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correctors modify the bicarbonate 
permeability of F508del-CFTR
Michele fiore✉, cristiana picco & oscar Moran

one of the most common mutations in cystic fibrosis (cf) patients is the deletion of the amino acid 
phenylalanine at position 508. This mutation causes both the protein trafficking defect and an early 
degradation. Over time, small molecules, called correctors, capable of increasing the amount of 
mutated channel in the plasma membrane and causing an increase in its transport activity have been 
developed. This study shows that incubating in vitro cells permanently transfected with the mutated 
channel with the correctors VX809, VX661 and Corr4a, and the combination of VX809 and Corr4a, a 
recovery of anion transport activity is observed. Interestingly, the permeability of bicarbonate increases 
in the cells containing corrected p.F508del CFTR channels is greater than the increase of the halide 
permeability. These different increases of the permeability of bicarbonate and halides are consistent 
with the concept that the structural conformation of the pore of the corrector-rescued p.F508del 
channels would be different than the normal wild type CFTR protein.

Cystic fibrosis (CF), caused by mutation in Cystic Fibrosis Transmembrane Regulator (CFTR) gene1,2, is one of 
the most common autosomal recessive lethal inherited diseases in the Caucasian poulation3,4. The CFTR pro-
tein is an ATP-binding cassette transporter with two membrane-spanning domains (MSD1 and MSD2), two 
nucleotide binding domains (NBD1 and NBD2) and a unique regulatory domain (R)5. The protein works as an 
ATP- and phosphorylation-regulated anion channel6, that is permeable to the halides (Br−, Cl−, I−, F−)7,8, and can 
also conduct HCO-

3 with a ratio of the permeability between bicarbonate and chloride (PHCO3/PCl) of ~0.259–11. 
The physiological role of CFTR is the maintenance of fluid transport across epithelial cells of airways, intestines, 
pancreatic as well as bile ducts12. The CF respiratory disease is the main cause of death and the main determinant 
of the burden on the quality of life. Most of the health problems in CF respiratory disease can be attributed to 
the viscous mucus phenotype, hindering ciliary activity and their clearance mechanism13. This pathogenicity is 
caused by the malfunctioning of the CFTR channel which does not adequately transport chloride and bicarbonate 
across the plasma membrane causing lack of ions and water homeostasis at the surface of the airway epithelia14,15.

To date, more than 2,000 mutations have been identified that cause CF, classified in six classes according to the 
effect of the mutation leading to anion transport defects in epithelia16. The most common mutation is the deletion 
of phenylalanine 508, which is located in the NBD1 (p.F508del, class II mutation), causing aberrant assembly 
of the full-length protein and making the channel susceptible to premature degradation via the protein quality 
control mechanism16,17. The p.F508del-CFTR protein is a functional anion channel, but it is unstable and rapidly 
degrading, leading to a great reduction of chloride and bicarbonate transport by the CFTR channel18–20.

In the CF patients, the reduction of bicarbonate transport gives rise to a lower pH in airways surface liquid 
(ASL)15,21 and interferes with the ASL fluidity. The ASL is composed of mucus and periciliary liquid layer (PLC) 
and is very important to keep intact the defense mechanisms of the respiratory airway. Low concentration of 
HCO-

3 may interfere with the post-secretory modifications of the mucins MUC5AC and MUC5B15,22. When the 
mucus retains the physiological characteristics, the cilia of the airways epithelium are able to discharge the mucus 
containing potential pathogens captured during breathing22.

As a feasible therapy for CF patients carrying the mutation p.F508del, small molecules, named correctors, 
that are able to increase the amount of protein in the plasma membrane have been developed23,24. It has been 
proposed that the molecules capable of correcting the mutated protein can be divided into three classes. Class 1 is 
represented by molecules that are likely to interact with the NBD1; class 2 is represented by molecules that would 
interact with the NBD2; class 3 correctors would facilitate the folding of the NBD1 segment or prevents it from 
being denatured25–27.

Here we examine the halide and bicarbonate permeability of the p.F508del-CFTR rescued by three correctors, 
VX809 and VX661, that belong to the class 1, and Corr4a, of class 2. We show that the rescued p.F508del-CFTR 
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has a higher bicarbonate relative permeability than the wild type control. These results have important implica-
tions in the correctors-based CF therapeutic strategy.

Methods
Cell cultures. Fisher Rat Thyroid (FRT) cells stably transfected with a wild type (WT) CFTR, or CFTR carry-
ing the cystic fibrosis mutation p.F508del, were grown at 37 °C and 5% CO2 in modified F12 Coon’s medium with 
addition of 10% FBS and, 2 mM of Glutamine, 1 mg ml−1 penicillin, 100 µg ml−1 streptomycin and the addition 
of 1 mg ml−1 geneticin (G418) and 0.6 mg ml−1 zeocin as selection agents. For the iodide influx assay, cells stably 
co-transfected with the halide-sensitive yellow fluorescent protein, YFP-p.H148Q/p.I152L28,29, were seeded in 
96-well microplates at a density of 40,000 cells/well. For intracellular pH measurements, cells were seeded on 
glass-bottom Petri dishes. Measurements were carried out 48 h after seeding. To evaluate the correctors p.F508del 
rescue on the cells expressing the mutated CFTR, cells were incubated for 18 h with 5 µM of VX809 (lumacaftor; 
Selleck Chemicals, Huston, TX, USA), VX661 (tezacaftor; Selleck Chemicals), Corr4a (ChemBridge Corp. San 
Diego, CA, USA), or 2.5 µM of VX809 with 2.5 µM of Corr4a together (final concentration 5 µM). Except when 
indicated, all chemicals compounds were purchased from Sigma-Aldrich (Milan, Italy).

Iodide Influx assay. To evaluate the halide transport activity of the CFTR channels, cells were incubated for 
30 minutes with 20 µM forskolin at 37 °C in a solution containing (in mM): KNO3 4.5, Ca(NO3)2 1.2, MgSO4 0.2, 
Glucose 5, HEPES 20, pH 7.4 NaCl 136, in a final volume of 60 µL. Thus, we measured the influx of iodide, which 
causes the quenching of the YFP as enters into the cell. The fluorescence of YFP was monitored using a fluores-
cence plate reader (Tristar2 S, Berthold Technologies, Bad Wildbad, Germany), equipped with 485 nm excitation 
and 535 nm emission filters30,31.

After recording the fluorescence for 5 seconds as a baseline, cells are perfused with 100 µL of a solution where 
NaCl was substituted by NaI, and fluorescence was monitored every 0.2 seconds for a further 30 seconds. In this 
way, the final concentration of NaI in the bath was 85 mM. Measurements were performed at 37 °C.

The fluorescence time course was normalized by the average of the fluorescence of the baseline recorded 
before NaI injection. The initial rate of fluorescence decay (QR) was derived by fitting the signal with a double 
exponential function. The QR is an indicator of halide transport by the CFTR28,31.

Bicarbonate transport in cells. The transport of bicarbonate was evaluated by measuring the variation of 
the intracellular pH (pHi) following the NH4 + prepulse technique31,32. The pHi was measured in FRT cells using 
the fluorescent pH indicator 2′,7′-bis-2-(carboxyethyl)-5-(and6) carboxyfluorescein ester (BCECF-AM; Thermo 
Fisher Scientific, Waltham, MA USA). Cells were loaded with 5 μM of BCECF-AM in the culture medium with-
out serum for 30–40 min at room temperature. After loading, cells were washed two times with the recording 
solution containing (mM): NaCl 140, K2HPO4 2.5, MgSO4 1, CaCl2 1, HEPES 10, glucose 6 (pH 7.3) and were 
allowed to recover for at least 30 min before measurement. The Petri dish was mounted in a perfusion system 
in the stage of an epifluorescence inverted microscope (iMIC) with a Qimaging Retiga EXI Blue camera (Till 
Photonics, Graefelfing, Germany). During the experiments, the perfusion solutions were equilibrated with 5% 
CO2 and 95% air.

Cells were visualized with an Objective Plan Super Apochromat 10x (Olympus, Tokyo, Japan; N.A. 0.4, W. 
D. 30.1 mm). For excitation, we used Till Oligochrome (FEI, Munich, Germany), a wavelength switching device 
containing a stable xenon light source. The sample was excited at two wavelengths, 440 nm and 490 nm, and emis-
sion was recorded at 520 nm. To calibrate the pHi measurements, the pHi was varied incubating the cells in a high 
potassium concentration solution with 15 μM nigericin to equilibrate the intracellular compartment with various 
external pH values; a calibration curve was constructed plotting the pH against the ratio of fluorescence emitted 
upon excitation at the two excitation wavelengths31.

The NH4
+ solution was prepared by replacing 30 mM NaCl in the standard recording solution with an equi-

molar concentration of NH4Cl. When cells were subjected to an acid load by the transient application (2–3 min 
pulse) of a 30 mM NH4

+ solution, the pHi rose as NH4
+ accumulated in the intracellular space during the NH4Cl 

perfusion. Cells were subsequently returned to a recording solution without NH4
+, and acidification of the cyto-

plasm occurred when NH3 quickly diffused out of the cell. For the bicarbonate recording solution, 30 mM of NaCl 
was substituted by NaHCO3. The Na+/H+ exchange and the Na+/HCO3

− co-transport were inhibited with 1 mM 
amiloride, and the Cl−/HCO3

− and the Na+-dependent Cl−/HCO3
− exchangers inhibited by adding 300 μM dis-

odium 4,4′-diisothiocyano-2,2′-stilbenedisulfonate (DIDS) to the recording solution33–35. Moreover, DIDS also 
inhibits the calcium-activated chloride channels bestrophin and anoctamin-1 that both display HCO3

− perme-
ability36. CFTR was activated by the addition of 100 µM of the permeable cAMP analog pCPT-cAMP to the 
recording solutions. The HCO3

− influx was calculated from the pHi, applying the Henderson-Hasselbach equa-
tion and assuming a constant CO2 partial pressure. Details of the HCO3

− flux calculations are presented in the 
supplementary file.

Data analysis. The time course of the recorded fluorescence traces, as well as the statistical analysis, was 
evaluated using IgorPro (version 8.03, Wavemetrics, Portland, Oregon). Results are presented as mean ± stand-
ard error (SEM) and the number of measurements. Statistical analysis was performed using Student’s t-test or 
one-way ANOVA to compare the different data sets; P values < 0.05 were considered statistically significant.

Results
The iodide influx was measured as the initial quenching rate of the fluorescence, QR, in FRT cells expressing 
halide-sensitive YFP and WT-CFTR or the mutant p.F508del-CFTR, respectively. Application of 20 µM of for-
skolin elicited the fluorescence decay after the addition of iodide to the external solution (QR = 62.9 ± 1.4 ms−1; 
n = 10), implying iodide influx driven by the activation of the WT-CFTR channels (Fig. 1A). Similar experiments 
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were carried out on cells expressing p.F508del-CFTR, where the application of 20 µM of forskolin elicited a 
very small iodide transport (QR = 4.6 ± 0.8 ms−1; n = 12). Incubation of the p.F508del-CFTR cells with 5 µM of 
VX809, VX661, or Corr4a results a significant increase of the iodide influx elicited by forskolin, yielding a QR 
of 47.0 ± 2.6 ms−1 (n = 12), 39.4 ± 2.3 ms−1 (n = 9) and 29.2 ± 1.4 ms−1 (n = 12), for VX809, VX661 and Corr4a, 
respectively (Fig. 1B–E). The treatment of the cells with a combination of 2.5 µM VX809 and 2.5 µM Corr4a 
results in a further increase of the iodide transport, yielding a QR of 95.5 ± 2.9 ms−1 (n = 12), according to previ-
ous studies in which the combination of the two correctors has a synergistic activity (Fig. 1F)25–27,37. The graph in 
Fig. 1G shows a summary of all the QR values of the iodide influx experiments.

Figure 1. Iodide influx assay in FRT cells. Time course of the iodide-sensitive YFP fluorescence decay, 
normalized by the initial fluorescence, after the addition of 85 mM of NaI in the external solution of WT-CFTR 
cells (A) and p.F508del-CFTR cells (B–F) before (black traces) and upon the addition of 20 µM of forskolin to 
activate the channels (red trace). Panels (B–F) represent respectively the cells not incubated, incubated with 
VX809, VX661, Corr4a and the combination of VX809 and Corr4a together. The number of measures for each 
condition was between 9 and 12. The G panel is the representation of the summary of the experiment that shows 
the change produced by each corrector. Data are the average +/− SEM. The number of the experiment in each 
condition was between 9 and 12.
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The transport of bicarbonate through the CFTR channels was evaluated measuring the intracellular pH 
response to the NH4

+ pulse protocol31,32. The washout of NH4
+ from the solution induces acidification of 

the cells; the restore of neutral pHi is observed when HCO3
− is added to the bath and WT-CFTR is activated 

by pCPT-cAMP (Fig. 2A). The addition of DIDS and amiloride to the perfusion solutions assures that other 
HCO3

− pathways are blocked, and therefore the intracellular alkalinization is due to the entrance of HCO3
− 

through the activated CFTR. Indeed, the alkalinization of the cells is not present when the CFTR was not acti-
vated by the cyclic nucleotide (Fig. 2B). Similarly, when the cells were perfused with an HCO3

– free solution, 
even if the CFTR was activated by pCPT-cAMP, no pHi variation was observed (Fig. 2C). These results show 
that the intracellular alkalinization of the cells expressing WT-CFTR is due to the HCO−

3 influx through the 
CFTR channels.

When the experiments were carried out in cells expressing p.F508del-CFTR, in presence of HCO3
−, the acti-

vation of the mutant CFTR by pCPT-cAMP elicited a very small pHi variation after the NH4
+ pulse, that corre-

sponds to an HCO3
− influx of 2.4 ± 1.2 µM/s (n = 10) (Fig. 2D). Conversely, the treatment with correctors rescues 

the p.F508del-CFTR activity, responding to the post-pulse HCO3
− perfusion with an intracellular alkaliniza-

tion, yielding an HCO3
− influx of 25.8 ± 4.1 µM/s (n = 12), 21.5 ± 1.7 µM/s (n = 9) and 17.0 ± 2.6 µM/s (n = 10) 

for the cells treated with VX809, VX661 and Corr4a, respectively (Fig. 2E–G). Similarly, as the data obtained 
measuring the halide transport, when cells expressing p.F508del-CFTR are treated with a mixture of the two 
correctors (VX809 + Corr4a), a faster alkalinization is observed consistent with an augmented HCO3

− influx, 
45.9 ± 10.0 µM/s (n = 8) (Fig. 2H). These data confirm the synergistic effect of VX809 and Corr4a observed also 
in the iodide influx experiments. A summary of the quantitative evaluation of the HCO3

− influx is shown in 
Fig. 2I.

Tables with the experimental data and the statistical comparisons are shown in the supplementary file.

Figure 2. Intracellular pH measurement using ammonium pulse protocol (see methods). Perfusion of FRT 
WT-CFTR and F508del-CFTR cells with 30 mM of NH+

4 causes the augment of the pHI followed by rapid 
acidification when NH+

4 is removed. When bicarbonate was perfused an alkalinization was observed upon the 
100 µM pCPT-CAMP stimulation in FRT WT-CFTR (A); FRT WT-CFTR without pCPT-CAMP stimulation or 
with Cl− in place of HCO3

− was used as control (B,C). FRT p.F508del-CFTR cells not incubated with correctors 
do not elicit any pHi variation and consequent bicarbonate transport (D), while incubation with VX809, VX661, 
Corr4a and the combination of VX809 and Corr4a, gives rise to an HCO3

− influx (E–H). The panel I show 
the summary of bicarbonate influx of p.F508del-CFTR not incubated (red); incubated with VX809 (orange), 
VX661 (gray), Corr4a (blue) and the combination (green) respectively. Data are means ± SEM. The number of 
experiments for each condition was between 8 and 12.
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Discussion
The main purpose of this study was to observe the pharmacological effect of correctors, individually or combined, 
on the p.F508del-CFTR channel permeability. Hence, we evaluated the halide and the HCO3

− transport driven by 
the p.F508del-CFTR channels rescued by three different correctors, VX809, VX661 and Corr4a. To avoid possible 
interferences of potentiators with the correctors-rescue of CFTR38,39, we have not applied any potentiator during 
the functional assay. The halide transport was done by measuring the kinetics of the fluorescence quenching of 
iodide-sensitive YFP. This method has been proven to yield data that are proportional to the Cl− transport capac-
ity of the CFTR29,40. Thus, we observed that FRT cells permanently transfected with halide sensitive YFP and p.F-
508del-CFTR showed a very small iodide transport evoked by forskolin. Indeed as previously demonstrated, the 
p.F508del-CFTR mutation gives rise to a functional channel with a wrong conformation, that brings to rapid deg-
radation, but only a small amount of channels reach the membrane18–20. The incubation of these cells with VX809, 
VX661 or Corr4a rescues of the mutated proteins and a greater expression of the channel on the membrane 
surface22,41–43, resulting in a significant increase of iodide transport by the rescued p.F508del-CFTR. Interestingly, 
while the incubation with VX809, VX661 or Corr4a yielded a 10.3, 8.6 and 6.4-fold increase of halide transport, 
respectively, the use of VX809 and Corr4a together produced a significantly larger 20.8 fold-increase, indicating a 
synergistic effect of the two correctors. These results are similar to those recently reported elsewhere43.

Since it is not possible to directly evaluate the transport of bicarbonate, we used the ammonium pulse tech-
nique31,32. We first demonstrated that, in our experimental conditions, the post-pulse alkalinization of the cyto-
plasm requires the activation of the CFTR and the presence of extracellular HCO3

−. Hence, the HCO3
− influx 

in corrector-rescued p.F508del-CFTR cells was calculated from the post-pulse alkalinization rate. For the p.F-
508del-CFTR, the increase of the HCO3

− influx is similar to that observed for the halide transport, yielding 10.9, 
9.1, 7.2 and 19.5-fold increase for VX809, VX661, Corr4a, and the combination of VX809 and Corr4a, respec-
tively. The linear correlation test of the HCO3

− influx and halide transport data of the rescued p.F508del-CFTR 
yields a significant correlation (r = 0.89, P < 0.0004). It indicates a similar ratio between the HCO3

− influx and 
halide transport measured in the corrector-rescued p.F508del-CFTR of 0.54 ± 0.02.

The FRT cells co-expressing the iodide-sensitive YFP protein were obtained from the clones previously trans-
fected with the WT- or F508del-CFTR genes. As a result, we can assume that the protein levels of CFTR genes 
between YFP and no YFP cell lines are identical. However, because the WT- and F508del-CFTR transfected cell 
lines are two different clones, the number of plasmid copies cannot be considered identical a priori. Consequently, 
it is not possible to compare the absolute values of the functional assays of ion transport between these CFTR 
isoforms with our preparation. However, independently from the absolute values, the HCO3

− influx and halide 
transport ratio will reflect the HCO3

−/halide permeability ratios. Interestingly, the WT-CFTR has an HCO3
− 

influx and halide transport ratio of 0.23, which is significantly smaller than that of the corrector treated p.F-
508del-CFTR (P < 0.0008). The augmented HCO3

− influx and halide transport ratio of the corrector-rescued 
mutant-CFTR can be explained with a decrease of the halide permeability, or the increase of the HCO3

− permea-
bility. We discard a reduction of the halide permeability by correctors treatment since different reports have indi-
cated that the absolute halide permeability of rescued p.F508del channels is similar to that of the WT-CFTR44–46. 
Therefore, most probably there is an increase of the HCO3

− permeability in the rescued mutants. This result for 
the VX809 is similar to that previously reported11; for the other two correctors, VX661 and Corr4a, this is the first 
report regarding the permeability of the rescued mutant-CFTR.

When human bronchial epithelia from CF-patients with the mutation p.F508del are treated with VX809 there 
is a reduction of the mucus viscosity, but there is not a significant effect in the fluid re-absorption by the epithe-
lia47. Since the homeostasis of the ionic content of the ASL is regulated by the CFTR-secretion of Cl−, the lack of 
fluid reabsorption can be explained by a reduced Cl− secretion due to an incomplete mutant rescue. However, the 
increased HCO3

− permeability of the rescued p.F508del-CFTR would favor the HCO3
− secretion, facilitating the 

post-secretional modification of the mucin, and the consequent reduction of the viscosity.
In summary, we showed that correctors of class 1, VX809 and VX661, a corrector of class 2 Corr4a, or a com-

bination of the two classes of correctors, increase both halide and HCO3
− transport on cells transfected with the 

p.F508del-CFTR channels. However, the rescued p.F508del-CFTR has a bigger relative bicarbonate permeability, 
independently to the corrector class. Thus, we expect that a combination of two class 1 correctors, nowadays 
used for CF treatment50, will not modify this higher bicarbonate permeability pattern. A difference in the ions 
permeability would reflect a different structure of the ion pore in the channel. Structural studies have revealed 
differences between WT and mutated proteins48,49. Paradoxically, this incomplete rescue of the p.F508del-CFTR 
may represent a therapeutical advantage, as the enhanced HCO3

− secretion would favor the mucus fluidification.
The encouraging results obtained in this work show the need to use cell lines that endogenously express CFTR, 

both wild type and mutated, such as a bronchial cell line able to form epithelium. In this way it will be possible 
to clarify whether the effect of the correctors on the mutated protein observed in our experiments is due to the 
experimental conditions or whether the differentiation and polarization of the epithelium may play a role in 
modifying the properties of the CFTR rescued channels.
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