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optimizing hospital distribution 
across districts to reduce 
tuberculosis fatalities
Mi Jin Lee1, Kanghun Kim  2, Junik Son3 & Deok-Sun Lee1 ✉

the spatial distributions of diverse facilities are often understood in terms of the optimization of 
the commute distance or the economic profit. Incorporating more general objective functions into 
such optimization framework may be useful, helping the policy decisions to meet various social and 
economic demands. As an example, we consider how hospitals should be distributed to minimize the 
total fatalities of tuberculosis (TB). The empirical data of Korea shows that the fatality rate of TB in a 
district decreases with the areal density of hospitals, implying their correlation and the possibility of 
reducing the nationwide fatalities by adjusting the hospital distribution across districts. Approximating 
the fatality rate by the probability of a patient not to visit a hospital in her/his residential district for the 
duration period of tB and evaluating the latter probability in the random-walk framework, we obtain 
the fatality rate as an exponential function of the hospital density with a characteristic constant related 
to each district’s effective lattice constant estimable empirically. This leads us to the optimal hospital 
distribution which finds the hospital density in a district to be a logarithmic function of the rescaled 
patient density. The total fatalities is reduced by 13% with this optimum. The current hospital density 
deviates from the optimized one in different manners from district to district, which is analyzed in the 
proposed model framework. The assumptions and limitations of our study are also discussed.

Complex systems are organized, by evolution or design, to satisfy the optimization conditions including the min-
imization of the traveling time in the transportation system1 and the maximization of the stability of the airline 
networks2, the resilience of the power-grid system3,4, and the growth rate of cellular networks5. Likewise, the 
locations of facilities are expected to be subject to various optimization conditions6–8. Despite the complexity of 
the facility location decisions9,10, the empirically observed distributions of facilities often show simple and univer-
sal features, revealing the nature of the underlying optimization problem. Most remarkably, the spatial density of 
facilities scaling with the population density11–13 with exponent 2/3 or 1 implies that they are distributed to mini-
mize the social opportunity cost such as the commute distance or to maximize the economic profit depending on 
the distribution of available customers14.

For coping with diverse social or economic demands in real-world applications, the objective function in the 
facility distribution optimization may need to be expanded beyond the commute distance or profit. Towards 
developing such a general theory, here we consider as an example the problem of distributing hospitals across 
districts to minimize the total fatalities of tuberculosis (TB) by using the empirical data of Korea. While the 
chemotherapy for TB is well established, showing a success rate as high as 85% on average15, TB spreads annually 
to about 10 million patients, being a major cause of death worldwide15,16. In Korea, the incidence of TB is 77 per 
100000 as of 2016, which is high compared with other developed countries, e.g., the member countries of the 
Organization for Economic Cooperation and Development17. Patients with TB can be cured if they are diagnosed 
and get treatment timely. Visiting a hospital and taking drugs for about 6 months are necessary for the full recov-
ery from TB18, which may not be easy from the patients’ perspective. Therefore, the accessibility of local hospitals 
and the well-trained attending staff providing consistent treatment and care should be crucial for the treatment of 
TB16,19, which is recognized also in the reports of the World Health Organization15. The correlation between the 
hospital distribution and the fatality rate of TB in a district is indeed identified in the Korea TB data-sets which 
we will analyze in the present study; The fatality rate in a district tends to decrease as the areal density of hospitals 
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therein increases, which is an important point demanding a quantitative explanation and leads us to expect that 
relocating hospitals across districts may reduce the total fatalities of TB nationwide.

The optimal distribution of hospitals across districts minimizing the total TB fatalities depends on the con-
crete form of the fatality rate as a function of the hospital density, which is, however, unknown; The empirically 
observed negative dependence cannot give this information, as districts are different not only in the hospital 
density but also in various other properties such as area or population. To address the district-dependent fatality 
rate, we take a modeling approach, in which the fatality rate is assumed to be identical to the probability of a 
patient not to visit a hospital and get the medical treatment for the duration period of TB. This is motivated by 
the expectation that a patient is very likely to be cured once she/he gets a proper treatment in a hospital, given the 
high success rate of the TB chemotherapy equally applicable to all districts. In this framework, the fatality rate 
turns out to be an exponentially decaying function of the hospital density, and we are able to derive the optimal 
hospital densities in all districts the collection of which decreases the total fatalities of TB by 13% from the current 
value. The predicted optimal hospital density is given by a logarithmic function of the rescaled patient density. 
Our results delineate an analytic approach to the facility optimization problem under an objective function from 
a public health perspective. The limitation and further generalization of the results will be discussed.

Results
TB fatality rate and hospital density: Empirical data. The incidence and mortality of TB are well 
recorded in Korea. In Statistics Korea20, we obtain for district = … =i I1, 2, , 228 in year 2014 the number of the 
newly reported TB patients Ni, the number of dead TB patients (fatalities) Di, the number of private general hos-
pitals Hi, and the area ai. Here “district” includes three distinct units for administrative division, Gu, Gun, and Si, 
with the population ranging from 104 to 106 and smaller than the metropolitan cities.

We are interested in the fatality rate φi of TB, defined as the ratio of the number of dead TB patients to the 
number of new TB patients reported for one year in each district i,

φ ≡ .
D
N (1)i

i

i

It is quite different from district to district, ranging between .0 01 and .0 25, as shown graphically in Fig. 1(a). 
What drives such difference in the TB fatality rate? Taking regularly medical treatments and examinations in 
hospitals may be the most important for curing TB, which is available in the easy-to-frequently-access medical 
environment established in the local community. Therefore a difference in the abundance and accessibility of 

Figure 1. Distribution and relations of the TB fatality rate φ, the areal density of hospitals η, and the patient 
density ρ in Korean districts at the level of Gu, Gun, and Si. The unit of η and ρ is km−2. (a) The TB fatality rate φ 
is represented by color in 228 districts. Seoul, the capital city, has 25 Gu’s and is shown separately. (b) Fatality 
rate φ versus hospital density η. Open circles are the raw data for all districts and filled squares represent the 
average fatality rate for each given hospital density with the standard deviations as errorbars. The Pearson 
correlation coefficient is −0.26 with P-value 0.000070 for all districts and −0.25 with = .P 0 0025 for the 
districts with both η and φ non-zero. (c) Hospital density η versus patient density ρ. As in (b), open circles and 
filled squares represent the raw data and the average value, respectively. The solid line fits the averaged data and 
its slope is . ± .1 05 0 07. Inset: The same plot for the districts with η > 0. The fitting line has slope . ± .0 80 0 045.
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hospitals in the patients’ residential districts will be a major factor giving rise to such variation of the fatality rate 
with district. In this light, we investigate the relation between the fatality rate φi and the areal hospital density

η ≡
H
A

,
(2)i

i

i

in unit of km−2. In Fig. 1(b) φi tends to decrease with ηi; The larger the hospital density is, the smaller the fatality 
rate is. This correlation is significant with < −P 10 4. Yet the dependence does not look so strong as expected. This 
will be shown to be due to that the fatality rate of a district may depend not only on the hospital density but also 
on other characteristics. In this work, all correlation values are measured in linear scales.

What principle underlies the current spatial distribution of hospitals? The scaling behavior with respect to the 
patient density has hinted at the answer14. The hospital density scales with the areal TB patient density ρ ≡i

N
A

i

i
 as

η ρ∼ α, (3)i i

in which α = . ± .1 05 0 07 when all districts are included, and α = . ± .0 80 0 045 when the districts having no 
private general hospital are excluded [Fig. 1(c)]. Many other properties also scale with respect to the patient den-
sity. The patient density is almost linearly related to the population density ρ′ = P A/i i i with Pi the number of 
people living in district i [Fig. S1]. The exponent α for the hospitals in United States is close to 1, rather than 2/314. 
These results suggest that the profit maximization affects the hospital distribution. For self-containment, let us 
sketch the corresponding optimization calculations. The sum of the economic profits of all hospitals distributed 
across I′ districts in a country is given by

∑ ∑ω η ω
ρ

η
=











=









=

′
E H N

H
A

(4)i

I

i
i

i i
i i

i

i
profit

1

with ω x( ) the expected profit of a single hospital having x patients available. On the other hand, the sum of the 
social costs, such as the travel distances, of patients is given by

∑ ∑ψ ρ ψ
η

=










=









=

′
E N A

H
A 1

(5)i

I

i
i

i i
i i

i
cost

1

with ψ =x x( )
1/2 being the expected travel distance of a patient residing in a district of x area per hospital. Then, 

for a fixed total number of hospitals

∑ ∑ η= =
=

′
H H A ,

(6)i

I

i
I

i itotal
1

one finds, by solving =
η

∂

∂
0

E

i

profit , Eprofit to be maximized when = .
ρ

η
consti

i
, corresponding to α = 1, and by solving 

=
η

∂
∂

0E

i

cost , E ostc  to be minimized when = .
ρ

η
consti

i
3/2

, corresponding to α = 2/314.

Our question is then whether the current hospital distribution, seemingly maximizing the economic profit, is 
the best also for minimizing the total fatalities of TB

∑ ∑ φ= = .
=

′
E D N

(7)i

I

i
i

i ifatalities
1

Can Efatalities be reduced by the redistribution of hospitals across district, i.e., some change of η{ }i ? To answer 
this, we should formulate the total fatalities in Eq. (7) as the objective function and minimize it with respect to the 
hospital density for the given total number of hospitals in Eq. (6). The fatality rate φi should be some function of 
the hospital density ηi. If the optimal hospital densities η{ }i

(opt)  are obtained by this optimization computation, we 
will be able to evaluate the quality of the current spatial distribution of hospitals regarding its capacity of TB treat-
ment. Also we will see immediately how to redistribute the hospitals to reduce the TB fatalities. In the present 
study we do not consider a variation in the numbers of TB patients N{ }i  but take them for given; The onset and 
spreading of the TB or a general epidemic disease depend strongly on the topology of human contact networks 
and the infection rate, which is another important research topic and has been studied extensively21,22.

Fatality rate as a function of hospital density: Model. The empirical fatality rate φi in Eq. (1) can be 
considered as the probability of a TB patient to die, losing the opportunity to get proper medical treatment in 
time. Our idea is to approximate the latter by the probability that a patient does not visit any hospital in her/his 
residential district for a given period =t 3(TB)  years, the empirically reported period of TB duration from onset to 
either cure or death23. In this model framework, it determines the fate of a TB patient whether she/he visits a 
hospital or not for the period of t(TB). The patient will recover if yes, but will be dead otherwise. One can see that 
this is a trapping problem24 from the viewpoint of a patient; Once a patient (walker) reaches a hospital (trap), she 
loses the status of a patient (absorbed at the trap). The probability of a walker to survive during a given number of 
steps corresponding to t(TB) in this trapping problem is translated into the fatality rate of a TB patient in reality.
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Suppose that H traps are uniformly and independently distributed in a two-dimensional Euclidean lattice of 
×L L sites and that a walker walks around the region, who disappears on reaching any one of the traps. Then the 

probability of the walker to survive (not to reach any of the traps) after τ steps is given by

φ λ= − τ(1 ) , (8)S( )

where λ = H
L2  is the density of traps and τS( ) is the number of distinct sites visited up to τ steps. 


 represents the 

average over different realizations of walks. In the limit λ





−





σ

τ
τ

log 1 1
S( )

S( )
2

 reachable when the trap density is 

sufficiently low or the number of steps is small enough, the survival probability φ can be approximated in terms 
of the first cumulant of the probability distribution of S as25

φ = λ τ−e , (9)S( )

which is the exponential function of the trap density λ. It seems that Eq. (9) allows us to relate the hospital density 
and the fatality rate. However the dimensionless quantities λ and τS( )  are not directly available. In random 
walks in two dimensions, the expected number of distinct visited sites is known to be24

τ τ
τ

〈 〉 ∝S( )
log

,
(10)

which is inserted into Eq. (9) to give

φ τ
τ

λ=



−






cexp
log (11)

with the coefficient = . .c 3 5/1 132 known numerically26. In the opposite limit 
log(1 ) 1

S( )
S( )
2

λ−
σ

τ
τ , the survival 

of the walker is governed by the probability of a large trap-free region to be formed, which leads to a stretched 
exponential form φ λτ∼log 26–28.

The exponential decay of φ with λ in Eq. (9) holds when the hospital density is sufficiently low. The random-
ness of the mobility pattern is assumed in obtaining Eq. (11). We should remark that the human mobility pattern 
revealed by tracing the travel routes of bank notes29 or the mobile phone records30 displays deviation from ran-
dom walk; The radius of gyration of individual trajectories grows logarithmically with time30, in contrast to the 
square-root scaling in the conventional random walk, and such slow diffusion is known to arise under the mem-
ory effect31–33 or the spatial quenched disorder24. The assumption we make about the human mobility pattern is 
that the coarse-grained trajectories of individuals on the time scale of =t 3(TB)  years, much longer than the previ-
ous studies, show the survival probability given in Eq. (11) like random walks. The coarse-grained trajectory is 
obtained by neglecting the spots swiftly passed by and connecting the remaining notable places which an individ-
ual visits and stays for a while in, such as her/his house, workplace, parks, stores, banks, oil stations, and hospitals. 
In our model, we are interested in whether a hospital is included in the list of such notable places. We cannot 
check directly the validity of Eqs. (9) and (11), however, we will present indirect evidence that they are reasonable 
assumptions.

Lattice constant and dimensionless quantities. To relate the survival probability in the 2D trapping 
problem to the fatality rate of TB, we need to convert the empirical data into dimensionless ones of Eq. (11). To 
this end, we discretize the region of each district i by introducing the lattice constant ai, corresponding to the 
typical length of one single step or the average distance between adjacent notable places appearing in the 
coarse-grained trajectories. Then the district is represented by the ×L Li i Euclidean lattice with =Li

A

a
i

i
2

, for 

which the areal hospital density η = H A/i i i is converted to the dimensionless hospital density λ i as

λ η= = = .
H
L

H a
(12)

i
i

i

i
A

a

i i2
2

i

i
2

Let 
(TB) be the typical travel distance of an individual for =t 3(TB)  years. Then the number of steps taken in 

her/his coarse-grained trajectory for t(TB) in a district i will be given by

τ = .


a (13)i
i

(TB)

Plugging Eqs. (12) and (13) into Eq. (11), we find the fatality rate represented as

φ
η

η
=





−






exp

(14)
i

i

i

with the characteristic hospital density η
i given by

https://doi.org/10.1038/s41598-020-65337-x


5Scientific RepoRtS |         (2020) 10:8603  | https://doi.org/10.1038/s41598-020-65337-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

η
τ

τ
=











=













.
−

−

�
�

�( )
c a c

a

log log
(15)

i
i

i
i

i

a

2
1

(TB)

1

i

(TB)

Assuming the validity of Eq. (14), one can estimate the characteristic hospital density η
i by using the empirical 

data of the fatality rate φi and the hospital density ηi in Eq. (14) as

η
η

φ
= .



log (16)i
i

i

The exponential functions φ η( )i ’s in Eq. (14) with the estimated coefficient η
i for selected districts are shown in 

Fig. 2(a). η
i is different from district to district, growing with the patient density [Fig. 2(b)], which underlies the 

weaker decay of the fatality rate with the hospital density [Fig. 1(b)] than would be expected if η
i were identical 

for all districts. The estimated η
i is the characteristic constant of each district and will be used throughout the 

optimization computation.
The lattice constant can be obtained by using the estimated η

i in Eq. (15) and solving for ai. Let us denote the 
solution by 

a ( )i
(F)

(TB) . To validate it, we compare it with another estimate independent of the empirical values of 
the fatality rate or the hospital density. We use the data of the number of business buildings Bi in each district20. 
The business buildings, including hospitals, are the candidates for the notable places included in the 
coarse-grained trajectories. The typical distance between adjacent business buildings can be a candidate for the 
lattice constant, which is given by

=a A
B (17)

i
i

i

(B)

under the assumption that the business buildings are uniformly distributed in each district. For the comparison of 
a ( )(F)

(TB)
 and ai

(B),  we take the value of 
(TB) minimizing the average logarithmic distance 

v a a a a( , ) (log log ) / 1i i i i
(F) (B) (F) (B) 2= ∑ − ∑ , which is = ±

⁎ 10000 1000(TB)  [Fig. 3(a)]. It corresponds to the 
annual traveling distance 3300 km which is reasonably close to the empirical value 8478 km of Korea34. In Fig. 3(a), 
the two lattice constants 

= ⁎a a ( )(F) (F)
(TB)  and a(B) show good agreement in their magnitudes, supporting the validity 

of the assumptions of our model and its formulas, Eqs. (14) and (15). Due to this agreement and Eq. (17), we can see 
that a large or small value of ai

(F) originates from the sparse or dense business buildings in district i.
With ai

(F), the dimensionless hospital density λ i and the number of steps τi taken for t(TB) can be evaluated by 
Eqs. (12) and (13), which are plotted versus the patient population density in Fig. 3(b,c), respectively. In contrast 
to the real hospital density ηi, λ i is lower in a district with higher patient density [Fig. 3(b)]. It is attributed to the 
smaller lattice constants in the districts of higher patient densities, arising from the denser buildings. On the other 
hand, the number of steps taken for t(TB) increases as the patient density increases, increasing the chance to visit 
hospitals. To sum up, effectively less hospitals are distributed but the patients take more steps for the given period 
t(TB) in the higher-populated districts, which explains the slightly lower fatality rates therein than in 
lower-populated districts as shown in Fig. 1(b).

Optimal hospital density. The fatality rate formula in Eq. (14) is applicable to Is districts having non-zero 
η and φ in the empirical data. Then one can minimize the total fatalities in those Is districts

Figure 2. Theoretical prediction for the fatality rate and the estimated characteristic hospital density. (a) The 
theoretical prediction, Eq. (14), for the fatality rate φ as a function of the hospital density η for selected districts 
having η = . × −


1 2 10 1, . × −7 3 10 3, and . × − −3 5 10 km4 2, respectively. Filled points represent the real data for 

each district. (b) Plot of η


 versus the patient density ρ. Open circles and filled squares indicate the real data and 
the average, respectively. The solid line fits the average of η


 as a function of ρ and the slope is . ± .0 75 0 056.
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E N A exp ,
(18)i
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i i
i

i
fatalities

1

s

with respect to the hospital density distribution η{ }i  for fixed Ni, ηi, and total number of hospitals Htotal. In the data 
of year 2014, =I 143s , =H 328total , and =E 1718fatalities

20. We allow Hi’s to be arbitrary real numbers, and the 

case of integer Hi’s will be discussed later. Efatalities in Eq. (18) is minimized when 


δ δη= ∑




− +






=
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η

η
η
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and η∂ ∂ >E / 0i
2

fatalities
2  with z being the Lagrange multiplier. Consequently the optimal hospital density is found 

to be

η η
ρ

η
=














z

log ,
(19)

i i
i

i

(opt)

and the optimal fatality rate is

φ
η

ρ
= .



z
(20)

i
i

i

(opt)

The Lagrange multiplier z is computed by inserting Eq. (19) into Eq. (6) as =


















.
η

η

∑






 −

∑

ρ

η
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�
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�z exp 12 9
A H

A

logi i i
i
i

i i i

(total)

. 

We call the hospital density in Eq. (19) optimal in a sense that it minimizes the objective function given in Eq. 
(18). If the objective function is changed, the optimal density may be changed, which is discussed in the Summary 
and Discussion section and in the Supplementary Information (SI).

Equations (19) and (20) are the main results of the present study. Remarkably the optimal hospital density and 
the patient density are rescaled commonly by η

i and then related to each other logarithmically. In Fig. 4(a), the 
arrangement of the data points of the optimal hospital densities on a straight line is contrasted with the scattered 
distribution of the current (empirical) hospital densities in the (ρ η η η

 
/ , / ) plane in semi-logarithmic scale. The 

same phenomenon is observed for the fatality rate; the empirical fatality rates φi’s are scattered but the optimized 
fatality rates lie on a straight line in the (ρ η φ


/ , ) plane in logarithmic scale as shown in Fig. 4(b). The rescaled 

patient density ranges between 30.80 (Yeonggwang-gun) and 2646 (Songpa-gu), and is larger than .z 12 9 and 
thus guarantees η > 0i

(opt)  for all i in Eq. (19). More plots of the optimized hospital densities and fatality rates are 
given in Fig. S2.

The scattered distributions of the empirical data in Fig. 4 show clearly the deviation of the current distribution 
of hospitals from the optimum minimizing the total fatalities of TB. The minimized total fatalities Efatalities

(min)  
obtained from the optimal hospital distribution is

∑ ∑
η

ρ
η= = .�

�
�E N

z
z A 1488 44,

(21)i
i

i

i i
i ifatalities

(min)

Figure 3. Lattice constant and dimensionless quantities. (a) Lattice constants = 

⁎( )a a(F) (F)
(TB)  and a(B) as 

functions of the patient density ρ in logarithmic scales. The errorbars are standard deviations. The fitting lines 
have slopes − . ± .0 68 0 044 and − . ± .0 55 0 019, respectively. Inset: The average logarithmic distance v is 
minimized at ⁎

 = 10000(TB)  km with errorbar 1000 km. (b) Dimensionless hospital density λ η= a2 [Eq. (12)] 
versus patient density. The dashed line with filled squares represents the average values with the errorbars being 
standard deviations. The solid line fits the average values and has slope − . ± .0 57 0 050. (c) Plot of τ

τlog
 versus 

patient density. The dashed line with filled squares and errorbars represent the average values and standard 
deviations. The slope of the solid line is . ± .0 63 0 046.
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which is smaller than the current value, 1718, by 13%. For this optimization, η η∑ − .A /2 24 4i i i i
(opt)  hospitals 

among a total of =H 328total  are relocated. In the zero-temperature Monte Carlo (MC) simulation in which some 
small amount ∆H of hospitals are moved between randomly selected districts only when the attempted relocation 
reduces Efatalities, the theoretical predictions in Eqs. (19) and (21) are realized in the steady state as long as ∆H is 
sufficiently small [Fig. 5(a)]. If Hi’s are restricted to be integers (∆ =H 1), the total fatalities in the steady state is 
1599.45. The stationary-state results remain unchanged in the simulations with different initial configurations or 
with gradually cooling down the temperature. For more details of the simulations, see Methods.

To achieve such reduction in the total fatalities, the hospital density should be increased in some districts and 
decreased in others [Fig. 5(b)]. For instance, Gyeongju-si should have its hospital density 1.61 times larger than 
the current hospital density but Yeonggwang-gun 0.534 times larger than the current one. In Fig. 6(a), 143 dis-
tricts are colored blue (red) if the optimal hospital density is larger (smaller) than the current hospital density. 
Interestingly, the ratio η

η

(opt)
 of the optimal to current hospital density turns out to depend strongly on the rescaled 

patient density ρ
η


 [Fig. 6(b)]. It implies that if the rescaled patient density is large in a district and small in another 
district, it is recommended to move some hospitals from the latter to the former district. The high and low values 
of η

η

(opt)
 of Gyeongju-si and Yeonggwang-gun can be understood in this line, as they have quite different values of 

ρ
η


, 662 and 30.8, respectively. Such a significant correlation is absent between η
η

(opt)
 and the raw patient density ρ 

[Fig. S3]. The change of the fatality rate shows the opposite trend to that of the hospital density; The districts with 
large (small) rescaled patient density ρ

η


 have their fatality rate decreased (increased) as they gain (lose) hospitals 
[Fig. 6(c)]. It is remarkable that the changes of the hospital density and the fatality rate are determined not by the 
patient density or the population density but the rescaled patient density.

Figure 4. The rescaled hospital density and fatality rate before and after optimization as functions of the 
rescaled patient density. (a) Plots of the rescaled hospital density, η

η


 (circle) and η
η


(opt)  (square) versus the rescaled 
patient density ρ

η


 in semi-logarithmic scale. η


 is the characteristic hospital density estimated empirically as Eq. 
(16). The data points for the optimized hospital density lie on the line corresponding to Eq. (19) with = .z 12 9. 
(b) Plots of the fatality rate φ (circle) and φ(opt) (square) versus the rescaled patient density ρ

η


. The data points for 
the optimal fatality rates are on the line corresponding to Eq. (20).

Figure 5. Monte-Carlo (MC) simulation for optimizing the hospital distribution. (a) The total energy 
=E t E( ) fatalities as a function of the MC step t in the MC simulation with ∆ = −H 10 2. It becomes stationary at 

∞ = = .E E( ) 1488 44(min)  for t 103. Inset: The stationary-state value ∞E( ) depends on the increment ∆H. 
(b) The ratio η

η

t( )i

i
(opt)

 is plotted as a function of the MC step t for selected districts with ∆ = −H 10 2. It converges to 

one for t 103.
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Summary and Discussion
We have here proposed a modeling framework which predicts the optimal distribution under a general objective 
function, going beyond the previous descriptive explanations for the facility distribution. In deriving the optimal 
hospital distribution over districts for minimizing the TB fatalities in the whole country, we have found that the 
characteristic hospital density of each district plays an important role in the optimization. The random-walk 
nature of the coarse-grained trajectories of patients has been assumed in establishing a theoretical model, and the 
lattice constant of each district has been introduced to connect the theoretical results and the empirical data. The 
incorporation of such heterogeneity of districts in the theoretical study of the facility optimization is done only in 
the present study and can be useful in future studies.

Examining the assumptions and limitations of the proposed model may help better understand and improve 
its predictive power. The exponential decay of the fatality rate with the hospital density given in Eq. (14) is valid 
when the dimensionless hospital density is low, λτ

τ
 1

log
26. The empirical data analyzed in the present study stay 

in this regime; λτ
τlog

 ranges between 0.23 and 0.37. If we were to extend to the case of high hospital density or the 
hospital locations being no more independent of one another, the fatality rate might behave differently from Eq. 
(14). For φ η η=


f ( / )i i i  with f x( ) a decreasing convex function such as exponential, stretched exponential, or 

power law, the optimal hospital density will be given by = − ′
η

η

η

ρ
−



( )f z( ) 1i

i

i

i
 with ′ −f( ) 1 being the inverse of the 

derivative of f x( ). The relation between the two rescaled variables η
η


i

i

 and ρ

η


i

i

 depends on the specific form of f x( ) 

and reduces to Eq. (19) in case of = −f x e( ) x. The case of f x( ) being a power law is presented in the SI. Regarding 
the robustness of the functional form of the fatality rate, it will be of interest to investigate which model of walk 
with traps exhibits such a power-law survival probability.

We have counted only the private general hospitals, but there are mostly found one or two public health 
centers in a district, which can also provide the medical treatment to TB patients although its portion may not 
be large35. One can optimize the private hospital distribution considering the contribution of the public health 
centers to the TB treatment, which is presented in the SI and Fig. S4. The results remain unchanged qualitatively. 
Extending the trajectories of patients to the nearby districts can be one way of making the model more realistic, 
which will address how the similarity or dissimilarity of adjacent districts may affect the fatality rate and the total 
fatalities. A correlation may be expected between the economic level of a district and the fatality rate of a disease, 
which is not significant in case of TB in Korea [Fig. S5], as the TB treatment is covered by the national medical 
insurance in Korea36, but should be considered in the application to other diseases or other countries. When a 
given number of hospitals can be opened or should be shut down for financial or other reasons, our results will be 
helpful for the investigation of the optimal locations.

Figure 6. Changes of the hospital density by optimization. (a) The logarithmic ratio of the optimal to current 
hospital density 








η
η

log
(opt)

 is encoded by color for each district of Korea. 85 districts are white, as they do not 

have both η(opt) and η available. (b) Plot of the ratio η
η

(opt)
 versus the rescaled patient density ρ

η


. Upper and lower 
triangles are used for the data points with the optimal hospital density larger and smaller, respectively, than the 
current one. The filled square is the average and the errorbar is the standard deviation of the ratio η

η

(opt) . (c) Plot 
of the ratio of the optimal to current fatality rate φ

φ

(opt)
 versus ρ

η


.
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Methods
Data-sets. Under the control of the Ministry of Health and Welfare, several organizations such as the Korean 
National Tuberculosis Association and Korea Centers for Disease Control and Prevention cooperate to prevent 
and eradicate tuberculosis in Korea36. The related information has been well recorded, which is accessible through 
Statistics Korea20. The data-sets used in the present study have been collected district by district. As a result, 37347 
new TB patients, 330 hospitals, and 2127 dead patients for 228 districts in year 2014 have been considered in the 
present study. The hospitals considered in our study are the private ones classified as general or superior general 
hospitals in the Korean Medical Service Act. The theoretical modeling for the fatality rate applies for =I 143s  
districts which have at least one hospital and at least one dead patient. The total number of new and dead patients, 
and hospitals in those 143 districts are 32322, 1718, and 328.

Monte carlo simulation. To illustrate the hospital relocation process, we perform the zero-temperature 
Monte Carlo (MC) simulation in which hospitals are relocated over Is districts towards decreasing the energy, 
equal to the total fatalities given in Eq. (21), as follows:

 (i) Initially the number of hospitals in each district is set equal to the empirical data.
 (ii) For two randomly selected districts i and j, consider moving ∆H hospitals from i to j as long as 

− ∆ >H H 0i .

 (iii) Accept this relocation if the energy change ∆ =


 −



 +






−





− − − −
η η η η

−∆ +∆

 

 E N e e N e ei j

Hi H
Ai i

Hi
Ai i

Hj H
Aj j

Hj
Aj j  is zero or 

negative. Reject it otherwise.
 (iv) Repeat steps (ii) and (iii) Is times to increase the MC step t by one.

We find that the energy becomes stationary around =t 103 MC steps and thus we run the simulations just up 
to 104 MC steps [Fig. 5(b)]. ∆H represents the amount of hospitals moved by one relocation. For ∆ .H 0 05, the 
hospital configuration and the energy in the stationary state coincide with the theoretical predictions in Eqs. (19) 
and (21), respectively. Replacing the initial hospital configuration by a random one, the energy and the hospital 
configuration in the stationary-state are not changed but remain the same as the theoretical prediction. Since a 
hospital relocation is accepted only when the corresponding energy change is not positive, this simulation corre-
sponds to zero temperature =T 0. We have also run the MC simulation with lowering temperature gradually 
from =T 20 to = × −T 3 10 9 but the hospital configuration and the energy in the stationary state are found to be 
the same as those of the zero-temperature MC simulation.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.
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