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correlation-centred variable 
selection of a gene expression 
signature to predict breast cancer 
metastasis
Shiori Hikichi  1,2, Masahiro Sugimoto  3,4 ✉ & Masaru tomita1,3

predictions of distant cancer metastasis based on gene signatures are studied intensively to realise 
precise diagnosis and treatments. Gene selection i.e. feature selection is a cornerstone to both establish 
accurate predictions and understand underlying pathologies. Here, we developed a simple but robust 
feature selection method using a correlation-centred approach to select minimal gene sets that have 
both high predictive and generalisation abilities. A multiple logistic regression model was used to 
predict 5-year metastases of patients with breast cancer. Gene expression data obtained from tumour 
samples of lymph node-negative breast cancer patients were randomly split into training and validation 
data. Our method selected 12 genes using training data and this showed a higher area under the 
receiver operating characteristic curve of 0.730 compared with 0.579 yielded by previously reported 76 
genes. The signature with the predictive model was validated in an independent dataset, and its higher 
generalization ability was observed. Gene ontology analyses revealed that our method consistently 
selected genes with identical functions which frequently selected by the 76 genes. Taken together, 
our method identifies fewer gene sets bearing high predictive abilities, which would be versatile and 
applicable to predict other factors such as the outcomes of medical treatments and prognoses of other 
cancer types.

Breast cancer is the most common cancer in women worldwide1. It is a heterogeneous disease that causes difficul-
ties for its diagnosis and treatment. Thus, multiple clinicopathological factors, such as the tumour size and lymph 
node metastasis, and established biomarkers, such as the estrogen receptor (ER), human epidermal growth factor 
receptor 2 (HER2), and progesterone receptor, have been used to characterise specific features of breast cancer, 
including its subtypes. To realise more accurate characterisation of breast cancer, gene expression has been intro-
duced to understand molecular-level pathology and prediction of treatment outcomes of breast cancer, which 
would contribute to the design of treatments2,3. Currently, MammaPrint4, Oncotype DX5, and MapQuant Dx6 are 
commercially available diagnostic tests to accurately estimate the recurrence of breast cancer. These tests employ 
relatively large numbers of genes, that is, 70, 21, and 97, respectively. Gene expression is also used for metastasis 
prediction and subtype identification of breast cancers7–9. The use of gene expression in combination with known 
biomarkers and clinicopathological factors is considered as a critical issue for precision medicine.

There are three processes in the establishment of a prediction model using microarray data: (1) feature selec-
tion, (2) development of a mathematical model, and (3) validation of the developed model. The purpose of feature 
selection is to identify a minimal predictive gene set by removing redundant and irrelevant features10–12. This 
process is important because the subsequent analyses depend on the selected genes. The prediction performance 
of a mathematical model is changeable depending on the selected genes13. There are several feature selection tech-
niques including feature ranking as a well-established approach10, and unconditional mixture modelling, infor-
mation gain ranking, and Markov blanket filtering as more modern approaches14. Variance inflation factor (VIF) 
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is an index to assess the dependence of features15. These methods were designed to identify a minimal feature set 
by reducing multicollinearity. However, more accurate and noise-robust methods are needed.

Mathematical prediction models are classified into statistical and machine-learning approaches. As statis-
tical approaches, multivariable logistic regression has been used for binary outcomes such as metastasis16. As 
machine-learning methods, artificial neural networks, Bayesian networks, support vector machines (SVMs), and 
decision trees (DTs) are typical methods for binary outcomes17, and machine learning-based analyses have been 
applied to the prediction of cancer prognosis17–19. Combining multiple methods has also been reported, such as 
ReliefF-GA-ANFIS18. The prediction accuracy of a prediction model is dependent on data. However, a generalised 
combinatorial approach should be developed to choose both feature selection and a prediction model.

As a general problem, both feature selection and model development depend on datasets and various condi-
tions, especially user-defined parameters. For example, random splitting of datasets into training and validation 
data is a common approach to confirm the generalisation ability of the developed model. However, many studies 
evaluate the developed model using only one split condition, which might alter the prediction accuracies. To 
assess the generalisation ability of the developed model, rigorous evaluations should be performed using various 
conditions.

This study aimed to develop a protocol to realise accurate prediction by selecting minimal gene sets. As a case 
study, we used datasets to predict metastasis of breast cancer by applying a multiple logistic regression (MLR) 
model with a 76 gene signature20. We also employed MLR while addressing the design of a novel feature selection. 
Using various split conditions, our feature selection approach successfully identified fewer but more accurate gene 
signatures. External validation also proved the robustness of our approach.

Methods
Data collection and pre-processing. A flowchart to identify genes associated with breast cancer metas-
tasis is illustrated in Fig. 1 and Figure S1. To demonstrate the applicability of the proposed gene selection and 
evaluate its consistency, we used three independent Affymetrix Human U133a GeneChip21 datasets. The gene 
expression data were obtained from tumour samples of lymph node-negative breast cancer patients who were not 
treated by systemic therapy after surgery. In total, datasets of 286 and 302 subjects were retrieved from GSE203420 
and TRANSBIG including GSE653222 and GSE739023, respectively, through the NCBI Gene Expression 
Omnibus24. Various subtypes were included in the datasets. For example, the data in GSE2034 included subjects 
with lymph node- and ER + data, and GSE6532 included ER + data. All microarray data were normalised by the 
robust multichip average (RMA) algorithm with the default option21,25.

Figure 1. Flowchart for identification of a gene expression signature. Whole processes are described in five 
steps including pre-processing, feature selection, gene count selection, training, and validation of the prediction 
model. For internal validation using GSE2034, a set of gene signatures was selected and a prediction model was 
developed. For external validation using independent datasets (TRANSBIG), the identical gene set selected 
using GSE2034 was used for the features of the model. However, the parameters of the model are optimized 
using training data of TRANSBIG and the developed model is validated the validation data of TRANSBIG.
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Identification of predictive gene sets. Each microarray dataset was randomly separated into training 
and validation datasets. The ratio of samples included in the training and validation datasets was approximately 
2:1. To eliminate the effects of the ER on our model predictions, we divided the samples according to the ER 
status. Gene selection and training the mathematical model using the selected genes were performed using the 
training data. The generalisation ability of the developed model was evaluated using the validation data.

Each gene was individually evaluated to select genes showing a difference between samples with or without 
5-year metastasis. First, genes showing a significant difference using conventional statistical analysis (Student’s 
t-test) were selected. Second, the remaining genes were ranked based on the margin between the two groups, and 
we selected only highly ranked genes by support vector machine recursive feature elimination (SVM-RFE)26. 
Various subsets including a different number of genes were compared by the area under the receiver operating 
characteristic curve (AUC). Of the remaining genes, VIF was used to select minimal genes that were independent 
such as low positive correlations among the genes.

optimisation of the gene count. The gene count should be optimised in gene sets selected by feature 
selection procedures, which is the number of genes used for the prediction method. One simple method is to 
determine the gene count by tuning the options of feature selection. However, in this study, we directly evaluated 
the accuracy of the model with various gene counts, such as the use of subset genes included in the gene sets 
selected by the feature selection procedure. In general, a prediction model using a larger number of genes tends to 
show higher prediction performance for the given training data, but a lower generalisation ability for validation 
data. To eliminate this over-fit tendency, we performed k-fold cross-validation (CV), and AUC was used to eval-
uate both sensitivity and specificity. The AUC values and gene count were calculated by CV using training data. 
The differential values of AUC were calculated based on the change in the differential value.

Model development and validation. Gene selection was conducted using GSE2034, which is defined 
as internal validation here. GSE2034 was used as model development and internal validation (IV), i.e. the data 
was randomly split into internal training (IV-T) and validation (IV-V) datasets. To evaluate the generalization 
ability of selected genes, we used the TRANSBIG dataset including GSE7390 and GSE6532 as external validation 
datasets (EV). Here, two external validation tests were conducted. First, only the generalization ability of the gene 
signature was evaluated. The TRANSBIG dataset was randomly split into two datasets as external training (EV-T) 
and external validation (EV-V). The models were developed using the EV-T with the genes selected by GSE2034, 
and the developed model was evaluated using the EV-V. This TRANSBIG dataset was not used for the selection 
of genes (Exp. 1, Fig. 1). Secondly, the generalization ability of both the developed model and the gene signature 
was evaluated. The model development and the selected genes in Exp. 1 was conducted using IV-T, this model 
was evaluated using whole TRANBIG datasets (EV). To eliminate the experimental bias, intensities of the genes 
of each dataset were normalized into Z-score. Here, gene selection and model development were not conducted 
using TRANSBIG (Exp. 2, Figure S1).

Here, we used the following parameters. To independently evaluate genes showing a difference between the 
two groups with or without 5-year metastasis, genes showing small intensities (median intensity: <5 in a group) 
were eliminated, and genes with P ≤ 0.005 (Student’s t-test) had remained. SVM-RFE was conducted using a 
linear kernel with the default option. The number of genes selected by SVM-RFE changed from 2, 7, 12, and 102. 
Generally, VIF exceeding 10 is an indicator of requiring serious multicollinearity consideration. As a threshold 
of multi-linearity, VIF < 10 was used. The differential values were sorted, and the value in the top 25% was used 
as the threshold to determine the gene count. All programs were implemented using Python (version 3.7.0), R 
(version 3.3.0), Numpy (version 1.18.2), Scipy (version 1.4.1), Matplotlib (version 3.2.1), seaborn (version 0.10.0), 
scikit-learn (version 0.22.2), PypeR (version 1.1.2) and JMP (version 14.0.0). These programs are distributed 
upon request. DAVID Bioinformatics Resources 6.8 was used for gene ontology analyses.

Results
prediction accuracy of gene signatures. To evaluate our proposed methods, we developed and validated 
a prediction model using the same data employed by Wang et al.20. They used a dataset named GSE2034 and (1) 
randomly split the data into training and validation sets, (2) explored a 76 gene signature and trained the MLR 
model using the training data, and (3) evaluated the model using the validation data. We also used these data and 
split them into two datasets: training and validation datasets. Of the 22283 genes, conventional statistical analyses 
selected 208 genes showing a significant difference between the two groups with or without 5-year metastasis. 
Subsequently, 12 genes were selected by VIF.

For rigorous assessment, we performed 200 random splits of the data into training and validation datasets 
using different random values. In the internal validation, the AUC values of the training data (IV-T) were similar, 
where median values were 0.775 and 0.869 for 12 and 76 genes, respectively. However, these values of the valida-
tion data (IV-V) were significantly different (P < 0.001), where median values were 0.730 and 0.529 for 12 and 76 
genes, respectively (Fig. 2).

external evaluation. The generalisation abilities of the gene signatures yielded by GSE2034 were evalu-
ated using an independent dataset (TRANSBIG). At the Exp.1, the TRANSIBIG dataset was randomly split into 
training and validation datasets as internal validations (IV-T and IV-V). The genes used for the MLR models was 
not selected by this data while coefficients of the MLR model was optimized using the IV-T and evaluated these 
models using IV-V. This process was repeated 200 times with different random values. In the external validation, 
the MLR models were developed using EV-T and evaluated EV-V. The median AUC values of our 12 and 76 genes 
were 0.553 and 0.493, respectively, which were significantly different (P < 0.001) (Fig. 2).
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As the Exp. 2, both of the MLR model and selected genes were evaluated. The MLR model was developed 
using IV-T with 12 genes selected in Exp.1. This model was evaluated using EV-V as an external validation. The 
median AUC values of our model with 12 genes and the model of Wang et al. were 0.569 and 0.436, respectively 
(Fig. 3).

comparison of the gene functions of selected gene subsets. To evaluate the gene functions of gene 
signatures, we assigned gene ontology terms (GOTERMs) to each gene by DAVID analysis. Figure 4 shows the 
comparison of pathways included in our identified gene set and Wang et al.’s gene set. The proportion of the num-
ber of gene functions attributed to each category to the total number of genes was visualised. One category was 
consistently included in both 12 and 76 gene signatures, namely organelle organization. Organelle organization 

Figure 2. Prediction performance of the two gene sets (Exp. 1). AUC values to discriminate between patients 
with or without metastasis. Training (IV-T) and validation datasets (IV-V) were generated by 200 random 
splits of (a) GSE2034 as the internal validation dataset and (b) the TRANSBIG dataset including GSE6532 
and GSE7390 as the external validation dataset. This dataset was also randomly split into training (EV-T) and 
validation datasets (EV-V). The difference in AUC values was evaluated by Mann-Whitney tests. The values of 
the median, and 1st and 3rd quartiles are plotted by horizontal bars. Data outside more than one and a half times 
the length of the boxplot (3rd quartile minus 1st quartile; interquartile range) were plotted. Significant differences 
are shown (*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001).

Figure 3. Prediction performance of MLR models of 12 and 76 genes (Exp. 2). AUC values to discriminate 
between patients with or without metastasis. As model optimisation for independent datasets, the set of gene 
signatures selected in the process of k-fold CV gene selection in Fig. 1 was normalised using Z-score. Training 
and validation datasets were generated by 200 random splits of (a) GSE2034 as the internal validation dataset 
(IV-T, IV-V) and (b) the TRANSBIG dataset including GSE6532 and GSE7390 as the external validation dataset 
(EV). The difference in AUC values was evaluated by Mann-Whitney tests. The values of the median, and 1st 
and 3rd quartiles are plotted by horizontal bars. Data outside more than one and a half times the length of the 
boxplot (3rd quartile minus 1st quartile; interquartile range) were plotted. Significant differences are shown 
(*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001).
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had the largest number of genes in both signatures. Table S2 shows the prediction performance, that is, AUC and 
odds ratio, of the 12 genes selected by our method.

Effect of each option to generate a gene signature and prediction model. Because various options 
for prediction model development potentially affect the gene count, we investigated the relationship between 
these options and gene counts.

First, we analysed the effect of the number of genes on the prediction performance (Fig. 5). The relationship 
between the gene count and model accuracy was depicted, which were yielded using whole training data, CV 
using training data, and validation data. As expected, the AUC values of training data increased monotonically 
along with gene counts, while those of CV became almost constant even though the gene count increased. The 
AUC values of validation data also became almost constant at a gene count of >20 and slightly decreased at a gene 
count of >50.

To select the gene count, VIF criteria were used to eliminate multicollinearity among genes. Here, we com-
pared different VIF criteria, <5, <10, and <100. The relationship between the gene count and AUC values of 
k-fold CV is depicted in Fig. 6. Using stricter thresholds of <5 and <10, 20 and 85 genes were selected at max-
imum, respectively. The AUC values of any VIF threshold showed similar values at a small gene count of <20, 
while those of VIF at <10 showed a slightly higher trend in most cases compared with a VIF of <100.

GSE2034 data were randomly split into training and validation data. The sample ratio between these datasets 
was approximately 2:1, according to the condition employed by Wang et al.20. To investigate the effect of this ratio 
on the prediction accuracies, we compared various split ratios, 1:1, 2:1, and 3:1, for training and validation data 
(Figure S2). At lower gene counts of <25, the AUC values were almost the same among these split ratios. These 
trends were also observed between 1:1 and 2:1 at larger gene counts of >70. Furthermore, in the middle range of 
gene counts, the AUC values were different among them. The accuracies of the model were also compared based 
on a 95% confidential interval (CI) (Table S1). The 95% CI is the index to indicate the stability of prediction accu-
racy, and the narrowest range of 95% CI is the best split ratio.

The results of CV are also dependent on the k-value that also affects gene counts. Thus, we compared k = 3, 
k = 5, and k = 10, and explored the relationship between gene counts and AUC values of k-fold CV using training 
data (Figure S3). The AUC values for k = 5 and k = 10 showed similar trends regardless of the gene count, whereas 
those of k = 3 were slightly decreased at gene counts of>30.

Next, we investigated the effect of the prediction model of the gene count. In addition to MLR, we used linear 
SVM and random forest (RF), which are commonly used classification methods, and depicted the relationship 
between gene counts and their AUC values of 10-fold CV using training data (Figure S4). AUC of the MLR model 

Figure 4. Gene ontology included in the genes selected from the public microarray dataset and gene sets 
reported by Wang et al. The percentage of each functional annotation indicates the appearance frequency. 
To normalise the number of each functional annotation, the ratio of the number of gene ontology terms 
(GOTERMs) to the total number of selected genes is shown. The GOTERM category focuses on the third 
threshold of the biological process in DAVID Bioinformatics Resources 6.8.
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almost gradually increased along with gene counts and became almost constant at gene counts of >30. Moreover, 
AUC values of linear SVM and RF more strongly depended on the gene counts compared with MLR, where these 
values sharply increased at smaller gene counts and decreased gradually at larger gene counts.

The relationships between the model and other variables in the TRANSBIG dataset, such as the ER status, 
tumour size, and HER2, were analysed (Figure S5). The effects of these parameters on the probability of metastasis 
within 5 years predicted by our model showed no significant difference between non-metastasis and metastasis 
subjects, indicating the independence of their relationship.

Discussion
In this study, we addressed the feature selection of gene expression profiles. Many feature selection methods have 
been developed to remove redundant and irrelevant features from high dimensional microarray data10–12. To use 
multiple genes for prediction models such as MLR, the multicollinearity of these genes should be carefully dealt 
with because this feature frequently deteriorates the generalisation ability of the model. Therefore, we developed a 

Figure 5. Prediction performance of the three datasets focusing on the number of genes. The accuracies of 
prediction models (AUC) were calculated after random sampling (training and validation datasets) and k-fold 
cross-validation (k-fold CV dataset). For a suitable gene count, 12 genes were selected with the list of AUCs of 
k-fold cross-validation. #Gene indicates the number of genes.

Figure 6. Prediction performance of the three parameters in the variance inflation factor-based gene selection. 
The accuracies of prediction models (AUC) was calculated with three thresholds of the variance inflation factor 
(VIF): the normal threshold of multicollinearity (VIF < 10), the weaker threshold (VIF < 100), which selects 
more genes than the normal threshold, and the stricter threshold of multicollinearity (VIF < 5) that selects 
fewer genes than the normal threshold.
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simple but effective feature selection method to minimise the number of genes in identical gene sets by eliminat-
ing multicollinearity while showing high accuracy and generalisation abilities.

Various approaches are available for gene selection by eliminating collinearity. The data-dependent cen-
tred method centres two variables around their means to avoid creating multicollinearity15. Clustering, such as 
k-means, can also be used as a feature selection method by selecting representative features among clusters. Each 
cluster includes correlated features, and the combination of representative features among clusters is expected to 
have low collinearity. Feature subset selection can also be used for division into strong and weak relevant features 
with DTs and Naive-Bayes. However, these feature selection algorithms are not enough for application to robust 
data such as microarray data including multicollinearity, because of the trade-off between the quality of the esti-
mates and the search size27. In this study, we used SVM and VIF to rank the features and evaluate multicollinear-
ity, which revealed independent gene sets showing high discrimination abilities.

A prediction model should bear robustness against various conditions. Gene count, which fluctuates depend-
ing on the gene selection procedure, is one of the possible factors that affect the prediction ability of a model. 
RF has been frequently used to predict the outcomes of breast cancer treatments, such as prediction of a patho-
logical complete response after adjuvant therapy19 and risk assessment of 10-year relapse-free patients with 
node-negative, ER+ , and HER2- breast cancer28. RF itself evaluates the importance of the variable in the devel-
oped model and therefore can be used for feature selection29. However, our numerical experiments revealed that 
the prediction performance of RF strongly depended on the input variables (Figure S4), indicating that feature 
selection before the RF should be designed carefully. SVM can be used for feature selection30. An SVM has been 
used for breast cancer diagnosis31 and used with feature selection, such as the use of k-mean clustering, before 
training of a model32. Our results also showed high sensitivity of the SVM model against the number of genes. 
Taken together, feature selection should be evaluated with the prediction ability of a mathematical model.

Wang et al. used GSE2034 and randomly split datasets into training and validation datasets, developed an 
MLR model using 76 genes by employing training data, and evaluated the generalisation ability of the model 
using validation datasets, which resulted in AUC = 0.694 using validation datasets20. However, we repeated the 
identical procedure with different random values, resulting in lower generalisation abilities using their signature. 
Also, the external validation showed no predictive abilities at AUC < 0.5 (Exp. 1). Thus, rigorous internal valida-
tion should be conducted to optimise gene signatures before validation using external datasets. We also evaluated 
not only the gene signature but also the MLR model with gene signatures (Exp. 2). In this validation test, the 
model of Wang et al. yielded AUC = 0.404 while our model yielded AUC = 0.560 (median values in 200 trials) 
using external validation data (Fig. 3). This test also revealed the Wang et al.’s method showed less generalization 
ability.

Wang et al. used the ER status to split datasets into training and internal validation data. Therefore, the effect 
of ER on the prediction accuracy was not analysed20. In this study, we also split the training data (GSE2034) con-
sidering the ER status. We analysed the relationships among the model and other variables in the TRANSBIG 
dataset, such as the ER status, tumour size, and HER2 (Figure S5), and found a small effect of these variables on 
the prediction accuracies.

Several limitations need to be acknowledged in this study. We employed commonly used feature selection 
methods and multi-linearity evaluation criteria, SVM-RFE and VIF. However, there are various other methods 
and criteria available. Other combinations should also be compared. As a case study, we addressed the prediction 
of breast cancer metastasis. However, our approach should be validated to predict other outcomes to obtain a 
more general conclusion. Here, we assessed the effect of various options of gene signature selection. However, 
we still used a certain threshold for each procedure and did not evaluate multiple parameters simultaneously. 
Although we analysed the relationships among microarray data and metastasis probability, other various fac-
tors, such as smoking, were not incorporated into our prediction, because these factors were not recorded in the 
employed data. A predictive tool based on multivariable analysis using these factors and microarray data has the 
potential to improve the accuracy of prediction. We will provide all source code upon request to contribute to the 
development of such tools. Here, we evaluated the selected genes and confirmed the higher generalization ability 
using independent datasets compared with the method of Wang et al.20 (Exp. 1). The model with gene signatures 
also evaluated using independent datasets and this test also revealed that the less generalization ability of Wang et 
al.20 (Exp. 2). These experiments revealed the larger number of genes was not robust for external datasets.

We have developed novel variable selection to improve the precision accuracy of cancer metastasis using fewer 
genes regardless of the input microarray datasets. This study confirmed consistency using robust feature selection 
that has high repeatability and robustness. Our proposed approach may contribute to medical treatments for 
breast cancer patients.
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