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objective Assessment of cerebellar 
Ataxia: A comprehensive and 
Refined Approach
Bipasha Kashyap1 ✉, Dung phan1, pubudu n. pathirana1, Malcolm Horne2, Laura power3 & 
David Szmulewicz2,3,4

parametric analysis of cerebellar Ataxia (cA) could be of immense value compared to its subjective 
clinical assessments. this study focuses on a comprehensive scheme for objective assessment of cA 
through the instrumented versions of 9 commonly used neurological tests in 5 domains- speech, upper 
limb, lower limb, gait and balance. Twenty-three individuals diagnosed with CA to varying degrees and 
eleven age-matched healthy controls were recruited. Wearable inertial sensors and Kinect camera were 
utilised for data acquisition. Binary and multilabel discrimination power and intra-domain relationships 
of the features extracted from the sensor measures and the clinical scores were compared using 
Graph Theory, Centrality Measures, Random Forest binary and multilabel classification approaches. 
An optimal subset of 13 most important Principal Component (PC) features were selected for CA-
control classification. This classification model resulted in an impressive performance accuracy of 97% 
(F1 score = 95.2%) with Holmesian dimensions distributed as 47.7% Stability, 6.3% Timing, 38.75% 
Accuracy and 7.24% Rhythmicity. Another optimal subset of 11 PC features demonstrated an F1 score 
of 84.2% in mapping the total 27 PC across 5 domains during CA multilabel discrimination. In both 
cases, the balance (Romberg) test contributed the most (31.1% and 42% respectively), followed by the 
peripheral tests whereas gait (Walking) test contributed the least. These findings paved the way for a 
better understanding of the feasibility of an instrumented system to assist informed clinical decision-
making.

Cerebellar Ataxia (CA) is the term for the motor signs that result from cerebellar dysfunction. There are many 
causes of cerebellar dysfunction that result in CA, including various neurodegenerative conditions, lesions caused 
by stroke, Multiple Sclerosis (MS), tumours, trauma and toxins such as alcohol. CA can affect most aspects of 
movements, including balance, gait, speech, limb movements and eye movements. There is a broad relationship 
between the region of the body affected by ataxia and the region of the cerebellum affected by pathology: hem-
isphere lesions result in limb or appendicular ataxia whereas truncal and gait ataxia predominate with midline 
lesions. Various tests were developed to identify CA in the relevant body part: these were described over 100 years 
ago and, in the manner of the time, Greek or Latin terms such as dysdiadochokinesia, dysmetria and dysynergia1 
were used to describe the disordered movements. The same tests are used today and require an experienced cli-
nician to identify and quantify the severity of the abnormality. Consequently, the tests were formalized in scales 
such as the Scale of the Assessment and Rating of Ataxia (SARA) to improve consistency. The tests themselves 
were originally developed by Holmes and others2,3 to emphasise the motor dysfunction produced by CA in vari-
ous body parts, but as early as the 1920’s, Holmes recognised that underlying these tests have some fundamental 
irregularities in speed/timing, accuracy, rhythmicity and stability.

Our overall aim is to construct superior tests for cerebellar disease for use by non-subspecialist clinicians; 
for deep phenotyping and identifying of biomarkers for possible CA treatment trials. In earlier studies4–11, we 
demonstrated that our instrumented devices were able to accurately emulate each of the individual bedside tests 
of cerebellar function and to go beyond this by grading impairment severity. The research outlined in this paper 
aimed to produce a composite score of CA (based on a reduced number of our instrumented tests). This compos-
ite score may prove useful in differentiating one genotype from another. By way of analogy, this process is akin 
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to the role of formal vestibular function testing in its ability to identify both peripheral and central vestibular 
impairment (albeit in a much simpler dichotomy than the aim of our work in CA deep phenotyping).

While wearable sensors are increasingly being explored as measurement tools for disability in neurological 
diseases like Parkinson’s disease12,13 and MS14, studies are still lacking in CA15,16 with the potential of deliver-
ing a comprehensive, quantifiable, objective and meaningful measure of neurological function covering the 5 
domains- speech, upper limb, lower limb, balance and gait. Our earlier studies4–11 examined data from wearable 
sensors while subjects with CA and normal subjects (controls) performed one or more of the standard bedside 
tests for CA, pertaining to any one of the 5 domains. Our aim was to use the features extracted from this data to 
build statistical models that could accurately predict the presence and severity of CA as measured by the SARA 
and other similar scales. These studies reviewed as a whole indicated that (i) each bedside test can be accurately 
modelled; (ii) the dominant features driving each model relate to one or more of these fundamental “Holmesian” 
irregularities; (iii) in case of more than one bed side test (e.g. for appendicular CA) there was overlapping and 
probably redundant information; (iv) features contributing significantly to correlate with clinical assessment were 
not always recognised as clinically important (e.g. stability was a prominent feature in the data set required to 
model dysdiadochokinesia although it is no more recognised as important by clinicians). The key conclusions are 
however, that each of the clinical tests demonstrate, to a greater or lesser degree, irregularities in the rate, rhythm, 
amplitude and force of movements, especially at initiation and termination of motion.

In the present study we used the results obtained in the previous CA assessments in speech4,6, upper limb7–9, 
lower limb7,8, balance10 and gait11 domains. The aim was to investigate differences between controls and CA sub-
jects. The participants were made to wear inertial sensors simultaneously while they were being assessed for their 
SARA scores by the clinicians. The objectives of this study were to:

 1. Assess CA in the 5 domains using nine instrumented tests based on SARA.
 2. Classify the motor dysfunction of CA as measured by instrumentation into four dimensions viz., accuracy, 

timing, rhythmicity and stability based on Holmes’ definitions.
 3. Investigate the intra-domain relationships and the relative importance of tests and features.
 4. Based on the feature importance, identify the optimal subset of tests that contribute most to the perfor-

mance accuracy in distinguishing between controls and CA subjects. In addition, investigate domain wise, 
test wise and feature wise contribution to the four CA dimensions.

 5. Perform multilabel classification to identify CA manifestations in one or multiple domains.

Both for clinical trials and when disease modifying therapies are available, detecting the signs of emergent CA 
as early as possibly is important. Having developed these measurement systems, one of the next steps is to address 
this very question. The process of reaching this point however first required developing algorithms which could 
distinguish between normal and abnormal. Implicit in this approach is the need to understand the “normal” 
range and not assume that all controls are identical. This is essential in detecting emergent ataxia.

Methods
comprehensive objective assessment (coA) system. In this study, we used BioKin17, a cloud based 
real time motion capture sensor platform to perform a comprehensive objective assessment of CA. BioKin17 is a 
wireless wearable device with an embedded tri-axial accelerometer (Model chipset “MPU-9150” from InvenSense, 
Inc., San Jose, CA, USA) and an IEEE802.11b/g/n/wireless communication interface running on a 32-bit ARM 
processor. The BioKin sensor system developed by Networked Sensing and Control Lab, Deakin University, can 
interact with an Android mobile application to capture complex movements of a human body in real time, as 
illustrated in Fig. 1. It is optimised to reduce settling effects and sensor drift problems by eliminating board-level 
cross-axis alignment errors between each inertial sensor17. This sensor was bench marked against a conventional 
multiple camera based optical motion tracking system (Vicon system, T40S, Oxford, UK), a high precision bench 
marking system18. BioKin captured the gyroscope and acceleration data in the three-dimensional (3D) Cartesian 
coordinates at a sampling rate of 50 Hz. The CA assessment was performed through the following steps:

 1. Motion Inputs generated by nine instrumented tests that mimic the nine standard bedside clinical tests of 
CA covering the 5 domains.

 2. These are captured by sensors and visualised with a supporting application in a smartphone.
 3. Wireless transmission to a blockchain based distributed cloud network19 where diagnostic and assessment 

algorithms are applied.
 4. Data analysis results are transformed into a clinically relevant format.

A pictorial representation of the sensor platform is illustrated in Fig. 1.

Motion input. Subjects were made to perform nine standard clinical tests; repeated syllable utterance (SPE), 
rhythmic finger tapping (FIN), finger-nose/nose-finger (FNT), dysdiadochokinesia (DDK), ballistic tracking/
finger-chase (BAL), heel-shin (HST), foot tapping (FOO), stance/romberg (ROM) and gait (WAL). The tasks are 
performed inline with the instructions specified in SARA that cover all the 5 domains. To avoid any confounding 
factors due to sway while performing the tests in the sitting position, the participants were provided axial support 
i.e. seated comfortably in an upright sitting position. The backrest support of the chair was angled at 90–100 
degrees with adequate lumber support in line with lower back. Both the right and left limbs were assessed.

Data acquisition. The COA System utilized Inertial Measurement Units (IMUs) equipped in the BioKin system 
in seven of the tests to capture translational and rotational kinematics in orthogonal axes via accelerometers and 
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gyroscopes. A Microsoft Kinect V2 camera equipped with a 23 inch monitor, and mini PC with an Intel core i5 
processor was also used in one of the tests for the marker based motion capture and to obtain the absolute posi-
tion information.

Cloud based algorithms. The recorded data are then transferred to the blockchain based distributed cloud net-
work19 via the wireless connection for subsequent data processing enabling physicians to acquire severity scores. 
MATLAB (R2019a, MathWorks) and Python environments processed the data transmitted through wireless 
means.

Clinical output. The captured data is visualised through the android based smart phone application, BioKin that 
generates evaluation reports and severity scores as a result of the cloud based data processing.

In our COA System, the average temporal expenditure in acquiring the data via motion capture from each of 
the 6 peripheral tests (DDK, FNT, FIN, BAL, FOO, HST) is less than 15 seconds. The balance test (ROM) takes 
less than 30 seconds; the gait test(WAL) takes less than 90 seconds while the speech test (SPE) takes less than 
5 seconds to acquire data. Hence, the average temporal expenditure to acquire data and generate a cumulative 
test result (using cloud based algorithms) for a single patient is approximately under 215 seconds and 5 seconds 
respectively. The test set typically takes up to 30 seconds.

experimental design. Participants. For an in-depth analysis of abnormalities attributed to timing, sta-
bility, accuracy and rhythmicity in motor movements, speech and kinematic data was recorded from 34 subjects 
whose native language was English. Twenty-three were previously diagnosed with a Cerebellar Ataxia (CA) due 
to a neurodegenerative disorder and attended the Neurology clinic at the Royal Victorian Eye and Ear Hospital 
(RVEEH) or Alfred Hospital in Melbourne. Eleven normal subjects (controls) were volunteers without any his-
tory of neurological conditions or other speech disorders. Summary of the cohort statistics are given in Table 1. 
None of the participants (controls and CA) had undergone any rehabilitation program prior to this clinical inves-
tigation. None of the participants (controls and CA) had undergone any rehabilitation program prior to this clini-
cal investigation. A review of the literature20–22 revealed that age of onset, age of diagnosis and other demographic 

Figure 1. BioKin cloud based real time motion capture sensor platform designed for objective assessment 
of ataxic movements ranging from speech to lower body kinematics. Repeated syllable utterance (SPE), 
stance/romberg (ROM), gait (WAL), foot tapping (FOO), heel-shin (HST), ballistic tracking/finger-chase 
(BAL), finger-nose/nose-finger (FNT), rhythmic finger tapping (FIN), dysdiadochokinesia (DDK) are the 
instrumented tests.
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factors do not influence age and gmoender-related to ataxia. As our study was confined to an adult-onset ataxia 
cohort, strict adherence to the age and gender matched criteria was not feasible.

Ethics approval and consent to participate. This study was approved by the Human Research and Ethics 
Committee, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia (HREC Reference Number: 
11/994H/16) and supported by the Florey Institute of Neuroscience and Mental Health, Melbourne, Australia 
through the National Health and Medical Research Council (NHMRC) Grant: GNT1101304 and APP1129595. 
All the methods in this study were performed in accordance with relevant guidelines and regulations and written 
consent was obtained from all the participants prior to their enrolment. Informed consent was obtained from 
both the subjects to publish the images depicted in the Fig. 1.

Testing protocol and feature extraction. The objective assessments of the nine neurological tests are grouped into 
the following 5 domains with a brief description of their execution protocol. A summary of features that proved 
pivotal in the diagnosis of CA in the related respective study4,6–11 has also been included for each test subsection 
in Table 2.

Speech

•	 Repeated syllable utterance (SPE): The candidate was required to repeat the consonant-vowel syllable/ta/ for 
5 seconds at their preferred speed. The recordings were made using a condenser microphone clipped at an 
approximate distance of 10 cm from the subject’s mouth in a quiet room with low ambient noise level. An 
android phone using the program BioKinMobi under a professional investigator’s supervision captured the 
speech. A topographic prominence based automated algorithm was employed to extract six acoustic features 
from the train of repeated/ta/ syllable utterances4,6.

•	 Regularity of the duration measures the variability in the rhythm of repeated/ta/ (RT) utterance. This is iden-
tified as an integral measure of timing deficits extracted from the wave data at 50% prominence.

•	 Gap regularity measures the time difference variability between two consecutive/ta/ syllable peaks.
•	 Average peak prominence measured the average relative elevation/peak for a specific/ta/ pulse considered.
•	 Compensation regularity measured the variability in the differences computed between the peak and its cor-

responding prominence for a specific/ta/syllabic pulse.
•	 Damping ratio measured the average of the /ta/ syllables’ damping ratios calculated from the wave data 

extracted at 75% prominence.
•	 Resonant frequency measured the average of the /ta/ syllables’ resonant frequency calculated on the wave data 

extracted at 50% prominence.

Characteristics Patients (n = 23) Controls (n = 11)

Age (years) 65 ± 11(41–80) 58 ± 12(54–71)

Age of Diagnosis (years) 59 ± 9.7(40–69) —

Length of Diagnosis (years) 11.7 ± 6.3(40–69) —

Male:Female 12:11 6:5

SARA

1. Gait (0–8) 2.6 ± 1.8 (1–7) —

2. Stance (0–6) 1.7 ± 1.1 (0–4) —

3. Sitting (0–4) 1.1 ± 1.2 (0–4) —

4. Speech Disturbance (0–6) 1.2 ± 1.2 (0–3) —

5. Finger Chase (L) (0–4) 1.3 ± 0.8 (0–2) —

5. Finger Chase (R) (0–4) 1. ±–0.7 (0–2) —

6. Nose-finger test (L) (0–4) 0. ±–0.8 (0–3) —

6. Nose–finger test (R) (0–4) 0.9 ± 0.9 (0–3) —

7. Fast alternating hand movements (L)(0–4) 1.2 ± 1 (0–3) —

7. Fast alternating hand movements (R)(0–4) 0.9 ± 1 (0–3) —

8. Heel-Shin Slide (L) (0–4) 0.8 ± 0.8 (0–2) —

8. Heel-Shin Slide (R) (0–4) 0.9 ± 0.7 (0–2) —

Total SARA (0–40) 11 ± 6.7 (0–27) —

*Phenotypes

Pure (central) CA 12 —

CABV 4 —

CABV + SS 7 —

Table 1. Clinical Characterisation of the enrolled participants. Captions: n: number of participants, CA: 
Cerebellar Ataxia, L: Left, R: Right, Data presented as mean ± standard deviation, CABV: Cerebellar Ataxia with 
Bilateral Vestibulopathy, SS: Somatosensory. *Deep phenotyping has not been undertaken in these subjects.
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Upper limb

•	 Rhythmic finger tapping test (FIN): Participants rhythmically tapped their index finger against a horizontal 
surface (e.g. table top) at their preferred speed and duration. A BioKin was mounted on the dorsum of the 
pointing index finger for data acquisition. The first 3 Principal Components (PC) of multiscale entropy meas-
ured from the X and Z axes of accelerometer signals and X axis of gyroscope signals and the coefficient of 
variation of the inter-tap interval measuring the irregularity of the rhythm were the selected features7.

Domain Sensor Test Features
STAR (Ataxic 
dimensions)

Number of 
features

Upper limbs (UL)

BioKin

Dysdiadochokinesia (DDK)

Resonant Frequency (RF) of Angle (X, Z) of (LH/RH) Stability

20

Magnitude at Resonance (MR) of Angle (X, Z) of (LH/RH) Stability

RF of Angle (Y) of (LH/RH) Timing

MR of Angle (Y) of (LH/RH) Rhythmicity

RF of Acceleration (X, Z) of (LH/RH) Stability

MR of Acceleration (X, Z) of (LH/RH) Stability

Finger Nose (FNT)

RF of Angular acceleration (X, Z) of (LH/RH) Stability

20

MR of Angular acceleration (X, Z) of (LH/RH) Stability

RF of Angular acceleration (Y) of (LH/RH) Timing

MR of Angular acceleration (Y) of (LH/RH) Rhythmicity

RF of Acceleration (X, Y, Z) of (LH/RH) Stability

MR of Acceleration (X) of (LH/RH) Stability

Finger Tapping (FIN)

Multiscale entropy (MSE) of Acceleration (X) of (LH/RH) Stability

20
Rhythmic Variation (LH/RH) Rhythmicity

Multiscale entropy (MSE) of Acceleration (Z) of (LH/RH) Rhythmicity

MSE of rotational motion (X) of Gyro (LH/RH) Rhythmicity

Kinect Ballistic tracking (BAL)

Directional change in in H and V axes (LH/RH) Stability

14
Kinematic Delay - Index of Performance (LH/RH) Timing

Comprehensive Time Delay in H and V axes (LH/RH) Timing

Dynamic time warping based error in H and V axes (LH/RH) Accuracy

Lower limbs (LL) BioKin

Foot Tapping (FOO)

MSE of rotational motion (Y, Z) of (LL/RL) of Gyro Stability

14MSE of rotational motion (Y, Z) of (LL/RL) of Gyro Stability

Rhythmic Variation (LL/RL) Rhythmicity

Heel-shin (HST)

RF of Acceleration (X, Z) of (LL/RL) Stability

19

MR of Acceleration (X, Z) of (LL/RL) Stability

RF of Acceleration (Y) of (LL/RL) Timing

MR of Acceleration (Y) of (LL/RL) Rhythmicity

MR of Angle (Y) of LL Stability

Balance BioKin Romberg (ROM)

EntropyML (Front/Back & Eyes close/Eyes open) Stability

14
EntropyAP (Front/Back & Eyes close/Eyes open) Stability

EntropyAll (Back & Eyes close/Eyes open) Stability

EntropyVT (Front/Back & Eyes close/Eyes open) Accuracy

Gait BioKin
Walking (WAL) (at a fast 
speed, slow speed and 
preferred speed)

Fuzzy Entropy-based velocity (Z) Stability

45

RF in VT of (LL/RL) Stability

MR in VT of (LL/RL) Stability

Fuzzy Entropy-based velocity (X) Accuracy

RF in ML of (LL/RL) Accuracy

MR in ML of (LL/RL) Accuracy

Fuzzy Entropy-based velocity (Y) Rhythmicity

RF in AP of (LL/RL) Rhythmicity

MR in AP of (LL/RL) Rhythmicity

Speech Condenser microphone Speech (SPE)

Damping Ratio Stability

6

RF Timing

Compensation Rhythmicity

Peak Prominence Rhythmicity

The gap between repeated Ta utterances Rhythmicity

Duration of each Ta utterance Rhythmicity

Table 2. Brief description on the STAR characterisation of the 172 features extracted from the 9 neurological 
tests. Captions: VT = Vertical Axis, AP = Antero-Posterior, ML = Medio-Lateral, RH = Right hand, LH = Left 
hand, LL = Left leg, RL = Right leg, H = Horizontal, V = Vertical.
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•	 Finger-nose test (FNT): Participants were required to touch their nose with their pointed index finger and 
then, using the same finger, reach out and touch the clinician’s finger placed approximately 25 cm from the 
subject’s nose. Hand movements were measured by a BioKin attached to the dorsum of the hand of the point-
ing index finger. Resonance frequency and amplitude at resonance frequency were the critical features8 as 
captured by the BioKin attached to the palm of the pointing index finger. The frequency domain description 
of acceleration and angular velocity was used to capture the resonance in each orthogonal axis (X, Y and Z)8.

•	 Dysdiadochokinesia test (DDK): Participants were required to place the dorsum of one hand on the palm of 
the other hand, as depicted in Fig. 1. The participants were then instructed to pronate their hand, so that palm 
side faces downwards to rest on the palm of the other hand. The subject is also instructed to pronate and supi-
nate alterntely between these two positions as fast and precise as possible. The rate of alternation is extracted 
from the BioKin’s IMU attached to the wrist. This test examined for inability to co-ordinate movement. The 
rate of alteration of pronate and supinate, resonance frequency and amplitude at resonance frequency were 
the critical features8.

•	 Ballistic tracking (BAL): Participants were required to point to the target on a monitor screen. The movement 
of the pointing index finger was detected using the Kinect camera and was presented as a marker on the 
screen. The objective is to accurately follow the target via the projected (with the Kinect camera) marker on 
the screen when the target is moving rapidly and randomly from point to point on the monitor. The following 
extracted features displayed a significant level of correlation with the disability level captured by the standard 
clinical measure SARA9:

•	 Error: The distance between marker and target trajectories, measured using Dynamic Time Warping method 
in the Horizontal(H) and Vertical(V) axis.

•	 Comprehensive time delay: This was calculated as the cross-correlation for the two-time sequence, marker 
and target.

•	 Kinematic delay: This was obtained using the index of performance measurement in Fitts’ law. The feature is 
to measure the performance of the subject in reaching a target position.

•	 Directional Change in H and V axis: This is the number of times the participant altered their acceleration 
which was measured in terms of directional change. This feature contained information of over/undershoot-
ing as well as the performance of the subject during the test. Higher level of dysmetria inferred a greater error 
rate as per the difference between the target and the marker trajectories.

Lower limb
•	 Heel-shin test (HST): Participants were required to place a heel on the opposite knee and run it along the 

tibia, between the heel and the knee repetitively and as accurately as possible. The BioKin was attached to the 
dorsum of the foot. Resonance frequency and amplitude at resonance frequency were the critical features8.

•	 Rhythmic foot tapping (FOO): Participants were required to rhythmically tap each foot against a horizontal 
surface (e.g. floor). The first 3 Principal Components (PC) of multiscale entropy measured from the X and 
Z axes of accelerometer signals and X axis of gyroscope signals, and the coefficient of variation of inter-tap 
interval measuring the irregularity of rhythm were the selected features7.

Balance
•	 Romberg test (ROM): Participants were required to stand with feet together then with feet apart, arms by the 

sides for as long as possible (up to 30 seconds); first with eyes open and then with eyes closed. One BioKin 
was positioned approximately on the xiphisternum by means of an elastic neoprene belt. The second BioKin 
was attached on the upper-back location, in the mid-line just below the neck. Fuzzy entropy technique was 
employed on the postural sway velocity deduced from the measured truncal accelerations. The entropy val-
ues23 of the deduced velocity was considered primarily as a measure of neural motor control during a quiet 
standing posture of which a significant portion is proportional to body sway velocity. Uncertainty in the 
velocity measurement contained a significant level of information with respect to truncal instability10.

Gait
•	 Gait test (WAL): Participants were required to walk for 5 meters and return which was repeated 10 times. The 

subject’s movements were captured by the built-in inertial sensors of a smartphone attached at the xiphister-
num by means of an elastic neoprene belt and two BioKin sensors, attached to each ankle. The sensor was 
positioned so that its X, Y and Z axes captured ML (Medio-Lateral), AP (Antero-Posterior) and VT (Vertical 
Axis) movements respectively. In each orthogonal axis (X, Y and Z), the frequency domain description was 
used to capture the resonance11. For each subject, the magnitude and the resonance were used in each axis to 
form a feature vector. Another feature, fuzzy entropy-based velocity irregularity measure for truncal abnor-
mality (VI) was chosen in the study11 to measure the gait randomness or uncertainty level during walking. 
The study in23 introduced fuzzy entropy (FuzzyEn) to capture truncal ataxia.

In reference to the ataxic cohort enrolled in our study, for those with a SARA score 7 for walking – in the 
instance a gait aid is required, the patient is requested to perform the test with the use of the appropriate gait aid 
(i.e. a single point stick or Four-wheeled frame (4WF)).
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Ataxic dimensions (STAR). The works of Gordon Holmes are often cited as having a foundational influence on 
our understanding of the clinical symptoms and signs of cerebellar lesions2,3,24. In our study, we revisited Holmes’ 
approach of characterising the movement of subject’s with cerebellar dysfunction in terms of four dimensions 
(Stability, Timing, Accuracy & Rhythmicity).

•	 Stability (S): This relates to stability in the platform (of execution). The platform is the joints and muscles that 
are relatively fixed and allow the moving body part to execute a task accurately. For example, the DDK task 
requires relative stability of the shoulder and elbow flexion and extension for efficient execution. Relative 
instability results in an increase in unnecessary movements in secondary axes.

•	 Timing (T): When CA is present, tasks that have a time constraint, such as BAL usually are found to have 
increased latency before the movement begins and the task is executed at a slower speed, because a less direct 
course is taken. The same features are often apparent even in the absence of time constraints. These features 
are more apparent when the CA is more severe, suggesting that, subconsciously, timing is a neutral trade off 
to complete the task. In computational terms, we recognised it as the error between the goal against what is 
achieved, likely to be impacted by the following two:

•	 Time for the subject to initiate a moment.
•	 Time to complete a movement (speed).

•	 Accuracy (A): Conceptually, a task might be completed slowly but follow the most efficient target. Under 
these circumstances we will consider this to be an “accurate” performance. When a less direct path is followed 
(for instance in the BAL task) or there is under or over shoot, then the task will be ‘errors’ compared with a 
control performance (acknowledging that this may also be associated with timing errors). In computational 
terms, in this study we recognise it as error between the goal/space objectives against what is achieved in a 
spatial context (static).

•	 Rhythmicity (R): Irregularity in repeated movements.

The features for each test in our proposed COA System are assigned to the aforementioned dimensions 
through the following 2-step approach:

 1. (a) The execution axis is the direction of the primary movement required to execute the intended task and 
would attribute to rhythmicity or timing dimension.
(b) Any deviation from the most efficient or the standard path required to execute the task would be con-
sidered as accuracy features.

 2. Excessive movements in the other axes would be considered as secondary movements and attribute to the 
stability dimension.

A pictorial representation in Fig. 2 illustrates the STAR interpretation for each domain, as per the proposed 
2-step approach.

In repetitive tests (DDK, FNT, FIN, FOO, HST), resonance frequency along the y-axis (primary) contributes to 
speed and hence is considered as a timing feature whereas the magnitude of resonance is considered as a rhythmic 
feature. The secondary movements/disturbance present in other axes are termed as stability features.

For target based tests (BAL), any delay in the primary movement of chasing the target is considered as a tim-
ing feature; how well a target is met or any degree of deviation in meeting the target defines the performance of 
the participant and hence measures accuracy; any other feature catering to excessive/inefficient movements are 
marked under stability.

The gait test consists of walking forward in a straight line (along the AP axis) at a regular pace by lifting and 
setting down each foot in a rhythmic fashion. This would infer rhythmicity information whereas the extent of 
truncal sway from AP axis (that is, movement in ML axis) will infer accuracy information. Moreover, any unde-
sired sway in VT axis are considered as stability feature.

For balance test, a participant is expected to maintain a steady straight posture along their VT axis. This being 
their primary movement, any deviation or sway in VT axis will account for inaccuracy and any other undesired 
truncal sway in either AP or ML are considered as stability features.

For speech test, the features measuring the rhythmic nature of the repeated /ta/ utterances, for example, gap 
between consecutive /ta/ utterances, duration of a /ta/ are considered as rhythmicity features and the resonant 
frequency feature as a timing feature. Lower damping ratio indicates a higher oscillation. Hence, the lower damp-
ing ratio of a /ta/ utterance, as an ataxic acoustic feature, indicates instability of the vocal tract during voice 
articulation.

A summary of the nine tests in 5 domains, generating 172 features is presented with their STAR interpretation 
in Table 2.

Clinical assessment. CA was scored by an experienced clinician according to the SARA scale while subjects 
with ataxia performed each task. SARA is a clinical scale developed by Schmitz-Hübsch et al.25,26 which assesses a 
range of different impairments in cerebellar ataxia, ranging from speech to balance. The scale is made up of 8 cat-
egories with scores ranging as, gait (0–8 points), stance (0–6 points), sitting (0–4 points), speech disturbance (0–6 
points), finger chase (0–4 points), nose-finger test (0–4 points), fast alternating hand movement (0–4 points), 
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heel-shin slide (0–4 points). Once the clinician assesses each of the 8 categories for an individual, they can further 
compute the cumulative score ranging from 0 (no ataxia) to 40 (most severe ataxia) to determine the ataxic sub-
ject’s severity of ataxia. In our study, to avoid any subjective bias, one clinician assessed all the tasks.

3-tier evaluation scheme of COA system. The techniques to be incorporated in the proposed instrumented sys-
tem (COA system) are demonstrated through a flowchart (Fig. 3) and outlined in the following subsections.

feature reduction and statistical analysis. Original feature extraction for each test were based on rele-
vant previous studies4,6–11. A total of 172 features were identified as critical for objective assessment of individual 
tests. Process measurements contain many correlated or redundant data. It is important to remove them and 
extract the features that carry the most independent relevance. Principal Component Analysis (PCA)27 is a data 
compression, extraction and visualisation tool used to transform several associated factors into a group of uncor-
related variables. PCA is used to compress the original 172 features into 27 PCs (3 PCs from each of the 9 tests) 
(Fig. 3). Moreover, critical information does not come from a single variable of an individual test, but frequently 
stems from the relationship between variables, i.e. how they co-vary. PCA is the most appropriate among the 
commonly used multivariate statistical methods for evaluating such information because it can manage big num-
bers of highly correlated, noisy and redundant factors.

The p-value for hypothesis testing is calculated for the distributions of the resulting 3 PCs (PCs 1-2-3) of 
each test with respect to each of the 5 domains (Speech, upper limb, lower limb, gait, balance) to determine if 
the groups of subjects (control and ataxic) differ significantly. In each domain, individuals with SARA meas-
ures greater than zero, are grouped as ataxic, and controls and subjects who scored a SARA score of 0 for a 
particular test are grouped as normal. Non-parametric statistical tests (Kolmogorovâ€“Smirnov (KS) and 
Mann-Whitney-Wilcoxon (MWW)) are adopted to avoid assumptions on data distribution.

Graph theory & centrality measures. Visual quantification of the test/domain dependencies. Graph the-
ory is applied to obtain further insights into the relationships among tests and domains. Tests and domains were 
assigned to the nodes of a network, which joined up the nodes by edges with lengths representing Spearman’s 
rank correlation coefficients (ρ). The centrality of a node indicates the number of edges adjoining that node and 
the proximity to all other nodes which is considered as an indication of the node’s importance. The frequency 
that a node appears on the shortest path between two other nodes is also a measure of importance. The Minimum 
Spanning Tree (MST) analysis28 is used in our study as a reliable measure for comparing the networks across dif-
ferent groups since it is unbiased and does not require arbitrary parameter settings29. MST has only been recently 
applied to brain networks29 and identification of critical genes in diabetes mellitus30. The MST is a sub-graph that 
connects all nodes to reduce the total edge length. In this sense, the MST is the “backbone” network that encap-
sulates the inter-test/domain dependencies. To measure proximity, we use the following mapping to translate the 
rank correlation coefficients of Spearman (ρ) into distances.

ρ ρ= −f ( ) 1 , (1)

Figure 2. STAR Labelling Criteria.
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ρ ρ= − .or f, ( ) 2(1 ) (2)

MST of this graph is computed by assigning the tests/domains to the nodes of a network and joining the nodes 
via edges with lengths given by ρ.

Overview of test/domain importance using graph centrality measures. Representing the tests and domains in a 
graph form enables the quantification of the relationships between them. Since mathematical graphs intrinsi-
cally characterize node significance measurements, the tests/domains assigned to those nodes are considered 
highly relevant in measuring CA. Feature importance score is then computed on the entire graph using popular 
Centrality Measures like Degree Centrality, Closeness Centrality and Betweenness30. The Incidence or Degree 
Centrality of a node in a given graph counts the number of edges adjoining that node which is mathematically 
defined as,

=C N N( ) deg( ), (3)D

where, g := (N, e) is the given graph with |N| nodes and |e| edges. In a connected graph, the average length of 
the shortest path between the node and all other nodes in the network is denoted as the normalized Closeness 
Centrality (or Closeness) of a node. Therefore, a high value of Closeness implies that the node is central or signif-
icant. Closeness is defined as the reciprocal of the sum of the distances from the node to all other nodes, that is,

=
∑

C N
d N N

( ) 1
( , )

,
(4)

C
y

1
2 1

where d(N1, N2) is the distance between vertices N1 and N2. Likewise, a node’s Betweenness calculates how fre-
quently that node appears between two other nodes in the graph on the shortest path. A high value of Betweenness 
means the node is relevant. The Betweenness of a node N is denoted as,

C N
N

(
(

,
(5)

B
N N N N

N N

N N1 2

1 2

1 2

∑
σ

σ
〉 =

〉

≠ ≠ ∈

where σN N1 2
 is the total number of shortest paths from node N1 to node N2 and σ N( )N N1 2

 is the number of those 
paths that pass through N.

Classification experiment. Binary classification. The next step of the scheme consists of a diagnosis or a 
binary classification problem comparing the discrimination performance of each of the individual tests, the com-
bined 9 test and two reduced subsets using a Random Forest (RF) classifier31. Each feature contributed to each 
one of the 4 Holmeshian dimensions to varying degrees (the weights) which were computed accordingly for the 
overall 9 test as well as for the optimal subset of tests.

Multilabel classification. In our study, a Random forest based adopted algorithm for Multilabel Classification32 
is used.

The feature input in the multilabel classification problem of our study consisted of 27 principal components from 
all tests (3 PCs x 9 tests). The Target was to identify the disabilities in 5 domains (0: normal; 1: ataxic). For example, a 
participant is represented by the domains of speech, upper limb, lower limb, gait and balance; and the possible label 
powerset representation of this is a multi-class classification problem with the classes [0 0 0 0 0], [1 0 0 0 0], [0 1 0 0 0], [0 
0 1 0 0], [0 0 0 1 0], [0 0 0 0 1], [1 1 0 0 0], [1 0 1 0 0], …, [1 1 1 1 1] where, for example, [1 0 1 0 0] denotes a participant 
whose domains of speech and lower limb are affected whereas the domains upper limb, gait and balance are unaffected.

Figure 3. 3-tier Evaluation process flowchart of COA System.
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Feature importance (or rank) in RF model. At the very outset, the optimal leaf size in an RF classifier is verified 
by comparing Mean Squared Errors (MSE) obtained by classification for various leaf sizes (5, 10, 20, 50, and 100). 
The optimal leaf size should yield the lowest MSE values. Once we have estimated the optimal leaf size, a larger 
ensemble is grown and used to estimate feature importance. To compute the feature importance in the Random 
forest diagnostic model, initially, the MSE of the model with the original variables is calculated. Then, the values 
of a single column (representing feature 1 for n observations) are permuted and the MSE is calculated again. For 
instance, if a column takes the feature values x1, x2, x3, x4 and a random permutation of the values results in x4, 
x3, x1, x2; then this will result in a new MSE. The difference in MSE is averaged over all trees in the ensemble and 
divided by the standard deviation taken over the trees for each variable. The greater this value, the more signif-
icant the variable is. The difference is expected to be positive, but if it is a negative number, then it implies that 
the random permutation worked better inferring that the feature does not have a role in the prediction and is not 
deemed important.

STAR computation. Once the importance/rank of the 3 PC features is evaluated for a specific test through the 
Random Forest ranking scheme, the weight of the original feature is computed as follows:

= + +∗ ∗ ∗feature weights WOF InPC R PC WOF InPC R PC WOF InPC R PC_ _ 1 _ 1 _ 2 _ 2 _ 3 _ 3, (6)

where WOF: Weight of this feature in a PC component; R: Rank of the PC feature in RF model. Since each fea-
ture relates to one of the 4 Holmeshian dimensions, the contribution of the overall Stability, Timing, Accuracy 
and Rhythmicity dimension is the accumulated weigtage of all the Stability, Timing, Accuracy and Rhythmicity 
features respectively.

Cross validation (CV). For both the classification problems, the data is stratified using a Leave-one-out (LOO) 
CV technique. Cross-validation in multilabel settings is complicated by the fact that the ordinary (binary/multi-
class) way of stratified sampling is not applicable; alternative ways of approximate stratified sampling have been 
suggested in33. So, in our study, the multi-label stratification was performed using an iterative technique.

Evaluation metrics. The performance of the classifier is evaluated using the metrics, Precision, Recall, F1 score, 
Accuracy and Matthews Correlation Coefficient (MCC)34. These metrics are calculated for each domain based 
on the predicted values after each validation in LOO (34 times). General precision, recall, F1 score, Accuracy of 
multilabel classification problem are the average of the results through LOO in the 5 domains. For example,

= .general precision sum precision values in domains_ ( _ _ _5_ )/5 (7)

Feature ranking through a RF train & validation with LOO is the average of all the rank in each training and 
validation phase, for both the binary and multilabel classification problems.

Results and Discussion
The experimental results of applying all incorporated methods in the proposed instrumented system (COA sys-
tem) for the prediction of CA are explained and discussed in this section.

Projected PC feature distribution in 5 domains - statistical analysis. The Principal Components 
(PCs 1-2-3) for all the tests were investigated to fulfill the normality distribution assumption using the 
Kolmogorovâ€“Smirnov test. It was followed by hypothesis testing to examine the group differences for normal 
and ataxic groups with respect to the 5 domains using MWW test. For each test, there were statistically significant 
differences between at least one PC of normal and ataxic subjects at 5% significance level (bold indicating signif-
icant p values in Table 3). In addition, box plots were also presented (see Supplementary Fig. S1) to demonstrate 
the distribution of the PCs 1-2-3 with respect to the 5 domains. The PCs, FNT_PC1, FIN_PC3, ROM_PC1, BAL_
PC1 were statistically significant in differentiating the normal and CA groups in all the 5 domains with p < 0.05 
(rows indicated in bold in Table 3). Significant differences between ataxic and normal groups are depicted in 
Table 3; p showing the statistical difference between normal and ataxic groups with respect to the 5 domains with 
the significant p values (p < 0.05) are highlighted.

Recent publications35,36 on current global epidemiological scenarios of ataxia estimate an overall ataxia occur-
rence rate of 26/100,000 in children and an occurrence rate of 2.7/100,000 for dominant hereditary cerebellar 
ataxia. These studies estimate the frequency of recessive hereditary cerebellar ataxia as 3.3/100,000. In our study, 
for a given large effect size (Cohen’s d of 2.384), we determined a minimum sample size of 34 (Controls = 11, CA 
subjects = 23) by power analysis, with the error probability (α) set at 0.05 and a false negative rate (β) set at 0.1 
(that is a power of 0.9).

Intra-domain relationships and proximity - graph theory & centrality measures. The MST of 
the 27 PC features of all tests shows that Upper limb peripheral tests and Gait have a strong correlation (0.77) 
(Fig. 4A) and agrees with SARA ratings (Fig. 4B). However, different tests were important for this correlation in 
the instrumented version (HST, ROM, FNT & BAL) and the clinical version (SARA6_NOSEFINGER, SARA1_
GAIT, SARA2_STANCE & SARA4_SPEECH). The results of the three Centrality Measures computed from the 
respective MSTs are highly correlated (ρ > 0.95) (see Supplementary Fig. S2) and the test rank order based on our 
feature (Fig. 4C) are similar to those obtained from SARA assessment test scores (Fig. 4D).

To obtain the MST of the SARA ratings, the mean values were calculated for the bilateral SARA assessments 
for the motor activities of the four extremities (items 5–8).
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Classification experiment. Binary classification comparison and optimal subset selection (subset 2). Table 4 
compares the performance of the CA diagnosis classification of individual tests, the combined 9 tests and two 
reduced feature subset using Random Forest. The combined 9 tests demonstrated a performance accuracy of 
91.17% (F1 score = 84.21%, Precision = 72.73%, Recall = 100%), which was higher than any of the individual 
9 tests. This is a greater number of tests than in our previous studies4–11 and in the available literature15,16 and 
provides a comprehensive overview of CA. Figure 5B illustrates the feature importance of each input feature 
through bar plots, as computed through the process illustrated in Fig. 5A. The blue bars represent PC features 
with negative feature importance. Subset 1 (with 17 PC features) was obtained after removing those PC features 
whose feature importance in the RF classifier model for the combined 9 tests was negative (Fig. 5B). We modelled 
another subset (Subset 2) and continued to add the PC features one by one in the decreasing order of their feature 
importance until there was no further improvement in the discrimination accuracy. This is the optimal subset 
(with 13 top PC features). It demonstrated the highest performance accuracy of 97.06% (F1 score = 95.24%, 
Precision = 90.91%, Recall = 97.06%).

Interestingly, the Gait test (WAL) did not contribute in improving the performance accuracy of our system 
and were excluded from Subset 2. This gave the confidence on the inference made on the test/domain ranking 
based on Centrality Measures. The high correlation observed between the Upper limb peripheral tests and Gait 
test in the MST elucidates the fact why WAL test features do not contribute to the discrimination and are redun-
dant in the optimal Subset 2. At least 1 PC feature belonging to the other 8 tests contributed in improving the 
accuracy of the model to varying proportions and were included in the 13 features of Subset 2. Compared with 
Fig. 5D (based on the combined 9 tests), the CA versus control group distribution in Fig. 5E (based on the Subset 
2) is much more distinctiv. Also,, 5D has a better separation in the scatter plot (smaller intra-cluster distance and 
larger inter-cluster distance), as supported by its higher value of accuracy (97.06%).

Domain, test and star contribution from subset 2. The STAR dimension contribution in the optimal Subset 
2 as depicted in the Fig. 5D is listed as, 41.87%, 5.97%, 36.59 and 15.57% of Stability, Timing, Accuracy and 
Rhythmicity respectively. The contribution of ataxic dimensions are in the same order (S, A, R, T) for both the 
combined 9 tests and the Subset 2 (Fig. 5D,E). This confirms the fact that exclusion of WAL test features (and its 
corresponding Stability, Accuracy and Rhythmicity features) in Subset 2 did not affect the STAR distribution. 
The findings from this section also highlighted the fact that the features contributing significantly to the correla-
tion with clinical assessments were not always recognised as clinically important (for example, stability features 

Parameters

Mean 
Standard 
Deviation p-value Speech

Upper 
limb

Lower 
limb Balance Gait

DDK_PC1 −3.08 20.53 0.5609 0.7049 0.8476 0.5102 0.4774

DDK_PC2 6.07 18.53 0.0346 0.0044 0.0450 0.0045 0.0004

DDK_PC3 1.66 8.56 0.4135 0.7298 0.6489 0.6331 0.6356

FNT_PC1 2.48 6.67 0.0011 0.0037 0.0019 0.0029 0.0005

FNT_PC2 −0.05 3.51 0.2746 0.1640 0.0186 0.0727 0.3020

FNT_PC3 −0.10 1.95 0.1413 0.2596 0.3593 0.2651 0.3638

FIN_PC1 0.13 1.42 0.1597 0.0082 0.0907 0.0039 0.0003

FIN_PC2 0.09 0.48 0.6280 0.6146 0.6594 0.7431 0.8650

FIN_PC3 −0.11 0.27 0.0104 0.0147 0.0244 0.0001 0.0007

FOO_PC1 −0.05 0.36 0.7823 0.9709 0.8996 0.2290 0.3600

FOO_PC2 −0.01 0.12 0.1744 0.1223 0.0155 0.0401 0.0694

FOO_PC3 −0.03 0.11 0.2111 0.1271 0.4476 0.1633 0.2046

HST_PC1 −0.23 2.21 0.0788 0.0211 0.0980 0.0033 0.0002

HST_PC2 0.09 1.60 0.2627 0.0007 0.0304 0.1262 0.0043

HST_PC3 −0.14 1.35 0.4452 0.2329 0.7194 0.8238 0.6458

ROM_PC1 −0.04 0.90 0.0002 0.0000 0.0000 0.0001 0.0000

ROM_PC2 −0.04 0.50 0.3212 0.7304 0.8556 0.7555 0.9044

ROM_PC3 0.05 0.54 0.0847 0.9369 0.9956 0.6591 0.8574

SPE_PC1 7.30 28.78 0.6199 0.7124 0.8723 0.8307 0.7705

SPE_PC2 0.06 0.14 0.4834 0.2610 0.4275 0.0641 0.1144

SPE_PC3 −0.01 0.06 0.0481 0.0362 0.0429 0.1071 0.2245

WAL_PC1 0.10 39.77 0.0245 0.0474 0.1933 0.0201 0.0062

WAL_PC2 4.48 25.45 0.8141 0.7959 0.5848 0.7908 0.7117

WAL_PC3 −0.39 19.28 0.3604 0.7329 0.6273 0.6789 0.5147

BAL_PC1 −0.79 2.64 0.0014 0.0117 0.0064 0.0014 0.0014

BAL_PC2 0.15 1.75 0.3897 0.6231 0.9053 0.4121 0.4136

BAL_PC3 −0.14 0.99 0.4886 0.0521 0.1494 0.0891 0.2088

Table 3. Significant difference between ataxic and normal groups; p denotes the statistical difference between 
ataxic and normal groups with significant p values (p < 0.05) are highlighted.
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Figure 4. Minimum Spanning Tree (MST) of test w.r.t to the PC features belonging to (A) the 9 tests and (B) 
the 8 SARA tests. Centrality measures viz., Incidence, Closeness and Betweenness computed from the MSTs 
w.r.t to the PC features belonging to (C) the 9 tests and (D) the 8 SARA tests. SARA tests for gait, stance, 
sitting, speech disturbance, finger chase, nose-finger, fast alternating hand movement and heel-shin slide are 
labelled as SARA1_GAIT, SARA2_STANCE, SARA3_SITTIN, SARA4_SPEECH, SARA5_FINGER, SARA6_
NOSEFINGER, SARA7_DKK, SARA8_HEELSH respectively. SARA5_FINGER, SARA6_NOSEFINGER, 
SARA7_DKK, SARA8_HEELSH are the respective mean values for the bilateral SARA assessments for the 
motor activities of the four extremities (items 5–8).
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were deemed prominent in the data set required to model dysdiadochokinesia although it is not recognised as 
important by clinicians). The highest contribution in diagnosing CA is from the domain Balance and ROM test 
(31.1%). This is a new finding that is not in line with the general clinical conventions. PC feature, ROM-PC1 and 

Test Precision(%) Recall(%) F1 Score(%) Accuracy(%) MCC

DDK (DDK_) 54.55 66.67 60 76.47 0.44

Finger to Nose (FNT_) 45.45 38.46 41.67 58.82 0.1027

Finger Tapping (FIN_) 54.55 75 63.16 79.41 0.5057

Ballistic (BAL_) 54.55 54.55 54.55 70.59 0.3281

Foot Tapping (FOO_) 18.18 33.33 23.53 63.33 0.0097

Heel-shin (HST_) 81.82 90 85.71 89.2 0.7954

Romberg (ROM_) 72.73 72.73 72.73 82.85 0.5968

Speech (SPE_) 45.45 55.56 50 70.56 0.2976

Gait (WAL_) 18.18 18.18 18.18 47.06 −0.2095

Combined 9 tests 72.73 100 84.21 91.17 0.8021

Subset 1 (top 17 
features) 72.73 100 84.21 91.17 0.8021

Subset 2 (top 13 
features) 90.91 100 95.24 97.06 0.9334

Table 4. Diagnosis Performance Comparison using a Random Forest Classifier.

Figure 5. Binary classification, (A) Feature Importance calculation flowchart for combined 9 tests, (B) 
Selection of optimal number of test PCs using Random Forest, (C) Test, Domain and STAR distribution from 
Subset 2, (D) Scatterplot of combined 9 tests and the corresponding STAR distribution, (E) Scatterplot of Subset 
2 and the corresponding STAR distribution.
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hence, the pre-engineered feature, entropy of the ROM test with eyes closed captured from the sensor attached 
to upper back in the Vertical axis has the maximum contribution. Other significant contributions come from the 
peripheral tests in the descending order: HST > BAL > FIN > DDK > FNT (Fig. 5C).

Optimal subset selection in multilabel classification. To identify how the PCs of a specific test are mapped to 
the disability of the 5 domains (target) in CA based on the selected features by us, we investigated the underly-
ing multilabel classification problem through four popular algorithms; Random Forest, Multi-layer Perceptron 
(MLP), K- Nearest Neighbour (KNN) and Decision Tree (DT)(Table 5). Random Forest performed best with an 
overall multilabel classification accuracy of 82% (Precision = 83.3%, Recall = 85.6%, F1 score = 84.3%), followed 
by 77.3% in Decision Tree (Precision = 80.6%, Recall = 74.6%, F1 score = 76.9%).

It is evident that the highest contribution in mapping a specific test to the disability in 5 domains of CA is from 
ROM (42%) test. The PC feature, ROM-PC1 and hence the selected feature, entropy of the ROM test with eyes 
closed captured from the sensor attached to upper back in the vertical axis incurred the maximum contribution. 
Other significant contributions came from peripheral tests in the descending order: FNT > HST > FIN > DDK 
> BAL (Fig. 6C). Based on the performance metric F1 score, we further used the Random forest classifier to 
determine an optimal subset. We selected a subset of the top 11 features resulting a comparable F1 score (84.3%) 
in accordance to the law of parsimony (Fig. 6A,B).

Fusing data from disparate sources (IMU and Kinect camera) enabled the precise tracking of the limb joint 
movements using optical and orientation information. This improved the reliability of the proposed system and 
compensated for any inaccuracies of one sensor in segregating the features into the four dimensions.

Algorithms Precision(%) Recall(%)

F1 
score 
(%) Accuracy

Random 
Forest (RF) 83.3 85.6 84.3 82

Multi-Layer 
Perceptron 
(MLP)

75.4 73.8 74.5 72.1

K-Nearesr 
Neighbour 
(KNN)

64.2 65.4 64.6 59.3

Decision Tree 
(DT) 80.6 74.6 76.9 77.3

Table 5. Multilabel Classification comparison with different classifiers.

Figure 6. Multi-label classification, (A) Feature Importance calculation flowchart for combined 9 tests, 
(B) Selection of optimal number of test PCs using Random Forest, (C) Test contribution in the multi-label 
classification.
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From a clinical perspective, the proposed instrumented COA system can help clinicians to function as a tool 
to support the diagnosis of CA and provide an explanation for informed decision-making. Our findings paved 
the way to enhance the utility of objective measures for clinical assessments. In addition, the benefits obtained 
through the incorporation of multimodal sensors can be combined into a combination of three basic aspects; 
reduced cost, reduced time and additional information. A well-designed multimodal interface that fuses different 
types of sensors allows additional features in the overall movement to be identified.

Demographic factors, including age of onset, age of diagnosis and other environmental factors do not influence 
age and gender-related to ataxia20–22. We focused here on ambulatory subjects because non-ambulatory subjects pro-
vide a further level of complexity. Additionally, this study utilised subjects who were able to complete all the tests listed 
so that we can support proof of concept in the distillation and combination of key-instrumented metrics – the STAR 
concept. However, we aim to address this in a future study where this cohort will be recruited and tested as per a mod-
ified suite (standing test cannot be performed in non-ambulant subjects) of instrumented testing.

The SARA was chosen because it is more widely used than other scales such as the CCFS. the SARA has been 
shown to be a reliable and valid measure of CA for upper limb, lower limb and gait function and has at least 8 
clinical trials evaluating its use in ataxia cohorts37. Our aim was not to model the SARA or the CCFS with the aim 
of producing an instrumented version of either of these scales. We required one of the clinical CA scales in the 
first instance to ensure that we were able to detect the abnormalities that such clinical scales are able to identify, 
and to then move beyond this in developing instrumented devices which can identify very early signs of CA, and 
also to be able to grade the severity of an individual’s impairment.

The data set is a limitation in this study owing to certain factors. In general, ataxias as a whole are rare. They 
involve multitude of genetic factors coupled with variable disease progressional rate. Hence, appropriate diagnosis 
and distinguishing them from other neurodegenerative diseases poses a big challenge. Validation of the proposed 
system in non-clinical settings in a wider cohort would enhance its value and render it fit for inclusion into rou-
tine clinical practice.

conclusion
To measure clinical progression in CA requires the ability to measure established ataxia with less variability 
than is currently the case. It is the variability that extends the time for statistically significant change to occur. 
Neurologists do not consistently agree on the severity of ataxic signs, and this is a major motivation in our work 
and that of others. In this study, the focus was on ambulatory subjects because non-ambulatory subjects provide 
a further level of complexity. To the best of our knowledge, this is the first comprehensive approach to determine 
an optimal, easy to use instrumented system in CA diagnosis covering all the 5 domains (viz., speech, upper limb, 
lower limb, gait and balance) and unveils the intra-domain relationships. A reduced subset with 13 PC features 
ranked according to feature importance demonstrated better performance accuracy of 97.06% (F1 score = 95.2%) 
as compared to the individual tests and combined 9 tests in discriminating CA/controls. A Random Forest binary 
classifier with LOO validation scheme was used. Gait (WAL) test did not contribute to this discrimination sig-
nificantly whereas balance (ROM) test contributed the highest (31.1%). A labelling criterion is introduced in this 
study to characterise the dominant features in each test into Holmesian dimensions (STAR). Importance of each 
test/domain was calculated with centrality measures using our COA scheme and compared with SARA. The MST 
showed that Upper limb peripheral tests and Gait have a strong correlation (0.77), based on our features and it 
agreed with the SARA rating. The mapping between the 27 PCs deduced from the features extracted from the 
objective assessment of 9 tests and the 5 domains were identified using Random Forest approach by transforming 
this scenario into a multi-class classification problem. The highest contribution in this mutilabel classification 
was from ROM (42%), followed by the peripheral tests. A Random Forest classifier achieved the highest F-score 
(84%) with the combined 9 test features. A reduced feature subset consisting of top 9 features with comparable 
F-score performance was selected according to the parsimony principle. These findings demonstrate the potential 
of the proposed COA system as an assistive tool in clinical practice. For future work, frequently collected data 
over extended periods can provide a deeper understanding of the variability of the disease, that is likely to con-
tribute significantly to the variability of treatment response. Having larger and denser data sets will also assist in 
characterising intra- and inter-patient variability. It will be important in expanding this work to examine ataxia 
in children and in an increased number of diseases which cause CA. This study was the first step demonstrating 
the capabilities of objective measurement of CA and further research is required to understand the scope of appli-
cations, as well as limitations of this approach. This study utilized subjects who were able to complete all the tests 
listed, as support proof of concept for the distillation and combination of key instrumented metrics – the STAR 
concept. However, we aim to address this in a future study where this cohort will be recruited and tested as per a 
modified suite (standing test cannot be performed in non-ambulant subjects) of instrumented testing.

Data availability
The dataset used and/or analysed during the current study available from the corresponding author on reasonable 
request.
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