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RIFTA: A Robust Iterative Fourier 
Transform-based dwell time 
Algorithm for ultra-precision ion 
beam figuring of synchrotron 
mirrors
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Kashmira Tayabaly1 & Mourad Idir1

With the rapid evolution of synchrotron X-ray sources, the demand for high-precision X-ray mirrors 
has greatly increased. Single nanometer profile error is required to keep imaging capability at the 
diffraction limit. Ion Beam Figuring (IBF), as a highly deterministic surfacing technique, has been 
used for ultra-precision finishing of mirrors. One crucial step that guides the IBF process is dwell time 
calculation. A valid dwell time solution should be non-negative and duplicate the shape of the desired 
removal map. Another important aspect is to minimize the total dwell time. In this study, we propose 
a Robust Iterative Fourier Transform-based dwell time Algorithm (RIFTA) that automatically fulfills 
these requirements. First, the thresholded inverse filtering in Fourier transform-based deconvolution is 
stabilized and automated by optimizing the threshold value using the Nelder-Mead simplex algorithm. 
Second, a novel two-level iterative scheme is proposed to guarantee the minimized total dwell time 
with its non-negativity at each dwell point. Third, a bicubic resampling is employed to flexibly adapt the 
calculated dwell time map to any IBF process intervals. The performance of RIFTA is first studied with 
simulation, followed by a comparison with the other state-of-the-art dwell time algorithms. We then 
demonstrate with an experiment that, using the dwell time calculated by the RIFTA, the total dwell 
time is shortened by a factor of two and the RMS in a 5 × 50 mm clear aperture was reduced from 3.4 nm 
to 1.1 nm after one IBF run, which proves the effectiveness and the efficiency of the proposed algorithm.

As the third and fourth generation X-ray synchrotron sources is rapidly developing toward fully diffraction lim-
ited X-ray sources, the requirement of mirror specifications in terms of smoothness and shapes has drastically 
increased. Single nanometer profile error is usually required to avoid destruction of the incoming wave front 
and keep imaging capabilities at the diffraction limit1,2. Conventional mechanical polishing techniques, however, 
can hardly achieve the required high-level surface quality. Therefore, Computer Controlled Optical Surfacing 
(CCOS) methods have been studied and developed3. Ion Beam Figuring (IBF)4, as a highly deterministic CCOS 
technique, has been applied for the ultra-precision finishing of optical surfaces5–10. It removes materials from an 
optical surface at atomic level by physical sputtering. Compared with conventional polishing methods, IBF has 
the advantages of non-contact nature, no mechanical load force, minimal surface or subsurface damage, and low 
edge effects.
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Convolution polishing model
In the IBF (and any CCOS) process, as shown in Fig. 1, the Clear Aperture (CA) is specified as the useful area of 
a mirror surface that needs to be polished. Based on the convolution polishing model3, the CA should be usually 
enclosed in a larger Dwell Grid (DG) to resolve edge effects10–14. The removed height z(x, y) in DG, as described 
above, is therefore modeled as the convolution between the ion Beam Removal Function (BRF) b(x, y) and the 
dwell time map t(x, y) as

= ∗z x y b x y t x y( , ) ( , ) ( , ), (1)

where “*” denotes the convolution operation. To obtain a complete calculation result in the CA, the DG should be 
always larger than the outline perimeter of the CA with the radius of the BRF. While b(x, y) can be extracted from 
ion beam footprints bombarded on a mirror surface10 or via a Faraday cup, z(x, y) is calculated as the difference 
between the measured surface profile zm(x, y) and the desired surface profile zd(x, y) as z(x, y) = zm(x, y) − zd(x, y).  
Thus, the calculation of the dwell time map t(x, y) is a deconvolution process, which is an ill-posed inverse prob-
lem and may not have a unique solution11,13,15.

Existing dwell time algorithms
Accurate calculation of t(x, y) is a crucial step that guides the dynamics between the ion beam and the mirror 
surface. A valid dwell time solution should possess three main characteristics. First, it should be non-negative, 
since most IBF systems do not have material adding capabilities. Second, the dwell time map t(x, y) should closely 
duplicate the desired removal map zd(x, y). Last, the total dwell time is expected to be minimized for an efficient 
figuring process. To fulfill these requirements, three categories of dwell time algorithms, namely the Fourier 
transform-based algorithm14,16, the matrix-based algorithms10,11,13,17, and the Bayesian-based algorithm12, have 
been attempted in IBF. The algorithms are briefly reviewed in the following paragraphs. Details are given in the 
“Methods” section.

Wilson and McNeil proposed the IBF dwell time algorithm based on the Fourier transform14 by transferring 
the deconvolution between z(x, y) and b(x, y) into point-wise division in frequency domain. Using Fast Fourier 
Transform (FFT), this algorithm is very computationally efficient. The non-negativity of t(x, y) is automatically 
guaranteed if z(x, y) is piston-adjusted to be non-negative. However, since the Fourier transform of b(x, y) is 
the denominator, the close-to-zero frequencies in its spectrum may have a noise amplification effect when per-
forming the division. To solve this problem, a thresholded inverse filter is employed, where a threshold value 
γ is introduced to filter the small frequencies. One main disadvantage of this algorithm is that the dwell time 
calculation must be performed in the entire DG. The figuring results in CA will thus be highly affected when the 
profile error in DG is large. In this case, much more dwell time should be consumed to correct the profile error 
in DG so that the total dwell time will increase. In addition, to apply FFT, zd(x, y) and t(x, y) must have the same 
sampling interval13, however, a mismatch typically exists between practical metrology sampling and IBF’s motion 
control resolution.

Alternative dwell time algorithms that partially resolve these issues have been attempted. The matrix-based 
algorithms10,11,13,17 allow zd(x, y) and t(x, y) to have different sampling intervals by discretizing Eq. (1) in matrix 
form as

∑ ξ η ξ η= − −
=

z x y b x y t( , ) ( , ) ( , ),
(2)k k

i

n

k i k i i i
1

t

where nt is the total number of dwell positions, b(xk − ξi, yk − ηi) is the material removal amount per unit time at 
(xk, yk) when the beam dwells at (ξi, ηi), and t(ξi, ηi) is the dwell time. This discretization brings the benefit that, 
instead of using the entire DG, only the CA information is needed. In other words, z(xk, yk) in Eq. (2) can be rede-
fined as the height removed in the CA, i.e. zca(xk, yk). In this sense, the dwell time solution will not be influenced 
by the shape outside the CA. Since the matrix is always ill-conditioned and rank-deficient, however, conven-
tional Gaussian elimination cannot be applied. Singular Value Decomposition (SVD) has been used to find a least 
squares solution, but the small singular values also cause the noise amplification problem. Zhou et al thus proposed 
a Truncated SVD (TSVD) algorithm17, in which only the largest k singular values were kept. Nonetheless, both the 
computational and memory burdens of SVD are too heavy, restricting its wider applications in calculating large 
dwell time maps. Carnal et al. and Wu et al. employed a much more efficient LSQR algorithm11,13 to solve the linear 
system by introducing a damping factor λ. Although the computation speed has been largely increased, the piston 
adjustment has to be performed multiple times to guarantee the non-negativity of the dwell time map. Also, the 
calculated dwell time map t(x, y) can hardly duplicate the shape of zd(x, y)10. Recently, we proposed a Constrained 
Linear Least Squares (CLLS) algorithm for one dimensional IBF10. Instead of performing piston adjustment, 
the non-negativity was enforced by the lower-bound constraints. The inequality constraints were also added 

Figure 1.  Schematic of the affected area, dwell grid, and clear aperture in an IBF process.
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to control the local distribution of the dwell time, making sure t(x, y) smoothly duplicate the shape of zd(x, y).  
However, the computational burden became even heavier due to the introduction of the constraint matrices.

Jiao et al. viewed the deconvolution from the Bayesian perspective, in which a Poisson distribution of b(x, 
y)*t(x, y) and a uniform distribution of z(x, y) were assumed12. The Richardson-Lucy multiplicative algorithm18 
was then applied to solve t(x, y) by iteratively maximizing a posteriori. A total variation norm weighted by a 
parameter α was also added to the optimization objective function to further improve the stability. This algo-
rithm employed FFT to perform convolution, but it avoided the frequency-domain division in the Fourier 
transform-based algorithm. The non-negativity of t(x, y) was automatically guaranteed if the initial guess was 
non-negative. However, similar to the Fourier transform-based algorithm, the same sampling interval between 
zd(x, y) and t(x, y) was assumed.

It is also worth mentioning that, one common issue of the above algorithms is that each of them contains a 
hyper-parameter. The threshold value γ in the Fourier transform-based algorithm, the number of singular values 
k in TSVD, the damping coefficient λ, and the weight α for the total variation regularization in the Bayesian algo-
rithm are all required to be preset. These hyper-parameters are always hard (and subjective) to set, which affects 
the robustness of the algorithms.

RIFTA
In this study, we propose a novel Robust Iterative Fourier Transform-based dwell time Algorithm (RIFTA) that 
can be applied to IBF (and any CCOS techniques requiring dwell time optimization). It takes the advantages of 
both the Fourier transform-based and the matrix-based algorithms while mitigates their problems. First, the 
Nelder-Mead simplex algorithm19 is employed to automatically optimize γ for the inverse filtering process in the 
Fourier-based algorithm. Therefore, no hyper-parameter is needed in the RIFTA, which is convenient to use and 
robust in performance.

Furthermore, a two-level iterative scheme guarantees the non-negativity of the dwell time with the minimal 
penalty, i.e. increase, in the total dwell time. The inner-level iterations only utilize the shape error in the CA to cal-
culate the dwell time. Therefore, the final dwell time map is not influenced by the shape error outside the CA and 
the total dwell time is decreased compared with the one calculated on the entire DG. However, different from the 
matrix-based algorithms, the dwell time map calculated using only the CA information is not accurate enough 
so that the inner-level iterations keep updating the dwell time map according to the estimated residual in the CA 
until the specified accuracy level is achieved. The outer-level iterations are employed to further reduce the total 
dwell time by minimizing the size of the DG. This is also helpful for the other CCOS techniques using physical 
polishing tools that may overhang at the edges.

Last, bicubic resampling is introduced to flexibly adapt the calculated dwell time to any practical sam-
pling intervals. In the following section, the performance of the three strategies used in RIFTA is first studied 
step-by-step on simulated surface error maps. The calculation results using the existing dwell time algorithms 
mentioned above are then given as a comparison, showing the superiority of RIFTA over these algorithms. 
Finally, a proof-of-concept IBF experiment on a 5 × 50 mm CA is demonstrated. Using the RIFTA, the total dwell 
time has been reduced by a factor of two compared the one calculated using the Fourier transform-based method. 
The RMS in the CA has been reduced from 3.4 nm to 1.1 nm after one IBF run, which proves the effectiveness 
and efficiency of the RIFTA.

Results
The effectiveness of the proposed RIFTA is first verified using simulation, followed by an IBF experiment. To 
separate the experimental results from the simulation, two different colormaps are used in the simulation and 
experiment figures, respectively.

Simulation.  As shown in Fig.  2(a), a 30 × 70 mm rectangular surface error map with 277.89 nm 
Peak-to-Valley (PV) and 52.12 nm RMS is generated using the Legendre polynomials20 with the coefficients 
Q4 = −1, Q6 = −1, Q7 = 2, Q9 = −1, and Q10 = −0.5. The sampling interval is 0.12 mm and a Gaussian white noise 
with 0.3 nm Standard Deviation (STD) is added. The Gaussian BRF, as shown in Fig. 2(b), has a peak removal rate 
of 1 nm/s and a radius rb = 5 mm.

Result after gamma optimization.  The results of γ optimization is demonstrated in Fig. 3. The size of the CA 
is set as 10 × 50 mm (see Fig. 3(a)). The size of the DG is fixed at 20 × 60 mm. The two-level iterative scheme 
is temporarily disabled to demonstrate the γ optimization process only. Figure 3(b,c) show the removed height 
and the residual in the CA calculated using γini, which is the initial guess calculated by the method explained in 
the “Methods” section. The PV and RMS of the residual in the CA remain at 35.72 nm and 9.35 nm, respectively, 

Figure 2.  Simulated surface error map (a) and Gaussian BRF (b).
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which indicates that a large portion of material is not removed. After γ optimization based on the Nelder-Mead 
algorithm, the calculation results using γopt are shown in Fig. 3(d,e). The PV and RMS of the residual in the CA 
reduces to 2.81 nm and 0.32 nm, respectively, showing a significant improvement. It is also important to note that 
the 0.32 nm RMS coincides with the preset noise STD (0.3 nm), which gives the theoretical limit of the optimi-
zation in our simulation.

Performance of the two-level iterative scheme.  The effectiveness and efficiency of the two-level iterative scheme 
is further studied in Fig. 4. As shown in Fig. 4(a), the total dwell time is 439.97 mins without using the two-level 
iterative scheme. As shown in Fig. 4(b,d), after applying the inner iterations, the total dwell time is greatly reduced 
to 116.47 mins (about 74% shorter) without affecting the obtained performances in the CA. It is also worth 
mentioning that the inner iterations only costs 11.9 s (using a computer with an Intel Xeon Gold 5118 CPU and 
64 GB RAM) so that they can be efficiently included to the outer iterations for the DG minimization. As shown 
in Fig. 4(e), the total dwell time can be further reduced to 100.39 mins with a smaller DG size of 56.5 × 16.5 mm 
after the outer iterations are employed, while the residual increment in the CA is negligible.

Downsampling the dwell time map to 1 mm sampling interval.  The dwell time maps calculated in Fig. 4(a,c,e) 
have the same sampling interval (0.12 mm) as the simulated surface error map in Fig. 2(a). In this case, the 
dwell time at each dwell point is less than 0.5 s, which demands extremely low-latency and high-acceleration IBF 
motion hardware. To implement the calculated dwell time map in Fig. 4(e), it is re-sampled to 1 mm sampling 
interval (see Fig. 5(a)), in which the second-order dwell time at each dwell point is more practical to execute. 
The resultant residual map in the CA is shown in Fig. 5(b), which indicates that the algorithmic accuracy is not 
affected by the re-sampling operation compared with Fig. 4(f).

Comparison between RIFTA and the existing dwell time algorithms.  The dwell time maps calculated using 
TSVD17, LSQR11,13, CLLS10, and the Bayesian-based algorithm12 are shown in Fig. 6(a,c,e,g). The correspond-
ing estimated residual map in the CA are given in Fig. 6(b,d,f,h). The same 1 mm processing interval is used in 

Figure 3.  Calculation results in CA using γini and γopt: (a) desired height removal map; (b) removed height 
using γini; (d) residual using γini; (c) removed height using γopt; and (e) residual using γopt.

Figure 4.  Calculated dwell time maps (a,c,e) and residual maps in CA (b,d,f) without the two-level iterative 
scheme (a,b), with only inner iterations (c,d), and with the two-level iterative scheme (e,f).
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all the different algorithms. The same re-sampling strategy described in the “Results” section is applied in the 
Bayesian-based algorithm.

It can be found that the RMS of the estimated residuals in the CA calculated by all the four algorithms coincide 
with the preset noise level (i.e 0.3 nm). However, it is obvious that the the dwell time maps calculated by TSVD 
and LSQR hardly duplicate the shape of zd(x, y) in the DG. With the constraints on local distributions of the dwell 
time, the shape of the dwell time map calculated by CLLS algorithm is closer to the shape of zd(x, y). However, 
this benefit results in a much longer total dwell time than the other three. The dwell time map calculated by the 
Bayesian-based algorithm is the best among the four in terms of both the shortest total dwell time and the closest 
duplication of the shape of zd(x, y). Nonetheless, it still cannot match the RIFTA’s performance shown in Fig. 6(i,j). 
The final estimated residual in the CA and the total dwell time calculated by the algorithms are shown in Fig. 6(k). 
It is obvious that the RIFTA achieves the smallest estimated residual in the CA with the shortest total dwell time.

Experiment.  As a proof-of-concept experiment, the proposed RIFTA has been applied to a real IBF process. 
We used a circular flat Silicon mirror with a 5 × 50 mm CA as shown in Fig. 7(a). This mirror was measured with 
a Zygo Verifire interferometer with a 0.13 mm/pixel lateral resolution. This mirror was initially used to study the 
parameters of the ion source and test its stability so that some patterns already exist on the mirror surface. The 
ion source used in our IBF system is a Kaufman & Robinson KDC10 coupled with a LFN1000 neutralizer. The 
IBF process parameters are beam voltage, Vb = 600 V; beam current, Ib = 10 mA; accelerator voltage, Va = −90 
V; accelerator current, Ia = 2 mA; and LFN emission current, Ie = 10 mA. Two ion beam footprints bombarded at 
the bottom were used to estimate the BRF (see Fig. 7(c)) and the trench scanned in the center along the x axis was 
for studying the stability of the ion beam.

As mentioned in the “Introduction” section, one advantage of the inner-level iterations of RIFTA is that the 
final dwell time solution will not be affected by the large shape errors outside the CA. To verify this, the CA in this 
experiment is defined as a center 5 × 50 mm region between the trench and the two footprints (see Fig. 7(a)). The 
extracted DG and CA error maps are given in Fig. 7(b). It can be found that the shape error in the DG is 51.75 nm 
RMS, which is much larger than the 3.44 nm in the CA. The BRF used in this experiment, as shown in Fig. 7(c), 
is extracted from the bombarded footprints on the mirror in Fig. 7(a). The diameter of the BRF is 24 mm so that 
the initial size of the DG is 29 × 74 mm.

The Bayesian-based algorithm and the TSVD algorithm are first applied to calculate the dwell time solutions 
for the CA defined in Fig. 7(b). The calculated dwell time maps are shown in Fig. 8(a,c). The corresponding esti-
mated residual in the CA are given in Fig. 8(b,d). It can be observed that the total dwell time calculated by the 

Figure 5.  Dwell time map resampled to 1 mm sampling interval (a) and the corresponding residual map in CA 
(b).

Figure 6.  Dwell time maps and estimated residual maps in the CA calculated using TSVD (a,b), LSQR (c,d), 
CLLS (e,f), Bayesian-based algorithm (g,h), and RIFTA (i,j). The RIFTA achieves the best performance in terms 
of both the smallest estimated residual in the CA and the shortest total dwell time (k).
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Bayesian-based algorithm is very high due to the influence of the large shape error in the DG. This also leads to 
a bad estimated residual map (i.e. 6.75 nm RMS) in the CA. The TSVD, on the other hand, only utilizes the CA’s 
information so that the total dwell time required is shorter and the estimated residual in the CA has been reduced 
from 3.44 nm to 1.15 nm RMS. It is worth noting that, however, both the dwell time maps do not duplicate the 
desired removal map in Fig. 7(b).

The proposed RIFTA then is used to calculate the dwell time solution. Initially, the dwell time solution is 
obtained by the RIFTA without the two-level iterative scheme. The resultant dwell time map is shown in Fig. 9(a) 

Figure 7.  (a) Surface error map of a silicon circular flat mirror; (b) the error maps in the dwell grid (DG) and 
the clear aperture (CA); and (c) the beam removal function obtained from the bombarded ion beam footprints.

Figure 8.  Dwell time maps (a,c) and estimated residual maps in the CA (b,d) calculated using the Bayesian-
based algorithm (a,b) and the TSVD algorithm (c,d).

Figure 9.  Dwell time maps (a,c) and estimated residual maps in the CA (b,d) calculated using the RIFTA 
without the two-level iterative scheme (a,b) and with the two-level iterative scheme (c,d).
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and the corresponding estimated residual map in the CA is given in Fig. 9(b). The dwell time map smoothly 
duplicate the shape of the desired removal in the DG shown in Fig. 7(b), however, the 2.82 nm RMS estimated 
residual in the CA is not optimal. The two-level iterative scheme is then enabled to optimize the dwell time solu-
tion only based on the CA while minimize the size of the DG. It can be found in Fig. 9(c) that the large shape 
error in the DG has been avoided and the size of the DG has been shrunk to 28.5 × 72.5 mm. Also, the total 
dwell time has been reduced from 362.4 s to 200.4 s. The estimated residual in the CA, as shown in Fig. 9(d), has 
been reduced to 1.10 nm, which is the lowest among all the presented results. Therefore, the dwell time solution 
demonstrated in Fig. 9(c) has been applied to the real IBF process below.

Using the dwell time map calculated by the RIFTA (see Fig. 9(c)), one IBF run has been performed on the 
CA shown in Fig. 10(a). The real residual shape error obtained is 1.11 nm shown in Fig. 10(c), as expected in our 
simulation estimation shown in Fig. 10(b). It is also worth mentioning that, the shapes of the estimation and the 
real residual map in the CA are very similar to each other, which proves the effectiveness of the real application 
of the proposed RIFTA. The mirror roughness before and after the IBF process is measured using a Zygo New 
View white-light microscope interferometer. Five points of interest located in the CA of are measured. The RMS 
roughness before and after the IBF process are 0.30 nm, 0.31 nm, 0.34 nm, 0.30 nm, and 0.33 nm versus 0.31 nm, 
0.32 nm, 0.32 nm, 0.32 nm, and 0.33 nm, which demonstrate that the surface roughness of the mirror is almost 
not affected by the IBF process.

Discussion
A good dwell time algorithm for Ion Beam Figuring (IBF) (and other Computer Controlled Optical Surface 
(CCOS) techniques) should contain the following crucial characteristics. First and foremost, the calculated dwell 
time should be non-negative, since IBF (and most CCOS techniques) often does not have the material adding 
capability. Moreover, the calculated dwell time should be able to be robustly applied to obtain expected figuring 
results. One key criterion of evaluating the robustness is by examining if the calculated dwell time map smoothly 
duplicates the desired removal map while the estimated residual error in the CA is small. Additionally, the total 
dwell time should be minimized to guarantee the stability of the ion source and achieve high-efficiency figuring 
process. Last but not least, the calculated dwell time map should be able to be flexibly adapted to the practical IBF 
process machine’s motion control resolution.

In order to fulfill these requirements, a new dwell time algorithm, RIFTA, is proposed in this study. First, 
a γ optimization method based on the Nelder-Mead simplex algorithm is proposed to stabilize the Fourier 
transform-based deconvolution and automate the γ tuning in the thresholded inverse filtering process. 
Furthermore, a novel two-level iterative scheme is employed to reduce the influence caused by the shape error 
outside the CA and minimize the total dwell time. The inner iterations ensure the non-negativity of the calculated 
dwell time while significantly reduce the total dwell time by iteratively updating the dwell time solution only 
based on the CA’s information. The outer iterations, can further shorten the total dwell time by minimizing the 
size of the DG. Last, the calculated dwell time is flexibly adapted to a practical sampling interval with bicubic 
resampling.

The performance of the RIFTA has been first studied by simulation. The comparison between the RIFTA and 
the other known dwell time algorithms demonstrates its superiority in the above- mentioned important aspects. 
The experimental results further demonstrate that the proposed RIFTA is robust, efficient, and effective dwell 
time algorithm that can be applied to real IBF applications.

It is also worth noting that, besides IBF, the RIFTA is generally applicable to any other CCOS techniques. 
However, one limitation of the current RIFTA is that the outer-level iterations cannot be applied to optimize the 
size of the DG if the CA is almost the entire mirror surface. Additionally, the two-level iterative scheme is more 
effective in reducing the total dwell time if the difference between the shape errors inside and outside the CA is 
larger. When the difference is very small, however, the reduction of the total dwell time may not be obvious. The 
MATLAB code for all the dwell time algorithms described in this paper has been uploaded to a public GitHub 
repository21.

Methods
Existing dwell time calculation methods.  Fourier transform-based method.  Wilson and McNeil pro-
posed the pioneering IBF dwell time algorithm based on the Fourier transform14, in which t(x, y) is calculated as

Figure 10.  (a) Desired removal map in the CA; (b) estimated residual map in the CA; and (c) real residual map 
in the CA after one IBF run.
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where Zd(u, v) and B(u, v) are the Fourier transforms of the desired removal zd(x, y) and b(x, y), respectively; 
⋅−F ( )1  represents the inverse Fourier transform. However, as pointed out by Wu et al.13 and Jiao et al.12, Eq. (3) is 

unstable. The amplitudes of B(u, v) at certain frequencies can be very close to zero so that any noises in Zd(u, v) at 
those frequencies are enormously amplified, resulting in algorithm failure. Therefore, a thresholded inverse filter 
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and γ is the thresholded amplitude of B(u, v). In Eq. (5), γ serves as a threshold to make an “almost” full inverse 
instead of a full inverse of B(u, v). The γ values depend on what units are used in the calculation. Nonetheless, the 
determination of the optimal γ value is nontrivial and subjective.

TSVD algorithm.  Equation (2) can be re-written in matrix form as
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SVD can be used to obtain a minimum norm solution to Eq. (6) as

∑ σ
=

Τ

=
t u z v ,

(7)svd
i

N
i d

i
i

1

r

where σi, i = 1, 2, 3, …, Nr are the singular values appearing in non-increasing order; ui and vi are the left and right 
singular vectors of B, respectively. Note that, similar to the Fourier-based algorithm, the division of the small sin-
gular values in Eq. (7) is problematic17. Zhou et al. thus proposed to truncate the division of the small singular as

∑ σ
= ≤ .

Τ

=
t k Nu z v ,

(8)tsvd
i

k
i d

i
i r

1

LSQR algorithm.  Instead of performing the time-consuming SVD of the matrix B, damping has been attempted 
by applying the LSQR algorithm11,13, in which case the solution is

∑
σ

σ λ
=

+

Τ

=
t u z v ,

(9)
lsqr

i

N
i i d

i
i

1
2 2

r

where λ is the damping parameter. LSQR is very computationally efficient and consumes much less memory 
space than SVD.

CLLS algorithm.  It is worth noting that, the main problem of both the TSVD and LSQR algorithms is the piston 
adjustment of z(x, y) as z(x, y) + Ψ to guarantee the non-negativity of the calculated t(x, y), where Ψ is a constant 
piston value. Wang et al. proposed the CLLS algorithm, which does not require piston adjustment by modeling 
the deconvolution as

−

≤

≥ Τ

t z

t b
t

B

A
0

minimize 1
2

subject to

(10)

2
2

where
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= ... ...
Τ

− −( )b b b b b b, , , , , , (12)N N0 1 2 0 2r r

where bi is the maximum absolute dwell time difference between each two consecutive machining positions i and 
i + 1 for i = 0, 1, 2, …, Nr − 2. The non-negativity is enforced by the lower-bound constraints while the inequalities 
constrained the local distribution of the dwell time. In the real experiments, however, the direct application of Eq. 
(10) results in unexpected results if the inequality constraints are too strict. Therefore, a coarse-to-fine scheme 
was employed. On the coarse level, looser constraints are applied to obtain a coarse result tcoarse(x, y), which is then 
polynomial fitted as tfit(x, y). On the finer level, the required constraints are applied to the residual map calculated 
from obtained from the fitted map as = − ∗z z CA tB_ [size( )]r ca d fit. The final dwell time map is thus the addi-
tion of the coarse and the fine level results as tclls = tcoarse + tfine.

Bayesian-based algorithm.  Jiao et al. proposed the Bayesian-based dwell time algorithm for IBF12. Assume that 
z(x, y) and t(x, y) are both random, according to Bayesian theory, the relation among the posterior P(t|z), the prior 
P(T), and the likelihood P(z|t) z, b is

P t z P z t P t
P z

( ) ( ) ( )
( ) (13)

| = |

Assume that t(x, y) follows the uniform distribution and P(z|t) is the Poisson distribution18, the dwell time can 
be solved by MAP as

J tmin ( ) (14)t 1

where

J t b t z b t dxdy( ) ( log( )) (15)1 ∫ ∫= ∗ − × ∗ .
Ω

Setting ∇J1(t) = 0, Eq. (14) can be solved by a multiplicative algorithm18 as

∫ ∫
= ×


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

− −
∗

∗






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t t z x y
zdxdy

z
b t

( , )

(16)
k k

k
1

With Eq. (16), the non-negativity of the dwell time map is automatically guaranteed if the initial guess t0 is 
non-negative. To achieve faster convergence, a total variation regularization term J t t dxdy( )2 ∫ ∫λ= |∇ |

Ω
 is 

added so that the MAP problem was rewritten as

+J Jmin ( ), (17)t 1 2

which can be solved as

∫ ∫λ
=

−
×


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

− −
∗

∗


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.+ ∇

∇ Ω

t t z x y
zdxdy

z
b t1

( , )

(18)
k

k
div t

t k
1 ( )k

k

RIFTA.  Find the optimal gamma.  Like the Fourier transform-based algorithm, the first step of RIFTA is to 
determine γ in Eqs. (4) and (5). Instead of setting an appropriate value for γ, it is found by an optimization pro-
cess. We define a residual map zr(x, y; γ) to be the difference between the desired removal zd(x, y) and the removed 
height γ γ= ⁎z x y b x y t x y( , ; ) ( , ) ( , ; ) as

γ γ= − .z x y z x y z x y( , ; ) ( , ) ( , ; ) (19)r d

The effectiveness of dwell time calculation can then be quantitatively evaluated by interrogating the RMS of zr 
as RMS[zr]. Ideally, it should only reflect the measurement noise. Therefore, finding the optimal γ, i.e. γopt, can be 
defined as an unconstrained optimization problem as
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γ γ= .
γ

RMS z x yargmin [ ( , ; )]
(20)

opt r

Substituting Eqs. (1), (4), and (19) to Eq. (20), the optimization can be reformulated as

RMS z x y b x y Z u v
B u v

argmin ( , ) ( , ) ( , )
( , ; ) (21)

opt d
d1Fγ

γ
=






− ∗


















.

γ

−
¯

It can be observed that the optimization space in Eq. (21) is not smooth due to the thresholding operations in 
γB u v( , ; ). Its gradients cannot be calculated so that any derivative-based optimization algorithms can hardly be 

applied. In RIFTA, as shown in Line 8 in Algorithm 4.2.2, we apply the Nelder-Mead algorithm19. It directly 
search for the optimal variables that minimize a scalar-valued non-linear function using only function values 
without any derivative information23. It is especially efficient when the number of variables is small23 and the 
computational complexity of an objective function is low24. Equation (21) is a scalar-valued non-linear function 
and γ is the only variable to be optimized. Also, the computational burden of Eq. (21) is not heavy thanks to the 
FFT algorithm. Therefore, the Nelder-Mead algorithm is an appropriate solver for γopt. It is worth noting that, 
however, the Nelder-Mead algorithm requires a good initial guess to obtain a reasonable solution and a fast con-
vergence rate. In our study, the initial value γini is obtained as the ratio between RMS[z] and RMS[zr] with γ = 1 as

γ =
− ∗ 





.
−{ }

RMS z x y

RMS z x y b x y

[ ( , ; 1)]

( , ) ( , )
(22)

ini

d
Z u v

B u v
1 ( , )

( , ; 1)
dF ¯

Two-level iterative scheme.  As shown in Algorithm 4.2.2, the inner iterations guarantee the non-negativity of t 
with the least increase of the total dwell time, which is further reduced by minimizing the DG size in the outer 
iterations.

Inner iterations  If the lowest entry of zd is outside CA, to ensure the non-negativity of the dwell time solution t, 
a piston should be added to adjust the entries in DG. This operation dominates the increase of total dwell time, 
since the piston may be over-added inadvertently. Therefore, in RIFTA, as shown by Lines 6 to 15 in Algorithm 
4.2.2, the inner iterations only depend on the residuals in CA, z _r ca, to add pistons to DG. In each iteration, zd is 
adjusted by a piston of zmin( _ )r ca , where min(·) represents the minimum entry in “·”. The negative entries in the 
calculated t in Line 9 are set as zeros in Line 10. As a result, it is always guaranteed that zd is adjusted by the small-
est (i.e. optimal) piston during the iterative calculations. The inner iterations are performed until the STD of the 
difference between the current and the previous residual maps in CA, i.e. −STD z z[ _ _ ]r ca r ca

pre , is less than the 
threshold std_t or the maximum number of iteration max_it is reached.
Outer iterations  In the classical IBF algorithms11–14, DG is larger than CA with a size s on each side equal to the 
radius of b, i.e. s = rb. In this configuration, we can obtain the minimal residual in CA =z _r ca

s rb from the inner itera-
tions. However, we found that a much smaller s is sufficient to obtain a residual z _r ca equivalent to =z _r ca

s rb while the 
total dwell time is reduced. As shown in Algorithm 4.2.2, starting from ⌊ ⌋r /2b , the outer iterations keep searching 
the smallest s until the STD of − =z z_ _r ca r ca

s rb is less than the threshold std_t. In this study, std_t = 0.02 nm and 
max_it = 10 are used.

Algorithm 1.  RIFTA dwell time algorithm.

https://doi.org/10.1038/s41598-020-64923-3


1 1Scientific Reports |         (2020) 10:8135  | https://doi.org/10.1038/s41598-020-64923-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Bicubic resampling.  Now we obtain the optimized dwell time t. However, it shares the same sampling interval 
with the measurement data zd, which is inconvenient for the practical IBF process. To add the flexibility of having 
different sampling intervals between metrology and fabrication, which has been realized in the matrix-based 
methods10,11,13,17, we use bicubic resampling to downsample t to flexible sampling intervals that the IBF process 
requires.
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