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Linear response of a superfluid 
Fermi gas inside its pair-breaking 
continuum
H. Kurkjian✉, J. tempere & S. n. Klimin

We study the signatures of the collective modes of a superfluid Fermi gas in its linear response functions 
for the order-parameter and density fluctuations in the Random Phase Approximation (RPA). We show 
that a resonance associated to the Popov-Andrianov (or sometimes “Higgs”) mode is visible inside the 
pair-breaking continuum at all values of the wavevector q, not only in the (order-parameter) modulus-
modulus response function but also in the modulus-density and density-density responses. At nonzero 
temperature, the resonance survives in the presence of thermally broken pairs even until the vicinity of 
the critical temperature Tc, and coexists with both the Anderson-Bogoliubov modes at temperatures 
comparable to the gap Δ and with the low-velocity phononic mode predicted by RPA near Tc. The 
existence of a Popov-Andrianov-“Higgs” resonance is thus a robust, generic feature of the high-energy 
phenomenology of pair-condensed Fermi gases, and should be accessible to state-of-the-art cold atom 
experiments.

A primary way to probe the collective mode spectrum of a many-body system is by measuring the response func-
tions of its macroscopic observables such as its density, or, in the case of a condensed system, its order parameter. 
These response functions can be measured by driving the system at a given wavenumber q and varying the drive 
frequency ω. In the theoretical case where the collective mode is undamped, one expects a infinitely narrow res-
onance (a Dirac peak) when ω coincides with the collective mode frequency ωq. However, in most systems, col-
lective modes are coupled to one or several continua of excitations, for example by intrinsic couplings to other 
elementary excitations. The system response in this case is less abrupt: the response functions are nonzero at all 
frequencies ω belonging to the continuum and the Dirac peak of the collective mode is replaced, in the favorable 
cases, by a broadened resonance. Theoretically, this damped resonance can be related to the existence of a pole in 
the analytic continuation of the response functions through their branch cuts associated to the continua1–3. 
Eventually, if the coupling to the continuum is very strong, the resonance may entirely disappear, such that only a 
slowly varying response remains visible inside the continuum.

Superfluid Fermi gases, which one can form by cooling down fermionic atoms prepared in two internal states 
↑ ↓/ 4–13, offer a striking example of this fundamental many-body phenomenon. This system of condensed pairs of 
↑ ↓/  fermions is described by 3 collective fields: the total density ρ of particles and the phase and modulus of the 
order-parameter Δ. In the general case, the fluctuations of those 3 fields are coupled and the collective modes have 
components on all of them. The system has also fermionic quasiparticles describing the breaking of pairs into 
unpaired fermions14–17, and two fermionic continua of quasiparticle biexcitations: a gapped 
quasiparticle-quasiparticle continuum and a gapless quasiparticle-quasihole continuum (to which the collective 
modes are coupled only at nonzero temperature). Since the coupling to these continua is not small in general, the 
collective mode spectrum can be obtained only after nonperturbative analytic continuations18–21. Performing an 
analytic continuation to study collective modes coupled to a continuum is a powerful heuristic tool: it is indispen-
sable to interpret the shape of the response functions in terms of collective phenomena and to define precisely the 
spectrum of the collective branches. However, the poles found in the analytic continuation are not directly observ-
able and one should always relate them to resonances which experiments can measure in the response functions.

Meanwhile, the experimental study of the collective modes of a superfluid Fermi gas is a very active field of 
research8,13,22, with a  recent focus on the high-energy collective modes23 (at ω  larger than the 
quasiparticle-quasiparticle continuum threshold at 2Δ) where a branch with quadratic dispersion19,20 is expected, 
reminiscent of the Higgs modes in high-energy physics24, superconductors25–30, superfluid fermionic Helium31 
and nuclear matter32,33. This motivates us to discuss the observability, in the order-parameter and density response 
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functions, of the collective modes (called Popov-Andrianov modes hereafter) predicted by refs. 19,20,34 based on 
the analytic structure of the functions continuated to imaginary frequencies. There are two major obstacles24,28,35 
to the observation of the Popov-Andrianov-“Higgs” resonance in a conventional fermionic condensate. (i) So far 
the resonance has been clearly identified only in the modulus-modulus response function, whereas experiments 
(both in superconductors24 and ultracold Fermi gases13,22) usually excite or measure the density of the fermions. 
(ii) In a conventional fermionic condensate, where the resonance energy is above 2Δ and the resonance broad-
ened by its coupling to the pair-breaking continuum, it is generally not known whether a quality factor and spec-
tral weight large enough to allow for an observation can be reached. Most studies then look for situations where 
the damping by the continuum is absent, as in Charged-Density-Wave superconductors25,27–30, inhomogeneous 
systems36 or superfluids in unconventional lattice geometries35. Here, we show that the resonance is observable in 
the density-density and density-modulus response functions at strong coupling even in a conventional fermionic 
condensate. In those density responses, the spectral weights of the resonance tends to zero with the wavevector q 
while the quality factor decreases when q increases. Nevertheless we could identify an intermediary regime 
( µ≈q m2  at unitarity) where the resonance, and the characteristic quadratic dependence on q of its peak fre-
quency, should be resolvable from the continuum background in an ultracold Fermi gas.

We study the response functions in Anderson’s Random Phase Approximation (RPA)37. We use the formu-
lation of ref. 38 in terms of bilinear quasiparticle operators that we generalize to nonzero temperature and to the 
presence of external drive fields. The RPA captures the coupling of the collective modes to the two fermionic 
continua (and the corresponding broadening of the resonances in the response functions) but neglects other cou-
plings, in particular to the continua of two39, three40,41 or more collective excitations. We show that in this approx-
imation, the density fluctuations are sensitive to the fluctuations of Δ, so that both modulus and phase collective 
modes are visible in the density response, but that the converse is not true. We give explicit expressions of each 
element of the response function matrix1,42–44, and show that they agree with path-integral based treatments21,45.

As the spectrum and response-function signatures of the low-energy collective modes is known in the RPA at 
zero37,46,47, nonzero temperature38,48 and near the critical temperature Tc

19,21,49, we concentrate here on the 
high-energy ( 2ω > Δ) modes. At zero temperature, we show that the resonance of the Popov-Andrianov-“Higgs” 
mode is visible not only in the modulus-modulus response20 but also as a global extremum (in the region 

2ω > Δ) in the modulus-phase and modulus-density responses, and as a local extremum in the density-density 
response at strong coupling. As suggested by the analytic structure found in ref. 34, we show that the branch 
remains observable at large q (in particular at µ≈q m2  in the weak-coupling limit � µΔ ) with a quality factor 
below, but not much below unity.

At nonzero temperature, where the RPA captures the thermal population of the fermionic quasiparticle 
branches (and only of those branches) and describes the collective modes in the collisionless approximation, we 
show that the Popov-Andrianov resonance is not destroyed by the presence of thermally excited fermionic quasi-
particles. On the contrary, the increase of temperature (which reduces Δ) favours the observability of the reso-
nance in the density response functions by increasing the resonance spectral weight. The shape of the resonance 
is weakly affected by temperature, and for the order-parameter responses this shape is actually the same as at zero 
temperature for a slightly different interaction strength. Close to the critical temperature Tc, we show that collec-
tive mode in the pair-breaking continuum branch is not hidden by the low-velocity phononic branch21 as long as 

q m/ /2 2 2�  µΔ . This is in contrast with the Anderson-Bogoliubov branch, which disappears near Tc according to 
the RPA.

Altogether our findings confirm the observability of the Popov-Andrianov-“Higgs” branch, which appears, 
after our study, as the strongest feature of the high-energy phenomenology of pair-condensed Fermi gases. It is 
observable in wide ranges of values of the interaction strength, exciting wavevector and temperature, and it is only 
weakly affected by the singularities caused in the response functions by the structure changes of the fermionic 
continuum. We are then optimistic about its observability, especially if the experiments can access one of the 
modulus response functions (modulus-modulus, modulus-phase or modulus-density). The modulus of the 
order-parameter can be excited by a Feshbach modulation of the scattering length20,50, after which the 
modulus-density response can be measured by absorption images as in refs. 13,22. Alternatively the density can be 
excited by a Bragg pulse13 or by shaking the confinement walls22, and the order-parameter modulus measured 
after a bosonization of the Cooper pairs. In the density-density response, it would be interesting to see if the peak 
observed in13 above 2Δ has the characteristic behavior of the Popov-Andrianov-“Higgs” mode, that is, a quad-
ratic dependence on q for both the peak frequency and its width.

BCS Theory At Nonzero Temperature
To derive the matrix of linear response functions, we use the formalism of ref. 38, itself based on the RPA approach 
of Anderson37, and we generalize it to the presence of pairing and density exciting fields. We start by briefly recall-
ing the formalism of BCS theory at nonzero temperature. In real and momentum space, the Hamiltonian of an 
isolated gas of fermions in two internal states σ = ↑ ↓/  with S-wave contact interactions is given by

∑ ∑ψ µ ψ ψ ψ ψ ψ=
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We use from now on the convention � = =k 1B . To introduce a momentum cutoff in a natural way, we discretize 
space into a cubic lattice of step l and impose periodic boundary conditions (in a volume =V L3), which restrict 
the values of the wavevectors to D  ∩ π π= −π l l[ / , / ]

L
2 3 3. The bare coupling constant g0 is renormalized to 

reproduce the correct s-wave scattering length of the two-body problem:

g
m

a
d k m

k
1

4 (2 ) (3)l l0
2 [ / , / ]

3

3 23∫π π
= − .

π π−�

At the end of the calculation we take the lattice spacing l to 0, and thus g0 tends to 0 to compensate the divergence 
of the integral on the right-hand-side of (3).

BCS theory describes the equilibrium state at temperature T  by the Gaussian state:

ˆ
ˆ

Z
ρ =

−T H T( ) exp( / )
(4)BCS

BCS

where Z  is the partition function and the BCS Hamiltonian HBCS is obtained by treating the interactions in the 
mean-field approximation, i.e. by replacing the quartic interaction term g r r r r( ) ( ) ( ) ( )0ψ ψ ψ ψ↑ ↓ ↓ ↑

ˆ ˆ ˆ ˆ† †
 in (2) by a quad-

ratic one � �r r( ( ) ( ) c c )ψ ψΔ + . .↑ ↓
† † , through the introduction of the self-consistent pairing-field
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Here 〈…〉T denotes the average in the thermal state T( )BCSρ̂ . This quadratic Hamiltonian can be diagonalized 
easily into a Hamiltonian describing fermionic elementary excitations on top of a ground state energy E0:
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The fermionic quasiparticle operators γ σk,ˆ  are obtain after a Bogoliubov rotation of the particle operators ak,ˆ σ as 
in the zero temperature case:
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The difference with the zero temperature case lies in the average values of the bilinear operators:
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This thermal population of the quasiparticle modes also affect the gap equation:

g
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(14)k
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0
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D
∑Δ = − − .
∈

Thus, at nonzero temperature, BCS theory captures the effects due to the thermally excited fermionic quasipar-
ticles (the broken pairs); it completely neglects that there are also thermally excited collective modes (some of 
which are gapless) which is a serious limitation, particularly at strong coupling.

RPA Equations of Motion in Presence of Drive Fields
To study the linear response of the gas, we introduce, on top of the Hamiltonian (2) of the isolated gas, a quadratic 
Hamiltonian describing the experimental driving of the system:
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Here the fields σu r( ), coupled to the density of spin σ fermions, describe for instance a Bragg excitation of the 
gas13. The complex field φ r( ) coupled to the quantum pairing field r r( ) ( )ˆ ˆ† †

ψ ψ↑ ↓  can be imposed for instance by a 
Feshbach-modulation of the interaction strength50. An excitation coupled to the phase of ˆ ˆ† †

ψ ψ↑ ↓r r( ) ( ) can be 
achieved using a time- and space-dependent Josephson junction as proposed in ref. 21. This drive Hamiltonian 
decomposes into a sum of Fourier components of the momentum q transferred to system:
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We use here a symmetrized version of Anderson’s notations37 for the bilinear fermion operators (see also chapter 
V. in ref. 51),
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and the Fourier transforms of the drive fields:
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In the framework of linear response theory, we seek the response of the system to first order in the fields φ and 
uσ. We thus neglect the quantum fluctuations in the terms of the equations of motion deriving from Ĥdrive:

ˆ ˆ ˆ ˆ ˆ ˆab H ab H[ , ] [ , ] , (20)Tdrive drive�

where the average value ˆ ˆ ˆ〈 〉ab H[ , ] Tdrive  is taken in the BCS equilibrium state at zero fields. The rest of the deriva-
tion is similar to what is explained in refs. 38,51: one writes the Heisenberg equations of motion for the bilinear 
fermionic operators (17) and linearizes them using incomplete Wick contractions (i.e. the replacement 
abcd ab cd ab cd ac bd ac bdT T T Tˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ→ 〈 〉 + 〈 〉 − 〈 〉 − 〈 〉 + …). The resulting equations of motion of the bilinear par-
ticle operators are given in Appendix A. We give here the equations of motion in their simplest form, which is in 
the quasiparticle basis. At the level of the bilinear operators, the Bogoliubov rotation (8) and (9) becomes:
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where φ φ φ= ±± q q q( ) ( ) ( ), = ±± ↑ ↓u u uq q q( ) ( ) ( ) and ˆ ˆ ˆδ = − 〈 〉O O O T  (the subtraction of the mean-field 
average value matters only when q = 0). At the linear order, the sole effect of the drive fields is thus to shift the 
collective quantities which enter in the equations of motion:

∑ φΔ = → Δ +ˆ ˆ ˆg
L

d q( )
(26)

q

k
k
q q0

3
1

1

g
L

d q( )
(27)

q

k
k
q q

0
3

1
1∑ φΔ = → Δ +ˆ ˆ ˆ

∑= → +↑ ↑ ↓n
L

n n u gq1 ( )/
(28)

q

k
k
q q

3 0
1

1
ˆ ˆ ˆ

ˆ ˆ ˆ∑= → + .↓ ↓ ↑n
L

n n u gq1 ( )/
(29)

q

k
k
q q

3 0
1

1

Note that one recovers the zero temperature system Eqs. (14–16) of ref. 38 by setting f 0k =  (in which case the 
equations of motion of the ˆ ˆ†γ γ  operators become trival).

Linear Response to a Periodic Drive
Matrix of response functions of a driven system. We now assume that the system is driven at a fixed 
frequency ω, such that φ φ= ωt er r( , ) ( ) i t and =σ σ

ωu t u er r( , ) ( ) i t. We can then replace the time derivatives �∂i t in 
Eqs. (22–25) by i0ω + +. Rederiving with respect to time and resumming the system to form the collective quan-
tities (26–29) yields the 4-dimensional linear system
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where  is the identity matrix. We have introduced the density and polarisation fluctuations and reparametrized 
the fluctuations of the order-parameter as:
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We treat the phase θ
qˆ  of the order-parameter as an infinitesimal and therefore linearize the exponential in (31) 

and (32), which is consistent with our symmetry-breaking approach where the expansion is done around the 
mean-field state with a real Δ. The linear response matrix1,42–44, which relates the fluctuations of the density and 
order-parameter to the infinitesimal drive fields, is then


χ =
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To describe the experimental behavior of a driven system, one usually concentrates on the imaginary part of χ, 
which describes the energy absorbed by the system1 (whereas the real part describes the energy refracted or 
reflected by the system).

The matrix χ is expressed in terms of the 4 × 4 matrix Π of the pair correlation functions52, computed in the 
BCS thermal state (4):
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kq kq kq k k

kq k

kq kq k k

kq
2 2 2 2

Here a and b are one of the functions +W , W−, w+ or −w  of k and q, and ε±
kq is short-hand for ε εk q k q/2 /2±+ − . The 

first and second matrix in the right-hand side of (36) are the contribution of respectively the 
quasiparticle-quasiparticle and quasiparticle-quasihole continua to Π. In our unpolarized system, the polariza-
tion fluctuations ˆ ˆ−↑ ↓n nq q are entirely decoupled from the other collective fields. Note that the response functions 
computed here for a driven system also give access, through a Laplace transform34, to the time response following 
a perturbation localized in time.

Remark that, up to some signs, the matrix Π has a tensor-product structure when expressed in terms of the 
vector = + − + −a a a a W W w w( , , , ) ( , , , )1 2 3 4 :

ε εη η

η η
Π =








Σ − ′ = = −

Σ − ′ω ω
− −

− −

S i j i j

S

if or 5

else (39)
ij

ij a a ij a a

ij a a ij a a

, ,

, ,

i j i j

i j i j

5 5

5 5

The signs 1ijη = ±  and η′ = ±1ij  should be read on Eq. (36).

Eigenenergies of the collective modes. The response of the system should diverge when the drive fre-
quency coincides with the eigenfrequency ωq of a collective mode; to find those eigenfrequencies, one should thus 
search for the poles of χ, in other words the zero of its denominator:






− Π





= .V

g
z qdet ( , ) 0

(40)
q

0

When Π has a branch cut on the real axis (which occurs for all ω ∈  at nonzero temperature and for 
min ( )k k q k q/2 /2ε εω| | > ++ −  at zero temperature), this equation cannot have a real solution. Its analytic continu-

ation to the lower-half complex plane may however have solutions describing damped collective modes. 
Numerical and analytic methods to continue the matrix Π through its branch cuts have been described in 
refs. 20,21,34. Note that the bare density-density response function Π33 may have poles in the complex plane, which 
remain poles of the dressed response χ33.

Explicit expressions of the response functions in the limit g0 → 0. In the limit of zero lattice spacing 
( →l 0), g0 tends to 0, Π11 and Π22 are equivalent to V g/ 0, while 33Π  and 44Π  have a finite limit (to interpret physi-
cally the elements of Π the reader can use the correspondance θ ρ→ Δ p1, 2, 3, 4 , , , ). We thus have the 
equivalences
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Π ∼







Π Π

Π Π

Π Π Π
Π







Π − ∼







Π − Π Π

Π Π − Π

Π Π −

−







.

→

→

V g
V g

V
g

V g
V g

V g
V g

/ 0
/ 0

0
0 0 0

,

/ 0
/ 0

/ 0
0 0 0 / (41)

g

g

0

0 12 13

12 0 23

13 23 33

44

0
0

11 0 12 13

12 22 0 23

13 23 0

0

0

0

Note that Π − V g/11 0 and Π − V g/22 0 have a finite limit when →g 00 . The determinant of the denominator of χ 
is then proportional to the determinant of the 2 × 2 upper left submatrix:






Π −






∼












= Π − Π − − Π .

→

V
g

V
g

V g V g

det with

( / )( / ) ( ) (42)

g
0

0
0

2

11 0 22 0 12
2

0

D

D

Physically this means that the collective mode spectrum is entirely determined by the (modulus and phase) fluctua-
tions of the order-parameter. However, the density responses may exhibit collective mode resonances as a result of 
the density-order parameter couplings. Using the equivalences (41) to compute the matrix product in χ we obtain:

�

(43)

V g
V g

g V
g V

1 0 0 0
0 1 0 0
0 0 / 0
0 0 0 /

/ 0 0 0
0 / 0 0
0 0 1 0
0 0 0 1

1

( ) ( )
0 0

0

0

( 2 ) 0
0

g0

0

0

0
0

22 12

12 11

13 22 12 23 23 11 13 12

13 22 23 12

23 11 13 12

13
2

22 23
2

11 13 23 12 33

44

0
χ χ≡

























∼ −

×







Π −Π

−Π Π

Π Π − Π Π Π Π − Π Π

Π Π − Π Π

Π Π − Π Π

Π Π + Π Π − Π Π Π − Π
−Π







∼

∼

∼ ∼

∼

∼

∼ ∼

→ D

D

D

We have used the notation Π = Π −
∼ V

g0
 and defined the response function matrix χ� in the basis where all its 

coefficients are of order unity when →g 00   (In this basis Eq. (30) reads ˆ ˆ ˆθ δ δρ∆ ∆ =( )i V Vp2 2
q q q q  

χ φ φ −− + + −� V g V g u uq q q q( ( )/ ( )/ ( ) ( ))0 0 ). For the density response functions we have in particular:

�χ =
Π Π − Π Π

Π Π − Π

∼

∼ ∼
(44)13

23 12 13 22

11 22 12
2

(45)23
13 12 23 11

11 22 12
2�χ =

Π Π − Π Π

Π Π − Π

∼

∼ ∼

�χ =
Π Π Π − Π Π − Π Π

Π Π − Π
+ Π

∼ ∼

∼ ∼
2 ,

(46)33
13 23 12 13

2
22 23

2
11

11 22 12
2 33

which coincides with the explicit expressions obtained by refs. 21,45 in the path-integral formalism. At weak cou-
pling ( µΔ →/ 0) and q O( )= Δ , the modulus-phase and modulus-density matrix elements 12Π  and 23Π  vanish 
such that the collective modes are either pure modulus modes (if their eigenenergy solves z V g( ) / 0q22 0Π − = ) 
or pure density-phase modes (if their eigenenergy solves Π − =z V g( ) / 0q11 0 ).

Angular points of the response functions. We conclude this section by remarking that the response 
functions have the same angular points as the spectral density

ρ ω ω ω
π

=
Π + − Π −

−
.

+ +i i
i

( ) ( 0 ) ( 0 )
2 (47)

The quasiparticle-quasiparticle part of the spectral density (which originates from the first matrix in (36) with 
( )k q k q/2 /2ω − ++ −ε ε  in the denominator) is nonzero when the “pair-breaking” resonance condition is satisfied

ε εω = + .+ − (48)k q k q/2 /2

Physically, when this resonance condition is met, the drive field can break the pair of total momentum q into 
unpaired fermions of momenta k q/2+  and −k q/2. As a function of the increasing drive frequency ω, this 
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resonance condition is (i) satisfied by no wavevector when ω ω< 1 (with 21ω = Δ at low-q), (ii) satisfied for a 
connected set of wavevectors around the dispersion minimum of the  BCS branch for 1 2ω ω ω< < , (iii) satisfied 
by two connected sets of wavevectors, one in the increasing and one in the decreasing part of the BCS branch for 

2 3ω ω ω< <  and (iv) satisfied for a connected set of wavevectors in the increasing part of the branch for ω ω> 3. 
These three boundary frequencies 1ω , 2ω  and ω3 will appear as angular points in the spectral function and there-
fore in the response functions.

The quasiparticle-quasihole part of the spectral density (which originates from the second matrix in (36) with 
ε ε( )k q k q/2 /2ω − −+ −  in the denominator) is nonzero when the “absorption-emission” resonance condition is 

satisfied

ε ε (49)k q k q/2 /2ω = − .+ −

In this case, the drive field is not breaking the Cooper pairs but simply transferring more energy to the unpaired 
fermions already created by thermal agitation. This requires much less energy, which is why the 
quasiparticle-quasihole continuum is gapless. As a function of ω, this resonance condition can be met on i( ) two 
disconnected sets of wavevectors, one in the increasing and one in the decreasing part of the BCS branch for 
ω ω< ph, ii( ) a single connected set of wavevectors in the increasing part of the branch for phω ω> . With phω , we 
have found the four angular point of the response function ( )�ω χ ω  in + ∞[0, ].

Long Wavelength Limit
In the long wavelength limit ( � Δq m2 ) the solutions of the collective mode Eq. (40) and the behavior of the 
response functions can be studied analytically. Below the pair-breaking continuum (at energies lower than 

ε εmin ( )k k q k q/2 /2++ −  the problem has been studied in-depth at zero and nonzero temperature. At zero temper-
ature a real solution of (40) corresponding to the Anderson-Bogoliubov sound branch can be found37,46,47. This 
branch appears as a pole in Reχ and as a Dirac peak in Imχ because the zero-temperature response functions are 
free of branch cuts below the pair-breaking continuum. This resonance was observed experimentally in the 
density-density response function by Bragg spectroscopy13 and in the low-q limit it can be identified with hydro-
dynamic first sound8,12,22. When the dispersion is supersonic (i.e. the function ωq q�  is convex) the resonance is 
broadened by intrinsic effects not captured by RPA39,41.

By contrast, the behavior of the response functions at high energy ( ε εmin ( )k k q k q/2 /2ω > ++ − ) is known in 
literature only at zero temperature. There, the collective mode Eq. (40) has a complex root departing quadratically 
with q from 2Δ19, and the modulus-modulus response shows correspondingly a resonance at energies above 2Δ20. 
Here, we show analytically that (within the RPA) the same resonance exists at nonzero temperature, even until the 
vicinity of Tc. This result is in agreement with Popov-Andrianov’s claim that the collective mode has the same 
energy at zero temperature and when T Tc→ .

General case. We first compute the matrix elements ijΠ  on the upper-half complex plane, that is for zIm 0> . 
The long wavelength expansion can be perform using the method exposed in ref. 20: since the energy is expected 
to depart quadratically from 2Δ, one parametrizes it as

ζ µ
= Δ +

Δ
.z q

m
2

2 (50)

2

The window [2 , ]2ωΔ  between the first two angular points of the branch cut corresponds in the limit →q 0 to 
ζ ∈ [0, 1]. With respect to the zero temperature case20, the phase-phase and modulus-modulus matrix elements 
are simply multiplied by a factor Ttanh( /2 )Δ :

ˇ
ˇ

π
ζ ζ

ζ

ζ
π

Π ∼ −




Δ 

 =

+ −
+

→
z

q T
f f iq( , ) tanh

2
( ) with ( ) ln

1 1
2

,
(51)q11 0

2

11 11

ˇ ˇπ µ ζ

ζ ζ ζ
ζ

ζ
πζ

Π ∼
Δ





Δ 



= − −
+ −

−

→
z q

T
f

f i

q( , )
2

tanh
2

( ) with

( ) 1 ln
1 1

2
,

(52)

q22 0
2

22

22

where we have replaced the sums over k in (37) and (38) by an integral ∫ πd k L/(2 / )3 3 and we have introduced the 
dimensionless quantities ˇ = Δq q m/ 2  and αΠ = Π −ˇ L g( / )ij ij

3
0  for =i j( , ) (1, 1) or (2, 2) and αΠ = Πij ij

ˇ  for 
the other matrix elements, the nondimensionalization factor α being πΔ ΔL m(2 / 2 )3 (the dimensionless 
response functions χ̌ij will accordingly be multiplied by the appropriate power of α: α−1 for 11χ , χ22 and χ12, α0 for 
χ13 and 23χ  and α1 for χ33). We have written the complex functions f11 and f22 of ζ  in such a way that their spectral 
density (their imaginary part in the limit Im 0ζ → +) is directly given by their last term. The modulus-phase 
matrix element is independent of ζ (it can be approximated by its value in q 0= , = Δz 2 ) but, unlike 11Π  and 22Π , 
depends on temperature through the two ratios T/Δ  and T/µ :
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ˇ ˇ π
µ µ

Π ∼ Π Δ =
Δ





Δ 







Δ 

→

z
T

g
T T

q( , ) (2 ,0)
2

tanh
2

, ,
(53)q12 0 12

2
12

where we have introduced the improper integral (P  denotes the Cauchy principal part):

P
M
D

D g M D
d M D D

2
tanh

2
( , )

/

1
tanh

1
2 (54)M D

2
12 / 2

2

∫π π
ξ ξ

ξ ξ

ξ





 = −

+

+

+
.

−

∞

Note that the quasiparticle-quasihole integrals (38) have been negligible in deriving expressions (51–53).
To find a root of the collective mode Eq. (40), one analytically continues Π11 and Π22 (and hence the determi-

nant of Π) from upper to lower half-complex plane (the forms given in Eqs. (51) and (52) are in fact already 
analytic for Re [0, 1]ζ ∈ ). Eq. (40) for the complex collective mode frequency z O q2 ( )q s

q
m2

32
ζ= Δ + +µ

Δ
 

becomes an explicit (yet transcendental) equation for the reduced frequency ζs

f f g
T T

( ) ( ) , 0
(55)s s11 22 12

2ζ ζ µ
+





Δ 

 = .

At zero temperature, this equation was derived in ref. 19 in the weak-coupling limit and ref. 20 in the general case. 
In this low-q limit, the only dependence on temperature is through the ζ-independent second term of (55).

Close to the phase transition. Unlike in the phononic regime (q 0→  with z cq= )21, no dramatic phe-
nomenon occurs for the collective mode of the pair-breaking continuum when T  tends to the critical temperature 
Tc. We recall that in the RPA, the limit of the phase transition from the superfluid phase corresponds to

T
0 (56)

Δ
→

T
T

T
O

T
( )

(57)
c

c

2µ µ
= +





Δ 

 .

The RPA also assumes an infinite fermionic quasiparticle lifetime and thus describes the collective modes and 
their damping by the fermionic continua in the collisionless approximation.

The function g12 tends to a finite nonzero constant in the limit →T Tc:

g
T T

g
T

T e de

e e
, 2 2 tanh

,
(58)T T c

c

c

c

c T

e
T

12 12, /

2

c c c

c

cP ∫
µ µ

π µ




Δ 

 →











≡ −
+


µ

µ

→ −

+∞

where we denote T( )c cµ µ≡ . In fact, the resonance near Tc for a given value of k a1/ F  has exactly the same shape as 
the T 0=  resonance for a lower value (corresponding to weaker-coupling) of k a1/ F . Using an equation-of-state to 
relate k a1/ F  to both µ T/c c and T T( 0)/ ( 0)µ = Δ = 21, the corresponding values a0 and ac of the scattering length at 

=T 0 and Tc are found by solving:

µ µ











=





 Δ
Δ Δ 




.

=
→ =

g
T

g
T T

lim ,
(59)

c
c

c a a
T a a

12, 0 12
c 0

Finally, the explicit expressions of the response functions in the long wavelength limit, at arbitrary ≤ <T T0 c, 
and in the limit →T Tc are:

ˇ
ˇ

ˇ

χ
π

ζ

ζ ζ µ

π

ζ

ζ ζ µ

= −
+ Δ

+ ∼

−
Δ +

Δ →
z q f

f f g T T
O q

q T f
f f g T

q( , )
tanh

( )
( ) ( ) ( / , / )

( )

2 ( )
( ) ( ) ( / ) (60)

T
T T

c

c c c

11 2
2

22

11 22 12
2

2

2
22

11 22 12,
2

c

ˇ
ˇ

ˇ

χ
π µ

ζ

ζ ζ µ

π µ

ζ

ζ ζ µ

=
Δ

+ Δ
+ ∼

+

Δ →
z

q

f
f f g T T

O

q
T f

f f g T

q( , ) 1
tanh

2 ( )
( ) ( ) ( / , / )

(1)

4 ( )
( ) ( ) ( / ) (61)

T
T T

c

c c c c

22 2
2

11

11 22 12
2

2
11

11 22 12,
2

c
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χ̌
π µ

µ

ζ ζ µ

π µ

µ

ζ ζ µ

= −
Δ Δ

+ Δ
+ ∼

−
Δ +

.

Δ →
z

g T T
f f g T T

O q

T g T

f f g T

q( , ) 1
tanh

2 ( / , / )
( ) ( ) ( / , / )

( )

2 2 ( / )

( ) ( ) ( / ) (62)

T
T T

c

c

c c c

c c c

12 2
2

12

11 22 12
2

2
12,

11 22 12,
2

c

Thus, the response functions have exactly the same shape (they coincide up to a proportionality factor) near Tc as 
they have at =T 0 for the slightly different value of the interaction strength given by (59).

In Fig. 1, we show how the shape of the order-parameter response functions ( 11χ , χ22
 and 12χ ) change when 

going from the BCS limit ( k a1/ F → −∞ that is µ Δ → +∞/  at =T 0 or µ → +∞T/c c  at T Tc= ) to the threshold 
of the BEC regime where µ vanishes. Exploiting the equivalence (59), the figure describes together the crossover 
at T 0=  and T Tc→ . Irrespectively of the interaction regime, the phase-phase response is a monotonously 
increasing function of the drive frequency and only reflects the incoherent response of the pair-breaking contin-
uum, without collective effects. Conversely, both the modulus-modulus and modulus-phase response functions 
display a maximum that can be interpreted as a collective mode in the BCS limit (black curves) and up until 
unitarity (blue curves). As explained in ref. 20, this maximum can be fitted to extract the frequency and damping 
rate of the collective mode to a good precision. The fit function to use is Z z CIm( /( ) )q q q�ω ω − + , where the 
complex parameters zq, Zq and Cq represent respectively the complex energy of the collective mode, its residue, 
and an incoherent flat background. A remarkable effect of this background Cq is to displace the location of the 

Figure 1. The order-parameter response functions (top left pannel: phase-phase, top right pannel: modulus-
phase, bottom pannel: modulus-modulus response) are shown as functions of the reduced drive frequency 
ζ ω µ= − Δ Δq m( 2 )/( /2 )2  of Eq. (50) in the long wavelength limit after multiplication by the power of q which 
ensures a finite non zero limit when q 0→ . Their value at zero temperature (χij

(0)) coincide up to a 
proportionality factor (shown in the y-axis labels) with their value near the phase transition (χij

c( )) at a slightly 
different interaction strength k a1/ F  obtain using the correspondence Eq. (59). The values of k a1/ F  used to span the 
BCS side of the crossover at T 0=  correspond with the mean-field equation-of-state to µ Δ = +∞/ , 2, .0 86 and 
.0 07 (respectively black, blue, red and orange lines). At T Tc→  they correspond to µ = +∞T/c c , .4 2, .1 8 and 0 15. . 

For χ12, the BCS limit µ µΔ → +∞T/ , /c c  is reached logarithmically such that we have used the finite values 
/ 10µ Δ = , = − .k a1/ 1 5F 0  at =T 0 and T/ 20 6c cµ = . , = − .k a1/ 1 6F c  near Tc. Note that the response functions 

are rescaled by the power of q ensuring a finite non zero limit when →q 0. Similarly the response functions near 
Tc are rescaled by the right power of Δ T/ c. Finally, a proportionality factor (depending of µ Δ/  at =T 0 and µ T/c c 
near Tc) is applied to ensure that the response functions at =T 0 and →T Tc fall on the same line.
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maximum of 
22χ  and χ12 to respectively �ζ .0 4 and � 0 1ζ .  in a very broad interaction range. The variations of 

ζs
 (which decreases when increasing the coupling strength) are thus not visible by simply looking at the maximum 

location. Soon after unitarity, the resonance in χ22
 and χ12 disappears and only a sharp feature near 2ω = Δ 

remains. This abrupt lower edge of the continuum is in ζ = 0 so it is not departing quadratically with q from 2Δ 
(see also the color Fig. 6 in the BEC regime) as the Popov-Andrianov resonance does in the BCS regime, and it 
can no longer be interpreted as a collective mode. As understood in ref. 20, this is because the complex root zq of 
the collective mode Eq. (40) has a real part below 2Δ (i.e. ζ <Re 0s ) and does no longer trigger a resonance inside 
the pair-breaking continuum.

Density matrix elements in the long wavelength limit. We now study the density responses of the 
system χi3, =i 1, 2, 3 in the long wavelength limit →q 0 at energies above but close to 2Δ. For  →q 0 at fixed ζ , 
the three matrix elements needed to compute the density response functions are given by:

ˇ ˇ ˇ ˇδ π
µ ζ ζ ζΠ ≡ Π + Π =
Δ





Δ 

 + = −

T
f q O q f

2
tanh

2
( ) ( ) with ( ) 1

(63)13 13 11
2

13
2

13

δ π µ ζ µ µ
Π ≡ Π + Π =



 Δ









Δ 












Δ 

 +





Δ 








+ˇ ˇ ˇ ˇ
T

g
T T

g
T T

q O q
2

tanh
2

, , ( )
(64)23 23 12

2
3/2

12 23
2 3

ˇ ˇ ˇ ˇ ˇ ˇδ µ π µ ζΠ ≡ Π + Π + Π =




Δ 

 +

Δ





Δ 

 +g

T T
q

T
f q O q2 ,

2 4
tanh

2
( ) ( )

(65)33 33 11 13 33
2

2 2

2 33
3 4

Figure 2. The density response functions (top left pannel: density-phase, top right pannel: density-modulus, 
bottom pannel: density-density response) are shown as functions of the reduced drive frequency 

q m( 2 )/( /2 )2ζ ω µ= − Δ Δ  of Eq. (50) in the long wavelength limit after multiplication by the power of q which 
ensures a finite non zero limit when q 0→ . Their values at zero temperature ( ij

(0)χ , solid lines) are compared to 
their value near the phase transition (χij

c( ), dashed lines) after the appropriate rescaling and the change of 
interaction strength which brings the order-parameter responses on the same line (see Fig. 1, and the 
correspondence Eq. (59)). Please refer to the caption of Fig. 1 for the values of /µ Δ and of T/c cµ  corresponding 
to the chosen values of k a1/ F .
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Those expressions, like those of the modulus and phase matrix elements (51–53) are obtained by treating sepa-
rately the resonant wavevectors (for the resonance condition = ++ −ε εz k q k q/2 /2), located in this limit around the 
minimum k0 of the BCS branch. For those wavevectors, we set

= +k k Kq, (69)0

and expand the integrand in (37) at fixed K. This yields the leading order contribution to Π11, 22Π  and 13δΠ . For Π12, 
23δΠ  and δΠ33 the leading order is dominated by the wavevectors away from k0 and is obtained by expanding directly 

in powers of q at fixed k (with a contribution of the quasiparticle-quasihole integrals from Eq. (38)). For δΠ33 specif-
ically, the subleading order O q( )3  (which matters for the imaginary part of the response function Im 33χ ), is obtained 
by subtracting the leading one and then using the reparametrisation of the wavevectors, Eq. (69).

Using the expansions Eqs. (63–65), we obtain the expressions of the density response functions:
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where we omit the evaluation of the functions fij and gij respectively in ζ  and µ ΔT T( / , / ). The limiting behaviour 
near the phase transition follows immediately by using the limiting behaviour of Δ and µ from Eqs. (56–57) and 
replacing g T T( / , / )12 µ Δ  and g T T( / , / )23 µ Δ  by their finite nonzero limit µg T( / )c c c12,  and µg T( / )c c c23,  with

g M
M

de e M
e e

( ) 2 2
3

( )
cosh ( /2) (73)c M23, 3/2

3/2

2∫π
=

+
.

−

+∞

The function g33, which gives only a ζ-independent shift of Re 33χ , diverges asymptotically as O T( / )c
3/2Δ −  near the 

phase transition.
In Fig. 2, we show the density response functions on the BCS side of the crossover. Unlike for the 

order-parameter response functions, no exact correspondance between zero temperature and the transition tem-
perature can be found by changing the interaction strength (this is due to the temperature dependence of g23), so 
we show separately the functions at T 0=  (in solid curves) and at T Tc→  (in dashed curves). The difference 
between the =T 0 and T Tc→  curves (after the appropriate rescaling) remains however fairly small, and tends to 
0 in the BCS limit (black curves). Remarkably, a minimum characteristic of the Popov-Andrianov collective mode 
is visible in all three density responses. In 23χ , this minimum is a global minimum (for ζ ∈ [0, 1]) which exist (as 
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in 22χ  and 12χ ) from the BCS limit up until unitarity. For the density-density and density-phase responses 33χ  and 
13χ , this minimum is a local minimum, which exists close to unitarity (blue curves) around ζ = .0 1. Because of 

the decoupling between the phase-density fluctuations and the modulus fluctuations in the weak-coupling limit, 
this minimum disappears from 13χ  and 33χ  when → −∞k a1/ F  (black curves). After unitary, when approaching 
the BEC regime (orange curves), the resonances in all three density responses are replaced by a sharp edge in 

2ω → Δ+ ( 0ζ → +). This is the same phenomenon as in the order-parameter response functions.

Coexistence with the phononic collective modes near Tc. To compare the Popov-Andrianov reso-
nance to the other collective effects of a superfluid Fermi gases near Tc, we show in Fig. 3 the response functions 
from ω = 0 up until ω > Δ3  in the strong coupling regime and temperature close to Tc. The sharpest feature in 
both the order-parameter and density responses is the resonance, at very low energy (that is at uqω =  with a 
velocity u T Tc∝ − ), of the collisionless phononic collective mode found in ref. 21. Still at phononic energies 
ω ∝ q, the density-density response function shows a broad peak caused entirely by 33Π  (shown as a black dashed 
line) and also noticed in ref. 21. This is simply the peak of the Lindhard function, which exists also in the normal 
phase. Finally, inside the first window [2 , ]2ωΔ  of analyticity of the pair-breaking continuum, all response func-
tions show the peak characteristic of the Popov-Andrianov resonance, whose shape matches the one shown on 
Figs. 1 and 2. Due to the absence of rescaling with the wavevector q in Fig. 3, the peak is much more intense in the 
modulus-modulus response, and to a lesser extent in the modulus-density response, than in the density-density 
response.

Experimental protocol. Our results suggest a very simple experimental protocol to observe the resonance: 
using a Bragg spectroscopic measurement as in ref. 13, one should observe that the first extremum above 2Δ varies 
quadratically (both in location and width) with q, a behavior which can be viewed as the fingerprint of the 
Popov-Andrianov-Higgs mode. The optimal interaction regime is around unitarity and the optimal wavevector 

Figure 3. The density-density (top pannel), modulus-modulus (bottom left pannel) and modulus-density 
(bottom right pannel) response functions shown in function of the drive frequency ω. The curves were drawn in 
the strong coupling regime ( k a1/ 0 1F − .� , T/ 1 8c c �µ . ), near the transition temperature (Δ = .T/ 0 1) and at 
long wavelength ( = .q̌ 0 1). The dimensionless response functions are shown this time without rescaling and 
from ω = 0 until far inside the pair-breaking continuum. The vertical dashed lines show the angular points of 
the fermionic continua, from left to right phω , ω1(= Δ2 ) and 2ω . On the top panel, the black dashed line is the 
pure density contribution Im 33Π  to the density-density response (see Eq. (46)) and the inset is a zoom on the 
behaviour near 2ω = Δ.
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Figure 5. The modulus-modulus (top left panel), modulus-density (top right panel) and density-density 
(bottom left panel) response functions are shown at unitarity ( �µ Δ ./ 0 86) in function of the reduced drive 
frequency q m( 2 )/( /2 )2ω µ− Δ Δ  for increasing value of the wavevector Δ = .q m/ 2 0 12 (black solid line), .0 8 
(red dashed line) and 1 2.  (blue solid line). For q m/ 2 1 2Δ = . , we show by a vertical blue line the value of the 
singularity ω ω= . Δ� 2 232 3  where the shape of the response functions changes dramatically. In the bottom left 
panel, we also show the contribution of the pure density-density fluctuations 33Π  to the total density response 
(black and blue dotted line). Bottom right panel: ˇ χ̌Π −Im( )33 33  is shown in colors as a function of ω and q (the 
color scale is logarithmic) after division by q̌3. The angular points 2ω  and ω ω≥3 2 are superimposed on the color 
plot as white solid lines. The global extremum of the function �ω χ ω ω+ − Π ++ +i iIm ( 0 ) Im ( 0 )33 33  is 
shown as a blue solid line. Its location is discontinuous in q 1 25ˇ � .  (vertical dashed line) after which it coincides 
with the angular point ω3 for a range of values of q.

Figure 4. Left panel: the modulus-modulus response function is shown as a function of ω µ− Δ Δq m( 2 )/( /2 )2  
at weak-coupling µ Δ =/ 10. The wavevector q varies from →q 0 (solid blue line, see section V), = .q̌ 0 5 (red 
dashed line), =q̌ 1 (orange dotted line) to ˇ =q 3 (black dash-dotted line), and the response function is 
multiplied by q̌. The vertical dotted line indicates the reduced eigenergy Re 0 23sζ .�  of the pole found (when 

→q 0) in the analytic continuation (see Eq. 55) through ωΔ[2 , ]2 . Right panel: the same evolution is shown in 
colors as functions of both the wavevector q on the x-axis and drive frequency ω on the y-axis. The response 
function is still multiplied by q̌. Superimposed to the color plot, the angular points 2ω  (lower blue solid line) and 

3ω  (upper blue solid line), and the location of the global maximum of the function �ω χIm 22 (white solid 
line). As q increases, this maximum jumps from the interval ωΔ[2 , ]2  where it is located at low q, to [ , ]2 3ω ω  and 
eventually to ω +∞[ , [3  at large q. Each jump is marked by a vertical white dotted line.
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is around . × Δm0 5 2  (q should not be too small to avoid the q3 cancellation of χ33 near 2Δ but not too large 
either otherwise the minimum is reabsorbed by the continuum edge, see the lower panels of Fig. 5).

Alternatively, the resonance could be observed through the modulus-density response function 23χ  by (i) 
exciting the order-parameter modulus δ Δ  through a modulation of the scattering length at frequency ω and 
wavelength π q2 /  and (ii) measuring the intensity of the density modulation δρ at wavelength q2 /π . This should be 
easier than the scheme of ref. 20 which proposed to measure χ22 by interferometry. Using the symmetry of the 
response matrix χ, one can also excite the density δρ (by a Bragg pulse13 or using the trapping potential22) and 
measure the order-parameter modulus δ Δ  either by interferometry or by bosonizing the Cooper pairs through 
a fast sweep of the scattering length, as was done in ref. 23.

At Shorter Wavelengths
Outside the long wavelength limit, that is µ≈ Δq m m2 , 2  when µ and Δ are comparable (see Eq. (90) in ref. 34 
for a more detailed discussion of the limit of validity of the long-wavelength limit), we study the response func-
tions by performing numerically the integral over internal wavevectors k in Eqs. (37) and (38) (see Appendix B 
for more details on the numerical implementation).

At zero temperature. Weak-coupling regime. On the left panel of Fig. 4, we show the modulus-modulus 
response at relatively weak-coupling ( / 10µ Δ = ) and zero temperature as a function of ω (rescaled as in the long 
wavelength section) for increasing values of the wavevector q. On the right panel, we show the same dispersion 
relation but in colors, with q on the x-axis and ω on the y-axis. The Popov-Andrianov resonance we have charac-
terized at low q remains as a broader and shallower maximum as q increases (see the rescaling of the x and y-axis 
on the left panel of Fig. 4) that travels roughly quadratically through the continuum. In the modulus-modulus 
response function, the augmentation of wavevector is thus unfavourable for the observation of the resonance in 
the pair-breaking continuum. Note that the location of the maximum is discontinuous when crossing 2ω  and 3ω  
(which both decrease with q), but remains a monotonously increasing function of q. The non-monotonic behavior 
of the collective mode eigenfrequency zq found in the analytic continuation through the interval ωΔ[2 , ]2  of the 
real axis20 is thus not reflected on the response function. In fact the angular points ω2 and 3ω  only slightly affect 
the shape of the resonance when they cross it (see in particular the black curve on the left panel of Fig. 4). This is 
consistent with the finding of ref. 34 (see in particular section 4.8 therein): at large q, the analytic continuations 
through windows ω ω[ , ]2 3  and ω +∞[ , [3  predict a pole with an eigenfrequency close to that of the 
Popov-Andrianov branch in window [2 , ]2ωΔ . The same robustness towards the choice of the real axis interval 
through which the analytic continuation is made was noticed by ref. 21 for the phononic modes. It is a sign that the 
Popov-Andrianov collective mode is a fundamental physical phenomenon, which does not depend on a specific 
configuration of the fermionic continuum.

Strong-coupling regime. Conversely, the increase of q favours the observability of the resonance in both the 
modulus-density and density-density response functions at strong coupling. On Fig. 5, we show 23χ  and χ33 (as 
well as χ22) at unitarity (µ Δ ./ 0 86� ) and still at zero temperature. As long as it does not encounter the singular-
ity in 3ω , a smooth extremum (in 23χ  and χ33 it’s a minimum) whose location increases quadratically with q 
remains visible. The resonance broadens with q, but this is compensated by a deepening of the resonance peak 
roughly as q in 23χ  and as q3 in χ33. The resonance in 33χ  is caused by the order-parameter contribution χ − Π33 33 
to the density-density fluctuations (compare the blue dotted and the blue solid line on the bottom left panel of 
Fig. 5), in which it is a global minimum as a function of ω (rather than a local minimum in 33χ ). To emphasize the 
dispersion of the resonance, we thus plot on the bottom right panel of Fig. 5, Im Im33 33χΠ −  divided by q3 in 

Figure 6. The modulus-modulus response function 22χ  in the BEC regime (µ Δ = −/ 1, k a1/ 1 3F .� ) is shown  
in colors as a function of the wavevector q and drive frequency ω. The lower edge of the continuum 
ω µ= + + Δ� q m2 ( /8 )3

2 2 2 2  is shown as a white solid line.
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colors as a function of ω and q. The global extremum of �ω χΠ −Im( )33 33  is shown as a function of q in white 
solid line. As long as it stays in the window [2 , ]2ωΔ , it varies approximatively quadratically with q.

Contrarily to what happens at weak-coupling, the resonance shape at strong coupling is much distorted when 
going through the singularity ω3. This effect is particularly visible on the modulus-modulus and modulus-density 
responses (upper panels of Fig. 5) where the resonance seems broken in ω3 such that the smooth extremum has 
disappeared in favour of a sharp extremum in ω3. On the color plot of Fig. 5, the quadratic growth of the reso-
nance frequency is also visibly halted when it encounters the angular point in 3ω . This is not surprising since the 
poles found in the analytic continuation through windows [2 , ]3ωΔ  and ω +∞[ , [3  are very far apart in this 
regime34. For the value q m/ 2 1 2Δ = .  used in Fig. 5, the analytic continuation through the interval ωΔ[2 , ]3  has 
a pole in z i/ 1 93 0 41q Δ = . − . . In the interval ω +∞[ , ]3 , the pole is in Δ = . − .z i/ 0 86 0 020q , with a much lower 
value of the eigenfrequency and a small damping rate which give this “upper tail” appearance to the response 
functions at ω ω> 3. Above 3ω , the behavior of the response functions is in fact similar to what happens in the 
BEC regime (see below Sec. VI A 3), with a sharp edge pinned at 3ω  (which becomes the lower edge of the contin-
uum when µ=q m2 2 ).

In the BEC regime. In the BEC regime (that is for us when µ < 0), the lower-edge of the pair-breaking contin-
uum is no longer flat at low q, but increases quadratically with q. Although a pole can be found in the analytic 
continuation through the interval ω + ∞[ , [3  (the only one available when µ < 0), its real part always stays below 
ω3, such that no smooth peak appears in the response function. Instead there is only a sharp feature pinned at the 
lower-edge of the continuum. Figure 6, shows the example of the modulus-modulus response function (the other 
responses have a similar behavior) at / 1µ Δ = −  ( �k a1/ 1 3F . ). This sharp feature can hardly be interpreted as a 
collective mode and only reflects the incoherent response of the fermionic continuum when the pairs are tightly 
bound.

near Tc. At nonzero temperature and even near Tc, we have shown in section V that the Popov-Andrianov 
resonance exists in the limit →q 0 and is almost insensitive to the quasiparticle-quasihole contributions (38) to 
the fluctuation matrix Π. This is no longer the case at higher q. The angular point ωph of the quasiparticle-quasihole 
continuum in particular destroys the resonance as it increases (initially linearly) with q. This effect is illustrated on 
Fig. 7 showing the modulus-modulus response function near Tc: for q m/ 2 0 12Δ = .  (orange dashed curve on 
Fig. 7) the lower tail of the resonance is trimmed by the angular point at phω , and for q m/ 2 0 3Δ = .  (long-dashed 
green curve) it is completely hidden. This can be understood by a simple reasoning: near Tc, phω  varies as q m2 /µ  
at low q21, such that it reaches 2Δ for µ= Δ ≈ Δ = −q̌ q m O T T/ 2 / ( )c

1/4. The long wavelength limit near Tc 
is thus limited to �q m/2 /2 2 µΔ  (as in the weak-coupling case at =T 0 see Eq. (90) in ref. 34).

conclusion
We have computed the response function matrix of a superfluid Fermi gas in the Random Phase Approximation 
at nonzero temperature, and used it to study the observability of the order-parameter collective modes. We have 
shown that the appearance of a resonance inside the pair-breaking continuum associated to the Popov-Andrianov-
“Higgs” mode is a very robust phenomenon which concerns not only the modulus-modulus response function 
but also the modulus-density and density-density responses, which are easier to measure. At weak-coupling the 
resonance is observable at all values of the wavevector q and is only weakly sensitive to the angular points created 
in the response functions by the changes of structure of the fermionic continuum. At nonzero temperature, we 

Figure 7. The dispersion of the Popov-Andrianov branch in the modulus-modulus response function near the 
transition temperature ( T/ 0 1Δ = . ) and in the weak-coupling regime µ µ =T T/ / 10c c �  ( k a1/ 1 15F � − .  with the 
mean-field equation-of-state). The modulus-modulus response function is plotted as a function of the reduced 
drive frequency q m( 2 )/( /2 )2ω µ− Δ Δ  for the values of the wavector Δ = . . .q m/ 2 0 05, 0 075, 0 12 and .0 3 
(respectively solid blue, dotted red, dashed orange and long-dashed green lines). The resonance is well visible at 
low-q but it disappears as the angular point of the quasiparticle-quasihole continuum ωph (shown by a vertical 
dotted line at q m( 2 )/( /2 ) 0 2042ω µ− Δ Δ = .  and .0 413 for respectively q m/ 2 0 12Δ = .  and .0 3) rises with q.
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have shown analytically that the resonance is not destroyed by the presence of excited fermionic quasiparticles, 
and retains approximatively the same shape as when T 0= . It also coexists with the low-velocity phononic collec-
tive mode which RPA predicts near Tc. The spectral weight of the resonance is enhanced in the modulus-density 
and density-density responses when T  increases, which should favour its observability.

Appendix A: Derivation of the equations of motion
We give here a few additional steps leading to the equations of motion (22–25). In the particle basis, the equations 
of motion take the form:
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where we generalize the notations of refs. 37,51 to nonzero temperature:
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Adding and subtracting Eqs. (A1) to (A2) and Eqs. (A3) to (A4) and performing the change of basis (21) (one can 
use the explicit relations given in Appendix C of ref. 51) yields the equations of motion (22–25) in the quasiparticle 
basis. Rederiving with respect to time yields:
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We resum this system to form the collective quantities (26–29) and derive the 4 × 4 linear system (30).

Appendix B: Numerical calculation of the response functions
To numerically compute the fluctuation matrix Π, we first compute its spectral density:

ˇ iIm ( 0 ) ( ( ) ( )), (B1)ij ij
pp

ij
ph( ) ( )ω π ρ ω ρ ωΠ + = − ++

where ij
pp( )ρ  and ( )ij

ph( )ρ ω  are respectively the contributions of the quasiparticle-quasiparticle integral Σ and 
quasparticle-quasihole integral S to the spectral density of ijΠ . Denoting u kqk q/= ⋅ , and restricting, without 
loss of generality, to ω > 0, we have, explicitly:

ε∫ ∫ρ ω π η δ ω=
Δ

− − −
Δ

+∞

+ −
+

k
k dk dua a f f( ) 2 (1 ) ( ),

(B2)ij
pp

ij i jkq kq k q k q kq
( )

3 0

2

0

1
, , /2 /2

We have introduced k m2= ΔΔ , the coefficients a Wkq k q1, ,= + , = −a Wkq k q2, ,  and a wkq k q3, ,= +  and the signs ηij, 
read from (36)

η =






−
−

− −






.

1 1 1
1 1 1
1 1 1 (B3)

For the particle-hole contribution, we have

ε ε∫ ∫ρ ω π δ ω σ δ ω= −
Δ

− − − + .
Δ

+∞

+ −
− −

k
k dk dub b f f( ) 2 ( )[ ( ) ( )]

(B4)ij
ph

i j ijkq kq k q k q kq kq
( )

3 0

2

0

1
, , /2 /2

Here, b wkq k q1, ,= − , = +b wkq k q2, ,  and b Wkq k q3, ,= −  and the sign σij is +1 for Sε matrix elements and −1 for the ωS :

σ =






− −
−
−






.

1 1 1
1 1 1
1 1 1 (B5)

In (B2) and (B4), we have used the symmetry or antisymmetry of the coefficients a ai jkq kq, ,  and b bi jkq kq, ,  with 
respect to the exchange ↔ −u u to restrict the integral to u 0> .

In the quasiparticle-quasiparticle spectral density (B2), we give the resonance angle:

ω ξ ω
ξ ω

ξ µ=





− − Δ
−






= + −u m
kq

k m q m( 4 )/4
/4

with /2 /8
(B6)

r

2 2 2

2 2

1/2
2 2

For ω ω ω< <1 2, this quantity is comprised in [0, 1] (such that the resonance in (B2) is reached) for ∈k k k[ , ]1 2  
with k1 and k2 solutions of ε ε ω+ =+ − =

( )
uk q k q/2 /2 0

. For 2 3ω ω ω< <  the resonance is reached for k k k[ , ]1 1∈ ′  
and ∈ ′k k k[ , ]2 2  with k 1′  and ′k 2 solutions of k q k q/2 /2ε ε ω+ =+ − . Finally for 3ω ω>  the resonance is reached for 
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∈ ′k k k[ , ]2 2  only. Using the variable y 2 /ξ ω=  instead of the wavenumber k, and ω= Δt argch( /2 ) instead of the 
drive frequency, then using the Dirac delta to integrate analytically over the scattering angle u, we have

q t

dy
W y f y f y

t y y

dy dy
W y f y f y

t y y

W y f y f y

t y y

( )
4 ch

( )(1 ( ) ( ))

(th )(1 )
if

( )(1 ( ) ( ))

(th )(1 )
if

( )(1 ( ) ( ))

(th )(1 )
if

(B7)
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2 2 2 1 2
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2 2 2 3

1

2

2
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~

∫

∫ ∫

∫

ρ ω π

ω ω ω
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×











− −

− −
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+








− −

− −
< <

− −
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>

∼

∼

∼

−

+ −

−

′

′

+ −

′
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where ′y 1 and y 2′  are deduced from k 1′  and ′k 2 by the change of variable given above, and the functions Wij are:

=
−

∼W y
y

( ) 2
1 (B8)11 2

W y y
y

( ) 2
1 (B9)22

2

2=
−

∼

=
−

∼W y y
y

( ) 2
1 (B10)12 2

W y t( ) 2ch (B11)13 =
∼

=
∼W y y t( ) 2 ch (B12)23

W y t y( ) 2ch (1 ) (B13)33
2 2= − .

∼

In our integration variables, the Fermi-Dirac occupation numbers have the expression

ω= + 


± + × Δ 


.±
� ( )f y t y kqu m T( ) 1/ 1 exp ch ( / ) 1 /

(B14)r
2 2

In the quasiparticle-quasihole spectral density (B4), we give the resonance angle expressed in terms of 
k m q m/2 /82 2ξ µ= + −  has the expression (B6) given above. Whatever the value of ω this angle exists (i.e. 

u [0, 1]r ∈ ) for �∈ ∞k k[ , [1 , with k1
�  the solution of k q k q/2 /2 ω− =+ −ε ε . When phω ω< , it also exists for 

k k k[ , ]3 2
� �∈ , with � �k k,3 2 the two solutions of ω− = −+ −k q k q/2 /2ε ε . Using the variable ω ξ=y /2  instead of the 

wavenumber k, and ω= Δt arccos( /2 ) instead of the drive frequency, then using the Dirac delta to integrate ana-
lytically over the scattering angle u, we have:

q t
dy dy

w y f y f y

y t y
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∼
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where �yi  is related to �ki by the change of variable given above, and the functions wij are

=
−

∼w y y
y

( ) 2
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w y t
y

( ) 2 cos
(B20)23 =∼
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−

.∼w y t y
y

( ) 2cos 1
(B21)33

2
2

2

Here, the Fermi-Dirac occupation numbers have the expression

ω= + 


± + × Δ 


.±
� ( )f y t y kqu m T( ) 1/ 1 exp cos (1/ / ) 1 /

(B22)r
2 2

Finally, to compute the full function, we use the spectral density to integrate over energies:

ˇ ∫ω ω
ρ ω

ω ω
σ

ρ ω

ω ω
δ δ δ δ π ω

ω µ
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In Π11
ˇ  and 22Π̌ , the divergence at large ω is regularized by the counter-term ∫π =

∞ Δ

Δ ε
4 k dk
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2
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