case of swallows from healthy participants) which in 
turn reflects on the needed window size that best represents the swallows. Another factor that may contributed 
into this performance drop, is the possibility that the used set of swallows contains some multiple swallows which 
causes the detection quality to drop when included as shown in Table 1. Nevertheless, the performance presented 
by the system on the new dataset suggests that it is likely to generalize to other swallowing datasets.

Evidently, the proposed algorithm achieved results better than most of the swallowing signal segmentation 
algorithms in the literature, especially the work in3 which achieved the best swallowing segmentation accuracy in 
swallowing accelerometry. In this work, Sejdić et al.3 performed a maximum likelihood estimation to calculate the 
onset and offset times of swallows in acceleration signals. They used also a good dataset with multiple swallowing 
maneuvers and materials; however, the algorithm is computationally expensive especially when the number of 
swallowing segments in the signal is unknown. Damouras et al.7 used quadratic variation that is extracted directly 
from acceleration signals to perform segmentation and the algorithm was computationally effective to execute. 
Their algorithm achieved recall values up to 94% but it was highly affected by the presence of noise and the used 
dataset wasn’t diverse enough considering the maneuvers and material consistencies. The work of Lee et al.34 also 
achieved good segmentation quality (accuracy up to 89.6%) through the use of sensor fusion and neural networks 
but they didn’t provide any analysis to show the detection quality on the temporal side of the swallowing segments 
and the reference manual segmentation used was done for swallowing apnea which is shorter than the swallow 
itself. On the other hand, our proposed algorithm is validated using a wide dataset rather than a controlled limited 
dataset like most of the previous studies. The used dataset is at least 10 times larger than any used dataset in swal-
lowing segmentation and covered most of the known swallowing conditions encountered in dysphagia screening 
which occurs in typical healthcare environments that allow for very limited control of patient position and other 
variables. This is important because our results, obtained in a naturalistic setting, are more externally valid than 
they would be had the data been collected under strict experimental controls as seen in many prior published 
studies. In addition, the proposed algorithm has a better response time in testing phase that doesn’t exceed mil-
liseconds and is suitable for real time processing and use on edge mobile devices. The algorithm uses massive 
computational resources for the training phase like any deep neural network, but this can be overcome using the 
newly emerging platforms with GPUs or special architectures to accelerate the training process. The use of deep 
neural networks along with the time-frequency representation of swallowing signals was able to model the fine 
differences between swallowing segments and other events captured given the power of neural networks in effi-
cient feature and parameter learning procedures. The future work for the proposed algorithm will include fusion 
between different signal lines in order to achieve more robust segmentation and avoid the detection of false posi-
tive events such as coughing and head movement. We will include also recurrent neural networks for their power 
in modeling long range dependencies in time series in addition to functionally employing longer window sizes 
and overlapping to guarantee better detection quality especially at the borders of the swallow (onset and offset).

The start and end of each pharyngeal swallow can be roughly identified through visual and tactile inspection 
of hyo-laryngeal excursion and other observations of the patient swallowing. However, these methods are sub-
jective and not reliable. Traditional cervical auscultation using a stethoscope to observe swallowing sounds, is 
particularly unreliable despite its commonplace use. This renders the advancements in high resolution cervical 
auscultation and machine learning methods demonstrated in this investigation and others, especially encourag-
ing toward a goal of unsupervised detection of swallow events and many of their physiologic components and 
more timely identification of patients with dysphagia who need intervention. Adding a robust method that can 
automatically identify swallows is of a great clinical significance to diagnosis and rehabilitation of swallowing dis-
orders. Such methods can detect swallows that are hard to observe in patients who have difficulty initiating oro-
pharyngeal swallow (e.g. Parkinson’s disease) or patients with weak pharyngeal swallow (e.g. medullary stroke)38. 
Future directions for this technology include developing computational deglutition methods to pre-emptively 
detect airway compromise (e.g. aspiration) and other clinically significant swallowing disorders at the bedside30, 
facilitate behavioral treatments by providing real-time swallow biofeedback19, and in day-to-day management of 
swallowing disorders in settings that lack adequate qualified dysphagia clinical specialists.

Conclusion
In this paper, a novel automatic segmentation algorithm for swallowing accelerometry and sounds was proposed, 
and its potential in dysphagia screening was discussed. The algorithm scans the swallowing signals through a 
sliding window of a specific size and each window is classified as a swallow or non-swallow through feeding its 
spectral estimate into a deep neural network. Swallowing signals from 248 participants were collected for different 
swallowing tasks, manually labeled by experts and used to train and validate the system. The proposed algorithm 
yielded over 95% accuracy at the window level in addition to similar values of sensitivity and specificity. On the 
temporal side, the algorithm nearly did not fail in detecting any swallowing activity (2 SD below average) and 
proved superior in detection despite high overlap ratios with accuracies that exceeded 90% for all types of swal-
lows. Moreover, the algorithm showed similar performance when tested on completely unseen data implying the 
ability to generalize to other datasets. Our algorithm has demonstrated the potential of deep neural networks and 
spectral representation of swallowing signals to event detection in swallowing accelerometry.
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Methods
This study was approved by the Institutional Review Board of the University of Pittsburgh. All participating 
patients gave informed consent to join the study. All experiments were performed in accordance with relevant 
guidelines and regulations. A total of 248 patients (148 males, 100 females, age: 63.8 ± 13.7) served as the sam-
ple for this experiment. They were recruited from the population of patients referred to the Speech Language 
Pathology service for an oropharyngeal swallowing function assessment with videofluoroscopy at the University 
of Pittsburgh Medical Center (Pittsburgh, PA), due to clinical suspicion of dysphagia. Of the sample, 44 patients 
(32 males, 12 females, age: 66.6 ± 13.7) were diagnosed with stroke while the remaining 204 patients (116 males, 
88 females, age: 63.0 ± 14.3) had medical conditions unrelated to stroke. Patients were asked to swallow multiple 
materials of different viscosities and volumes including chilled (5 °C) Varibar thin liquid (Bracco Diagnostics 
Inc., Monroe Township, NJ), chilled (5 °C) Varibar nectar, honey thick liquid, barium tablets (EZ Disk, Bracco 
Diagnostics Inc., Monroe Township, NJ), Varibar pudding, or a cookie coated with Varibar pudding. The swal-
lows were performed with and without verbal command and in multiple maneuvers including neutral, chin 
down, left and right head rotation, combined chin down and head rotation, Supraglottic swallow (SGS), and 
modified SGS. The vibrations of each swallow were recorded as a separate task by the LabView Signal Express 
and exported in a plain text format to be used for subsequent analysis. A total of 3144 swallows (603 from stroke 
diagnosed patients and 2541 from other patients) were recorded with an average duration of 862.6 ± 277 msec. 
The collected swallows included 1038 single swallows, 1893 multiple swallows (several swallows to swallow a sin-
gle bolus) and 213 sequential swallows (swallows of more than one bolus one at a time in a rapid sequence). The 
whole set of collected swallows, was used entirely to train and evaluate the proposed segmentation framework 
regardless of the consistency of the swallowed material and/or the administered bolus volume. This assures that 
the collected dataset covers as many as possible of the swallowing conditions common in day-to-day swallowing 
assessment and that the proposed segmentation framework will be trained and evaluated across a diverse rather 
than controlled dataset which guarantees robustness and adaptability to deployment in standard clinical care con-
ditions. The swallowing event start (onset) and end (offset) times taken as gold standard for the experiment were 
obtained through manual segmentation of videofluoroscopy sequences by experienced SLPs in our Swallowing 
Research Lab along with the penetration aspiration (PA) scores39 of the swallows as described in40. PA scale scores 
indicate the depth of entry of swallowed material into the patient’s airway when swallowing, and the quality of 
the patient’s airway protective response to airway penetration (material remaining above the true vocal folds) or 
aspiration (material coursing through the larynx and entering the trachea). The number and type of swallows in 
each PA score are summarized in Fig. 10.

Data acquisition was performed per previous work published by Dudik et al.41. The swallowing vibrations 
were recorded during a routine videofluoroscopy with two types of sensors, a tri-axial accelerometer (ADXL 
327, Analog Devices, Norwood, Massachusetts) and a lapel microphone (model C 411L, AKG, Vienna, Austria) 
attached to the subject’s anterior neck. The accelerometer complex (sensor in a plastic case) was attached to the 
skin overlying the cricoid cartilage for the best signal quality42. The first two axes of accelerometer were aligned 
to the anterior-posterior (A-P) and superior-inferior (S-I) directions which can be described as perpendicular 
to the coronal plane and parallel to the cervical spine respectively. The third axis of accelerometer (medial lateral 
axis or M-L) was parallel to the axial/transverse plane of the patient’s head and neck. The sensor was powered 
using a 3V power supply (model 1504, BK Precision, Yorba Linda, California) and had its output signals hardware 
band-limited to 0.1–3000 Hz and amplified with a gain of 10 (model P55, Grass Technologies, Warwick, Rhode 
Island).

The microphone was mounted towards the right lateral side of the larynx with no contact with the acceler-
ometer to avoid any friction noise and to avoid obstructing the upper airway radiographic view, and powered 
via a microphone specific power supply (model B29L, AKG, Vienna, Austria) with the maximum possible vol-
ume level (9 for this device). The conditioned signals from the microphone and accelerometer were fed into a 
National Instruments 6210 DAQ, sampled at a 20 kHz rate, and acquired by LabView’s Signal Express (National 
Instruments, Austin, Texas). The previous setup for both accelerometer and microphone has proven to be effec-
tive in collecting swallowing vibrations42–45. A video capture card (AccuStream Express HD, Foresight Imaging, 

Figure 10. Number of swallows in the dataset for each PA score.

https://doi.org/10.1038/s41598-020-65492-1


1 2Scientific RepoRtS |         (2020) 10:8704  | https://doi.org/10.1038/s41598-020-65492-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Chelmsford, MA) was used to feed the output of the videofluoroscopy instrument (Ultimax system, Toshiba, 
Tustin, CA) into LabView for recording. All signals fed to the DAQ were acquired and recorded simultaneously 
for a complete start-to-end synchronization.

An identical collection procedure to the aforementioned one, was used for the clinical experiment that yielded 
the swallows used for testing the generalizability of the proposed system. The experiment was performed on 
healthy community-dwelling adults who had no history of swallowing difficulties. Twenty subjects (9 males, 11 
females, age: 65.8 ± 11.4) who provided informed consents, participated in the experiment. The participants in 
this sample were selected randomly from a population that had no history of surgeries to the head or neck region 
or neurological disorders and underwent swallowing evaluation as a part of bigger study. Only thin liquid boluses: 
3 mL by spoon and unmeasured self-administered volume cup sips, were administered to the subjects in a com-
pletely randomized order.

Data availability
The dataset used in this study might be available upon reasonable request from the corresponding author and 
with permission from our clinical collaborators.
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