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feasibility of iViM parameters from 
diffusion-weighted imaging at 
11.7T MRI for detecting ischemic 
changes in common carotid artery 
occlusion rats
Shunrou fujiwara  1,2 ✉, Yuki Mori3, Daniela Martinez de la Mora2, Yosuke Akamatsu1, 
Kenji Yoshida1, Yuji Shibata4, Tomoyuki Masuda4, Kuniaki Ogasawara1 & 
Yoshichika Yoshioka2,5

This study aimed to investigate whether intravoxel incoherent motion (IVIM) parameters can identify 
ischemic changes in the rat cerebral cortex using a preclinical ultra-high-field 11.7 Tesla magnetic 
resonance imaging (11.7TMRI) scanner. In nine female Wistar rats (eight weeks old), diffusion-weighted 
imaging (DWI) for IVIM analysis was successfully performed before (Pre) and after unilateral (UCCAO) 
and bilateral (BCCAO) common carotid artery occlusion. From the acquired DWI signals averaged in six 
regions of interest (ROI) placed on the cortex, volume fraction of perfusion compartment (F), pseudo 
diffusion coefficient (D*), F × D* and apparent diffusion coefficient (ADC) were determined as IVIM 
parameters in the following three DWI signal models: the bi-exponential, kurtosis, and tri-exponential 
model. For a subgroup analysis, four rats that survived two weeks after BCCAO were assigned to the 
long survival (LS) group, whereas the non-LS group consisted of the remaining five animals. Each IVIM 
parameter change among three phases (Pre, UCCAO and BCCAO) was statistically examined in each 
ROI. Then, the change in each rat group was also examined for subgroup analysis. All three models 
were able to identify cerebral ischemic change and damage as IVIM parameter change among three 
phases. Furthermore, the kurtosis model could identify the parameter changes in more regions than the 
other two models. In the subgroup analysis with the kurtosis model, ADC in non-LS group significantly 
decreased between UCCAO and BCCAO but not in LS group. IVIM parameters at 11.7TMRI may help us 
to detect the subtle ischemic change; in particular, with the kurtosis model.

Preclinical ultra-high-field magnetic resonance imaging (MRI) with static magnetic fields of more than 7 Tesla 
(T) has identified even subtle microstructural morphological and functional changes in biological tissues using 
diffusion-weighted imaging (DWI)1–4. Intravoxel incoherent motion (IVIM) is a DWI concept, and it has been 
performed to non-invasively and simultaneously assess perfusion and diffusion from DWI datasets obtained in 
a one-time scan with multiple b-values5–13. In the period from the 1980s to nowadays, IVIM analysis has been 
mainly used to assess animal models of liver fibrosis or brain tumors, as well as patients with cancer in various 
regions of the body7,11,12,14–20. With the further development of the magnetic field strength, recent studies have 
shown that IVIM can detect cerebral perfusion changes not only in patients with infarcts due to severe ischemic 
strokes or vasospasms after aneurysm rupture but even in healthy subjects in hyper- or hypocapnic states9,10,21–23. 
For IVIM analysis, various DWI signal models have been proposed to assess water diffusion features in different 
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views such as diffusivities based on free (Gaussian) and restricted water molecules or fast and slow diffusivities 
in multiple compartments of the tissue7,10; however, it remains unknown which DWI model of IVIM parameter 
estimation can appropriately identify subtle changes in ischemic states, especially at early stages without the pres-
ence of infarcts seen in chronic ischemia.

Ischemia can be accomplished in animal models by vessel occlusion. This has been proposed to determine 
longitudinally the extent of brain damage caused by chronic cerebral hypoperfusion24–27. Among the established 
models, the common carotid artery occlusion (CCAO) model has the advantage of consistently inducing cer-
ebral hemodynamic changes and postischemic neural degeneration without the possibility of surgical injuries 
to the cerebral cortex. However, longitudinal studies using this model often include a large number of animals 
because this model has a high mortality. A staged ligation, in which the ligation of the second carotid artery was 
performed 2–7 days after the first one, has improved the mortality2,26,27; however, it has been unclear how cerebral 
hemodynamics and cortical damages change in rats after CCAO.

Using ultra-high-field 11.7 T magnetic resonance imaging (11.7TMRI), we investigated in this study which 
DWI model of IVIM parameters sufficiently identifies different ischemic states, how the cerebral hemodynamics 
changes in the CCAO model, and how the rat cortex is damaged in this animal model.

Results
Bilateral CCAO (BCCAO) was successfully performed in 10 of 11 rats; one rat died immediately after BCCAO 
surgery. MRI was performed in these 10 rats before the ligation (Pre), after ligation of the right common carotid 
artery (unilateral CCAO; UCCAO), and after subsequent ligation of the left common carotid artery (BCCAO). A 
typical example is shown on Fig. 1. Since one rat was excluded from further analyses because of extensive image 
deterioration, 9 of 11 rats were used for the analysis. A total of 4 of these 9 rats (44%) survived for two weeks and 
were assigned to the long survival (LS) group, whereas the remaining 5 rats (56%) were assigned to the non-LS 
group (survival after BCCAO: range 1–4 days, mean 1.6 ± 1.2 days).

Morphological changes in the cerebral arteries due to ischemia in all rats. Cerebrovascular mor-
phological changes were observed on T2-weighted images obtained using a rapid acquisition with relaxation 
enhancement (RARE) sequence. These measurements were performed two times by an author and showed 
good agreements for the parameters lumen diameter (Dia_BA) of the basilar artery (BA) and bilateral lumen 
cross-sectional areas (Area_ACA) of the anterior cerebral arteries (ACA) as demonstrated by high intraclass cor-
relation coefficients (both 0.92). Both Dia_BA (n = 9, median, interquartile range (IQR) [mm]: Pre, 0.330, 0.082; 

Figure 1. Morphological changes in blood vessels on 11.7 Tesla magnetic resonance (MR) images before and 
after common carotid artery occlusion (CCAO). The squares in (a,e,i) indicate the references for (b–d,f–h,j–l), 
respectively. On MR angiography (MRA) images before CCAO (Pre), the CCAs can be identified bilaterally 
(white arrows in b). L and R are the left and right sides, respectively. After unilateral occlusion of the right 
CCA (UCCAO), only the left CCA is visualized (c), and after bilateral CCAO (BCCAO), the CCAs cannot be 
identified (d). The diameters of the basilar artery (BA) measured on curved planar reformation T2-weighted 
images (T2WI) increase over the occlusion period (f–h). The cross-sectional area of the anterior cerebral artery 
(ACA) at the section showing the anterior commissure increases slightly in the UCCAO (k) and BCCAO (l) 
images compared with the image before the occlusion (j). Scale bars, 5 mm.
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UCCAO, 0.370, 0.065; BCCAO, 0.415, 0.038; p = 0.00294, Friedman test) and bilaterally averaged Area_ACA 
(n = 9, median, IQR [×10−2 mm2]: Pre, 9.23, 2.46; UCCAO, 11.5, 3.48; BCCAO, 11.1, 2.01; p < 0.00001, Friedman 
test) were significantly higher for the UCCAO and the BCCAO phase compared to the Pre phase (both p < 0.05, 
Conover post hoc test; Fig. 2). No statistically significant difference was observed in the parameter Dia_BA between 
Pre and UCCAO. However, the value of the parameter Area_ACA was in the BCCAO phase lower compared to the 
UCCAO phase (p < 0.05, Conover post hoc test; Fig. 2).

IVIM parameter changes in all rats. Before (Pre) and after (UCCAO and BCCAO) the occlusion, 
IVIM parameters were successfully estimated in all rats using the following three typical DWI models: the 
bi-exponential (Bi), kurtosis (Kur), and tri-exponential (Tri) model. For each model, the IVIM parameter dataset 
at each phase (Pre, UCCAO, and BCCAO) was determined using an averaged DWI signal change obtained in each 
region of interest (ROI) placed at the internal, medial, or lateral part of the right or left cortex. Simultaneously, 
Akaike’s information coefficient (AIC)10,28,29, which is an index for signal model functions to assess their goodness 
of fit, was calculated. This means that IVIM parameters for every signal model were calculated in 162 ROIs (six 
ROIs × nine rats × three phases). ROI placement and evaluation of the parameters were automatically performed 
by a custom-made software (calculation time, 176 second per rat for all three models). Finally, each of four IVIM 
parameters (F, D*, FD*, and ADC) obtained in each of 54 ROIs was statistically compared among the three 
occlusion phases using the Friedman test for the three examined models (all medians, 25th and 75th percentiles 
and significances shown in Supplement).

Bi-exponential model. The parameter ADCB was significantly different among all three phases at the internal 
and lateral parts of the left cortex, and the medial and lateral parts of the right cortex (n = 9, p < 0.05 at each part, 
Friedman test, colored parts in the upper column on Fig. 3), and it was significantly lower in BCCAO than in Pre 
and UCCAO at all significant parts (both p < 0.05, Conover post hoc test after Friedman test). By contrast, the 
remaining IVIM parameters FB, D*B, and FBD*B at all parts of both cortices showed no significant differences 
among the three examined phases.

Kurtosis model. In the kurtosis model, the parameter ADCK at the internal and lateral parts of the left cortex 
exhibited significant differences among the three occlusion phases (n = 9; p < 0.05 at each part, Friedman test, 
colored parts in the middle column on Fig. 3). Then, D*K, FKD*K, and ADCK at the lateral part of the right cortex 
showed significant differences among the three occlusion phases (n = 9; p < 0.05 at each part, Friedman test, 
colored parts in the middle column on Fig. 3). In addition, FKD*K at the internal part and ADCK at the medial 
part of the right cortex also showed the significance among all phases (n = 9; p < 0.05 at each part, Friedman 
test, colored parts in the middle column on Fig. 3). On the other hand, FK was not significantly different among 
all three phases at all parts of both cortices. ADCK at the internal and lateral parts of the left cortex were signifi-
cantly lower in BCCAO compared to Pre and UCCAO (both p < 0.05, Conover post hoc test after Friedman test). 
D*K, FKD*K, and ADCK at the lateral part of the right cortex were also lower in BCCAO than those in the other 
two phases (both p < 0.05, Conover post hoc test after Friedman test). FKD*K at the internal part and ADCK at 
the medial part of the right cortex were lower in BCCAO compared to Pre (p < 0.05, Conover post hoc test after 
Friedman test).

Figure 2. Quantitative assessment for changes in diameters of the basilar artery (BA) (a) and in cross-sectional 
areas of the anterior cerebral artery (ACA) (b) before (Pre) and after unilateral (UCCAO) and bilateral 
(BCCAO) common carotid artery occlusions (*significantly different at the level p < 0.05).
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Tri-exponential model. In this model, D*T, FTD*T at the lateral part of the right cortex and ADCT at the inter-
nal and lateral parts of the left cortex showed statistically significant differences among all three phases (n = 9; 
p < 0.05 at each part, Friedman test, colored parts in the lower column on Fig. 3), whereas FK was not significantly 
different at all parts of both cortices. The parameters D*T, FTD*T, at the lateral part of the right cortex were sig-
nificantly lower in BCCAO than in UCCAO (both p < 0.05, Conover post hoc test after Friedman test). ADCT at 
the internal part of the left cortex was lower in BCCAO than in Pre and UCCAO (both p < 0.05, Conover post hoc 
test after Friedman test) and ADCT at the lateral part of the left cortex was lower in BCCAO than in Pre (p < 0.05, 
Conover post hoc test after Friedman test).

Finally, number of the regions showing the significance in IVIM parameter changes for Pre, UCCAO, and 
BCCAO were the largest when using Kur model (four regions in Bi and Tri and seven regions in Kur; Fig. 3). 
The AIC comparison revealed significant differences among the three examined models (p < 0.0001, repeated 
measures analysis of variance) and the mean AIC value was for the Kur model significantly smaller compared to 
the Bi and the Tri models (mean ± standard error: Bi: 71.8 ± 0.38; Kur: 71.3 ± 0.52; Tri: 88.7 ± 0.54; Bi v.s. Kur, 
p < 0.0246; Bi v.s. Tri, p < 0.0001; Kur v.s. Tri, p < 0.0001; all pairwise comparisons with Bonferroni correction). 
An AIC value below 72 meant that the estimated model curve sufficiently approximated the experimental DWI 
signals.

Subgroup analysis. Comparison of the internal carotid artery (ICA) flow between LS and non-LS groups. On 
magnetic resonance angiography (MRA) in the UCCAO phase, the signal on the right side ipsilateral to the first 
CCA ligation (the first side) tended to increase in both groups compared to that in the Pre phase. Interestingly, 
all rats showed in the UCCAO phase a mild signal loss indicating a flow reduction in the ICA at the portion 
of the circle of Willis on the left side contralateral to the first CCA ligation (the second side) (Fig. 4b,e, white 
arrowheads). On the other hand, in the BCCAO phase, the signal on the first side in LS group further increased 
comparing with that in the UCCAO (Fig. 4c, white arrow); however, the signal in non-LS group mildly decreased 
(Fig. 4f). Then, the ICA flow signal on the second side further decreased only in the non-LS group (Fig. 4f, black 
arrow), whereas the signal tended to recover in the LS group (Fig. 4c).

For the quantitative analysis, the cross-sectional area of the ICA flow on MRA (Fig. 4a, horizontal white lines 
indicating the position of the sections) were measured by high intraclass correlation coefficients (0.90). In LS 
group, the quantitative assessment clearly showed that the cross-sectional area of the flow on the first side signifi-
cantly enlarged in the BCCAO phase compared to Pre and UCCAO (n = 5, median, IQR [×10−2 mm2]: Pre, 9.94, 
1.73; UCCAO, 12.8, 1.35; BCCAO, 14.8, 1.19; p = 0.0065, Friedman test; p < 0.05, Conover post hoc test). Non-LS 
group showed no significant difference in the ICA flow area on the first side among three phases (n = 4, Pre, 9.84, 
6.40; UCCAO, 14.2, 6.57; BCCAO, 10.4, 2.29; p = 0.1680, Friedman test). On the second side, the ICA flow area 
in non-LS group significantly reduced in BCCAO phase compared to UCCAO (n = 5, Pre, 10.4, 0.923; UCCAO, 
11.4, 1.26; BCCAO, 5.46, 3.78; p = 0.0531, Friedman test; p < 0.05, Conover post hoc test). The area on the second 
side in LS group showed no significance among three phases (n = 4, Pre, 10.3, 1.89; UCCAO, 11.9, 1.67; BCCAO, 
8.52, 3.32; p = 0.1780, Friedman test).

Figure 3. Cortical regions to place regions of interest (ROI) (three black squares: internal, medial, lateral) on 
both right and left sides in the rat cortex for estimating intravoxel incoherent motion parameters. Significant 
change among three occlusion phases was observed in each colored regions (pink, p < 0.05; red, p < 0.01; 
Friedman test).
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Comparison of IVIM parameter changes in LS and non-LS groups. For confirming differences of damage to the 
cortex between two rat groups, each IVIM parameter change among the three occlusion phases were statistically 
examined in each rat group at seven regions showing the significance in all rat analysis with Kur model (D*K at 
the lateral part, FKD*K at the internal and lateral parts, and ADCK at the medial and lateral parts of the cortex on 
the right side ipsilateral to the first ligation, and ADCK at the internal and lateral parts of the cortex on the left side 
contralateral to the first ligation, colored parts in the middle column on Fig. 3).

At the lateral part of the cortex on the first side, D*K (n = 5, median, IQR [×10−3 mm2]: Pre, 27.0, 41.5; 
UCCAO, 38.0, 80.4; BCCAO, 22.7, 60.4; p = 0.5997, Friedman test), FKD*K (median, IQR [×10−4 mm2]: Pre, 
23.9, 33.4; UCCAO, 32.9, 38.7; BCCAO, 14.4, 16.2; p = 0.4979) and ADCK (Pre, 7.33, 0.37; UCCAO, 7.83, 0.84; 
BCCAO, 7.17, 0.42; p = 0.4979) in the non-LS group, and D*K (n = 4, median, IQR [×10−3 mm2]: Pre, 30.2, 26.7; 
UCCAO, 24.0, 32.2; BCCAO, 19.7, 24.3; p = 0.4807, Friedman test), FKD*K (median, IQR [×10−4 mm2]: Pre, 19.7, 
18.1; UCCAO, 18.7, 26.2; BCCAO, 12.4, 24.2; p = 0.4219) in LS group showed no significant difference among 
all three phases.

On the first side in LS group, ADCK at the lateral part (n = 4, median, IQR [×10−4 mm2]: Pre, 7.50, 0.50; 
UCCAO, 7.08, 0.41; BCCAO, 7.17, 0.25; p = 0.00019, Friedman test) and FKD*K at the internal part (Pre, 23.3, 
18.8; UCCAO, 17.5, 19.9; BCCAO, 10.0, 12.3; p = 0.00659) showed the significant difference among all phases, 
and between Pre and UCCAO or BCCAO (p < 0.05, Conover post hoc test), while no significant differences 
were observed those parameters at the same parts in non-LS group (ADCK: Pre, 7.33, 0.37; UCCAO, 7.83, 0.84; 
BCCAO, 7.17, 0.42; p = 0.4979; FKDK: Pre, 35.1, 30.5; UCCAO, 28.7, 22.7; BCCAO, 8.43, 15.0; p = 0.2687). And 
then, at the medial part on this side, ADCK showed the significant difference in both groups among all phases (LS: 
Pre, 8.25, 0.33; UCCAO, 8.00, 0.16; BCCAO, 8.00, 0.16; p = 0.0240; non-LS: Pre, 8.17, 0.42; UCCAO, 8.33, 0.54; 
BCCAO, 7.50, 0.29; p = 0.0168). Interestingly, at the part, ADCK in LS group significantly decreased between Pre 
and UCCAO, or BCCAO phases, however, ADCK in non-LS group significantly decreased between UCCAO and 
BCCAO phases (p < 0.05, Conover post hoc test).

On the second side, ADCK at the internal part showed the significance in only non-LS group (Pre, 8.17, 1.16; 
UCCAO, 7.83, 0.91; BCCAO, 7.33, 0.41; p = 0.02560) but LS group (Pre, 7.83, 0.42; UCCAO, 7.58, 0.33; BCCAO, 
7.25, 0.58; p = 0.08374). And, in non-LS group, there was the significant difference in ADCK at the part between 
UCCAO and BCCAO (p < 0.05, Conover post hoc test). No significant difference among all phases was identified 
at lateral parts on the second side in both groups (LS: Pre, 8.08, 0.33; UCCAO, 7.92, 0.25; BCCAO, 7.50, 0.66; 
p = 0.09832; non-LS: Pre, 8.17, 0.58; UCCAO, 8.00, 1.17; BCCAO, 7.50, 0.54; p = 0.12074).

Figure 4. Differences between the long survival (LS) and non-LS groups in magnetic resonance angiography. L 
and R are the left and right sides, respectively. After unilateral common carotid artery occlusion (UCCAO), rats 
in both groups commonly show the mild signal loss indicating a blood flow reduction in the internal carotid 
artery in the circle of Willis contralateral to the ligation (b,e, arrowheads) compared with the presentation 
before the occlusion (Pre, a,d). This reduction tends to be reversed after bilateral common carotid artery 
occlusion (BCCAO) in the LS group (c) accompanying the signal increase indicating the compensation by the 
ICA enlargement (c, white arrow). On the other hand, the reduction is severely progressed in the non-LS group 
(f, black arrow). White horizontal lines in (a) indicate the reference positions to measure the cross-sectional 
areas of the ICA flow in the circle of Willis on an MRA.
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Discussion
The results of this study demonstrated that the features of the IVIM parameters change with depending on the 
DWI signal model used for the parameter calculation; in particular, the parameter determined with the Kur 
model identified the largest number of regions showing the significant change in the rat cortex among three 
CCAO phases in the three examined models. AIC value, which represents the good of fitness between experi-
mental and simulated signals, was also the smallest with Kur model in the models. These results suggested that 
Kur model may have the highest sensitivity for detecting the ischemic damage in three models. Then, IVIM 
analysis with all models demonstrated that the cortex on the second ligation side were damaged more severe than 
that on the first ligation side. This tendency was also observed on MRA. Actually, blood flow reduction on MRA 
was identified at UCCAO on the second ligation side, which indicates the second ligation side might have been 
already damaged in UCCAO phase. Furthermore, in a subgroup analysis according to the survival period of the 
animals, the flow reduction on MRA recovered at BCCAO in LS group; however, the flow reduction remained 
in non-LS group. Finally, ADCK in non-LS group significantly reduced between UCCAO and BCCAO, while no 
reduction on ADCK was observed between the two phases in LS group. These suggested that damage due to the 
flow reduction on the second side in BCCAO phase may affect the survival period for rats. The high sensitivity 
due to the high signal-to-noise ratio in 11.7TMRI may also be helpful to identify subtle differences in abnormal 
cerebral perfusion in rats exposed to CCAO. No previous study has quantified ischemic changes in the rat cor-
tex after CCAO using IVIM parameters while simultaneously assessing the cerebral ischemia using preclinical 
11.7TMRI in vivo.

For many years, IVIM parameters have been mainly used to analyze abdominal regions in clinical studies 
distinguishing between benign and malignant tumors14–16,30,31. The primary benefit of IVIM is its ability to detect 
lesions in patients without the need for contrast agents. Despite this prominent advantage, only a few reports 
with cerebral perfusion measurements using IVIM have been published8,9. This may be the reason why radioac-
tive nuclide-based imaging modalities like positron emission tomography or single-photon emission computed 
tomography with their high sensitivity were preferentially used to detect abnormal vascularity and/or perfusion 
when the magnetic field strength was still lower than 3T. A recent study demonstrated changes in CBF after 
UCCAO and BCCAO using three-dimensional arterial spin labeling (3D-ASL)27. However, 3D-ASL experi-
ences difficulties to accurately assess hemodynamic impairments because of labeling failures due to susceptibility 
artifacts at the extracranial portion of the ICA or the delayed arrival of labeled blood in patients with chronic 
ischemia due to atherosclerotic ICA stenosis. IVIM parameters can non-invasively and simultaneously determine 
brain damage with the parameter ADC, as well as cerebral blood flow (CBF), using just one dataset acquired by a 
conventional DWI sequence with multiple b-values. Thus, we believe that IVIM can help to identify abnormalities 
in patients with chronic ischemia showing subtle changes in cerebral blood flow and metabolism, similar to its 
application in acute stroke as demonstrated by previous publications8,9.

In previous studies in rats, tortuosity or dilation of blood vessels have been surgically validated in the chronic 
phase after BCCAO2,27,32. In the present study, such morphological changes in the BA and the ACA were also 
identified in vivo using 11.7TMRI in three different occlusion phases. It is well-documented that autoregulation 
of blood vessels plays an important role in maintaining CBF in hemodynamic ischemia or hypoxia to provide 
sufficient oxygen supply for the cerebral metabolism33,34. Thus, the morphological changes in the BA and ACA 
observed in vivo in the present study might be a physiological response to ischemia that tries to maintain the cere-
bral perfusion pressure by preventing a critical pressure reduction. The significant reduction in the cross-sectional 
area of the ACA between UCCAO and BCCAO might be an apparent structural change due to flow reduction 
because this reduction can affect the flow void. Finally, ADC reduction were observed at BCCAO phase in all 
models in the present study, thus, compensation by the autoregulation may be insufficient for the CBF reduction 
due to the bilateral occlusion.

In the present study, the Kur model showed the lowest AIC value in the fitting procedure among the three 
examined DWI models, and this model could detect the significant change of IVIM parameters among the three 
occlusion phases at more regions than the other two models. DWI signals at high b-values mainly represent 
signals from diffusion components in biological tissue with multiple cell compartments and/or the extracellular 
space5,6,35, whereas DWI signals at low b-values include more perfusion effects in addition to diffusion compo-
nents, according to the IVIM theory5,6. In the present study, the AIC value of the Tri model was higher than that of 
the Bi and Kur models. This suggests that it might be difficult for the Tri model to biologically represent ischemic 
changes in the rat cortex, although this model has the advantage to describe complex structures in biological 
tissues with three exponential terms. In the present study, the Bi model had an AIC value similar to that of the 
Kur model; however, the AIC was significantly larger than that of Kur. The Bi model can represent only Gaussian 
distribution of water molecule movement because of no term representing the non-Gaussian component. On 
other side, the Kur model includes a term representing diffusion changes with both Gaussian and non-Gaussian 
distributions36. Therefore, our results suggest that it is important to assess the effects of non-Gaussian, as well as 
Gaussian, diffusion compartments to detect ischemic changes with high sensitivity.

Considering the principles of IVIM, the parameter F is theoretically defined as the factor indicating the vol-
ume fraction of the fast diffusion and mainly altered by the volume of perfusion compartments in the biological 
tissue5,6,37. In fact, it has been reported that F values are elevated due to increased cerebral blood volume (CBV) 
in healthy subjects with hypercapnia or in patients with tumors of high vascularity15,16,19–21,31. Unfortunately, 
our results could not identify significant increases in F values among the three examined occlusion phases. 
Morphological changes of large vessels like the BA, ACA and ICA are qualitatively and quantitatively confirmed 
in the present study; however, CBV elevation is caused by dilation of precapillary resistance vessels33. We hypoth-
esize that our time point for the MRI scan might have missed the period with vasodilation of the small vessels in 
the cortex. Because this period with vasodilation may occur immediately after CCAO surgery and might be very 
short, we could not identify elevated F values that indicate an increased blood volume in the rat cerebral cortex.
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The results of the subgroup analysis demonstrated hemodynamic and ischemic differences between two rat 
groups defined by different mortality after CCAO. Interestingly, in the UCCAO phase, a blood flow reduction 
in the circle of Willis portion of the ICA was identified by MRA only on the side contralateral to the occlu-
sion in both groups. This contralateral flow reduction might indicate that the blood flow compensated for the 
ligation-sided shortage in blood supply and led to a ‘steal phenomenon’ similar to that observed by single-photon 
emission computed tomography imaging after intravenous acetazolamide injection in patients with dysfunction 
of the cerebrovascular autoregulation due to chronic ischemia38. On the other hand, only rats in the LS group 
exhibited recovery of the MRA-assessed blood flow in the BCCAO phase but not those in the non-LS group. The 
CBF reduction between UCCAO and BCCAO might be more severe in non-LS group than LS group because 
ADCK significantly reduced between the two phases in only this group but LS group.

This study has some limitations. First, the sample size was small for group comparisons because the rat model 
had high mortality rates even if the staged ligation was successfully performed. Second, we performed no sham 
operations. A previous study identified no signs of degeneration or changes in vascularity over 12 weeks in 
sham-operated rats as control animals to BCCAO rats2, but further studies are needed to confirm that the sur-
gical procedures do not affect IVIM parameters in sham-operated rats. Third, we could not directly confirm the 
relationship between IVIM parameters and the actual cerebral blood flow in CCAO rats using simultaneously 
other sequences like 3D-ASL27,38.

In conclusion, we demonstrated IVIM parameters determined in ultra-high-field 11.7TMRI changed in the 
rat cortex after CCAO. In particular, the parameters calculated by the kurtosis model could represent ischemic 
changes in rats with higher fitting accuracy and higher sensitivity compared to the other two models. IVIM 
parameters determined with suitable DWI signal models may help us to accurately identify subtle ischemic 
changes in patients as well as in animal models, although we still require the further investigation with larger 
sample size.

Methods
Animals. All experimental procedures involving animals and their care were carried out in accordance with 
the Guidelines of Osaka University for Animal Experimentation and the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals. All experimental protocols were approved by the Research Ethics 
Committee of Osaka University. This manuscript follows the ARRIVE guidelines (Animal Research: Reporting 
in Vivo Experiments). Rats were acclimatized to the facility for seven days before the operation. A total of 27 
Wistar rats were used for this study. Preliminary experiments were performed on 17 rats with different intervals 
of ligation (from zero to six days) to determine a suitable interval between the first and the second CCA ligation 
to keep the rats longer alive using techniques proposed in previous studies27,39. The period of six days between 
the first and the second ligation was selected owing to the low mortality involved and the decrease in anatomical 
and/or functional laterality due to the development of new arterial circulations facilitating collateral flow40. After 
this preliminary phase, we performed the following surgical procedures on 11 female Wistar rats (eight weeks 
old; body weight, 156.5 ± 7.1 g) including one rat treated with the six-day-interval in the preliminary experiment: 
Following a permanent occlusion of the right CCA with a 4–0 surgical thread ligation, the left CCA was occluded 
six days after this unilateral occlusion. All surgical procedures were performed under general anesthesia with 
2.00–2.54% isoflurane (Abbott Laboratories, Abbott Park, IL, USA) mixed with room air at a flow rate of 2 L/min. 
All rats were housed in cages under controlled temperature (20–22 °C) and humidity (50–55%) after the surgical 
procedures. Rats were carefully observed during this study to prevent malnutrition due to anosmia and blindness 
immediately after the BCCAO, but all animals had ad libitum access to food and water during the follow-up 
period. Rats that survived for two weeks after the BCCAO were assigned to the LS group, whereas the other rats 
were assigned to the non-LS group.

MRI. IVIM-DWI (multi-shot spin-echo echo-planar imaging sequence; repetition time (TR)/echo time (TE): 
4500/23.1 [ms]; matrix: 64 × 128; field of view (FOV): 12.8 × 25.6 [mm2]; in-plane resolution: 0.2 × 0.2 [mm2]; 
slice thickness: 0.8 [mm]; slice gap: 0.2 [mm]; 12 b-values: 0, 10, 20, 40, 80, 160, 320, 640, 800, 1000, 2000, 3000 
[s/mm2]; diffusion gradient duration time (δ)/diffusion gradient separation time (Δ): 5/13 [ms]; motion probing 
gradient: three orthogonal directions) was performed in a vertical-bore preclinical 11.7 T MRI scanner (gradient 
strength: 750 [mT/m], slew rate: 6660 [T/m/s]; AVANCE II 500WB, Bruker) with a transmit/receive volume coil. 
The scan phase comprised a baseline scan (Pre) followed by a scan three days after the first surgical procedure 
on the right CCA and a scan within one hour after the second procedure on the left CCA. For assessment of 
anatomical structures, two-dimensional time of flight (TR/TE: 20/40.8 [ms]; echo train: 16; matrix: 256 × 256; 
FOV: 25.6 × 25.6 [mm2]; in-plane resolution: 0.1 × 0.1 [mm2]; slice thickness: 0.3 [mm] without gaps) MRA was 
performed, and a RARE sequence (TR/effective TE: 6500/38 [ms]; matrix: 256 × 256; FOV: 25.6 × 25.6 [mm2]; 
in-plane resolution: 0.1 × 0.1 [mm2]; slice thickness: 0.5 [mm] without gaps) was used to obtain T2-weighted 
images. Rats were placed on an MRI-compatible cradle and restrained with a bite bar during scanning. MRI 
scanning for all rats was performed under anesthesia with a 1.50–2.04% isoflurane air mixture at a flow rate of 2 L/
min. Respiratory signals were monitored using a physiological monitoring system (SA Instruments, Inc., Stony 
Brook, NY, USA). Warming pads with circulating water were used to maintain body temperature.

Assessment of the cerebrovascular morphological and flow changes after CCAO. As reported 
in previous studies, cerebrovascular morphological changes can be identified in rats after CCAO2,27,32. To con-
firm the effects on the vessels due to severe ischemia, Dia_BA and Area_ACA were measured in each rat at Pre, 
UCCAO, and BCCAO. To measure Dia_BA, we generated an image reformatted along the centerline of the BA 
using a curved planar reformation technique from axial RARE images. The length of a straight line orthogonally 
across the centerline of the vessel at the middle of the BA was defined as Dia_BA. The average of the bilateral 
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cross-sectional ACA areas measured at an axial section image showing the anterior commissure on a RARE image 
was defined as Area_ACA. For assessment of the cerebral flow reduction after CCAO, the cross-sectional area of 
the ICA flow in the circle of Willis on an MRA was measured in each rat similar to the Area_ACA measurement on 
a RARE image. All measurements of cerebrovascular morphological parameters were manually performed twice 
using OsiriX Lite ver. 8.5 (Pixmeo, Bernex, Switzerland).

Assessment of cerebral ischemic states by IVIM parameters. To quantitatively assess cerebral hemo-
dynamic changes, each IVIM parameter set was estimated using averaged DWI signals in each ROI on the cortex 
of each rat. ROIs were automatically placed at the internal, medial, and lateral parts on both right and left sides 
of the cortex, and DWI signals averaged in each ROI over the four slices, which covered areas mainly perfused 
by the anterior and middle cerebral arteries, were used for the IVIM parameter estimation. ROI locations were 
automatically determined by an in-house software as follows: First, the rat brain region was roughly discriminated 
from the background in each image slice scanned with b = 1000 s/mm2 by thresholding; second, the edge line 
of the cortex was determined by an edge-detection algorithm using an active contour, and the restricted region 
within this contour was defined as the rat brain region; third, an image erosion was performed to the brain region 
to determine 4-pixel depth from the brain surface; fourth, the gravity of the eroded image region was calculated, 
and the horizontal line through the gravity was defined on the image; and fifth, the line from the lateral edge to 
the gravity on the horizontal line was divided into five sections, and the positions at 1/5, 2/5, and 3/5 from the 
gravity on the horizontal line were defined as the internal, medial, and lateral position on the horizontal direction, 
respectively. Finally, a ROI with 2-pixel radius was placed on each position; thus, six ROIs were placed in each 
rat (Fig. 3).

We used the following three typical diffusion-weighted signal models5,6 for all IVIM parameter estimations:
Bi-exponential model (Bi)

= − + − −S F bD F bADCS { exp( ) (1 )exp( )} (1)B B B B B0
⁎

Kurtosis model (Kur)

= − + − − +⁎S F bD F bADC K bADCS { exp( ) (1 )exp{ ( ) /6}} (2)K K K K K K0
2

Tri-exponential model (Tri)

)S F bD F f bD f bDS { exp( ) (1 ){ exp( ) (1 exp( )}} (3)T T T T s s s f0
⁎= − + − − + − −

(S0, the signal on the image acquired with b = 0; F, the fractional volume of capillary blood flowing; D* 
[mm2/s], the pseudo diffusion coefficient correlated with blood flow velocity; ADC [mm2/s], the apparent diffu-
sion coefficient in the tissue; K, the coefficient for restricted diffusion weighting; fs, the fractional volume of the 
slow diffusion compartment; Ds and Df [mm2/s], ADC in the slow and diffusion compartment, respectively). In 
addition, we calculated FD* as a parameter correlated with the CBF, as well as an ADC value for the Tri model 
ADCT = fsDs + (1 − fs)Df for comparison with ADCB and ADCK

6. Subsequently, all IVIM parameter sets in the 
three models were estimated using a range-restricted exhaustive search method with the DWI signal database, 
without curve fitting procedures as approved in a previous study41. This method is advantageous as it does not 
show divergence in the parameter estimation procedure, as observed in general curve fitting procedures. The 
range-restricted exhaustive search method can automatically decide the optimal IVIM parameters in each for-
mula as follows: First, a simulative DWI signal dataset with data points having the same number as b-values was 
calculated using the formula with the combination of IVIM parameters, of which a suitable range and steps for 
the rat cortex were previously defined; second, a DWI signal database was established with all simulative DWI 
signal datasets calculated by all combinations of IVIM parameters; third, the mean square errors (MSEs) between 
each simulated DWI signal dataset in the database and an experimental DWI dataset from a rat were calculated; 
and fourth, a combination of IVIM parameters simulating the best DWI signal dataset showing the minimum 
MSE was defined as the optimal combination of IVIM parameters. In this study, all experimental DWI signals 
were normalized to 1000 at b = 10 [s/mm2], and a DWI signal database was experimentally established with the 
following ranges and steps covering the range of common IVIM/DWI parameters of the brain as described in pre-
vious publications7–10,13,23,41: [minimum, maximum: step] (unit); S0: [1000, 1040: 10]; F: [0, 0.20: 0.01]; D*: [0.002, 
20.0: 0.2] (×10−2 mm2/s); ADC: [0.0, 20.0: 1.0] (×10−4 mm2/s); K: [0.0, 1.2: 0.1]; fs: [0.0, 0.5: 0.05]; Ds: [0.0, 5.0: 
0.2] (×10−4 mm2/s); and Df: [5.0, 20.0: 4.0] (×10−4 mm2/s). Finally, the numbers of parameter combinations that 
equal the numbers of simulated DWI signal datasets establishing the database are 220500, 2866500, and 12012000 
for the Bi, Kur, and Tri models, respectively.

As an index to confirm the degree of the adaptation of each model in the IVIM parameter estimation, AIC 
considering a small sample size estimation was calculated using the MSE according to the following formula10,28,29:

N MSE k k
N k

AIC ln( ) 2 ( 1)
1 (4)b

b
= +

+
− −

(Nb, number of b-values used for the parameter estimation; k, number of parameters in the model). A small AIC 
value implies that the adaptation of the model to the experimental signals is good. All calculation procedures were 
automatically performed using our custom-made software in MATLAB (Mathworks, Natick, MA, USA).

Statistical analysis. Significant differences in Dia_BA, Area_ACA, ICA flow or IVIM parameters were exam-
ined among the three phases (Pre, UCCAO, and BCCAO) using the Friedman test with the Conover post hoc test. 
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The accuracy of the two measurements for Dia_BA, Area_ACA or ICA flow was assessed using intraclass correlation 
coefficients, which can validate the reliability of the measurement in an operator. Significant differences in IVIM 
parameters were examined among the three phases for non-LS or LS groups using the Friedman test with pair-
wise comparisons by the Conover post hoc test. Significant differences in AICs for all estimations were examined 
among the three models using the repeated measures analysis of variance with pairwise comparisons using the 
significant criteria corrected by Bonferroni correction. All statistical analyses were performed on MedCalc ver. 
17.9.7 (MedCalc Software bvba, Ostend, Belgium) with a significance level of p < 0.05.
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