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fleeting perceptual experience and 
the possibility of Recalling Without 
Seeing
William Jones  1 ✉, Hannah pincham2, ellis Luise Gootjes-Dreesbach4 & Howard Bowman1,3

We explore an intensely debated problem in neuroscience, psychology and philosophy: the degree to 
which the “phenomenological consciousness” of the experience of a stimulus is separable from the 
“access consciousness” of its reportability. Specifically, it has been proposed that these two measures 
are dissociated from one another in one, or both directions. However, even if it was agreed that 
reportability and experience were doubly dissociated, the limits of dissociation logic mean we would 
not be able to conclusively separate the cognitive processes underlying the two. We take advantage of 
computational modelling and recent advances in state-trace analysis to assess this dissociation in an 
attentional/experiential blink paradigm. these advances in state-trace analysis make use of Bayesian 
statistics to quantify the evidence for and against a dissociation. further evidence is obtained by 
linking our finding to a prominent model of the attentional blink – the Simultaneous Type/Serial Token 
model. our results show evidence for a dissociation between experience and reportability, whereby 
participants appear able to encode stimuli into working memory with little, if any, conscious experience 
of them. this raises the possibility of a phenomenon that might be called sight-blind recall, which we 
discuss in the context of the current experience/reportability debate.

The ability to seperate functionally independent mental processes, and to be able to describe this seperation – or 
lack thereof – is critical to modern cognitive neuroscience. Of these problems of independence, the distinction 
between the subjective experience of the character of a stimulus (the “phenomenological awareness” of it) and the 
ability to objectively report on it (the “access consciousness” of it) has been one that has been particularly hotly 
contested. Block1 is a notable proponent of a distinction between the two, arguing that it is possible to experience 
stimuli without being able to access them, and thus report on that experience. The believed locus of phenomeno-
logical awareness is iconic memory, initially, on the basis of the Sperling paradigm2, with others supporting the 
concept of phenomenological awareness to varying degrees on the basis of experiments on Kanizsa triangles3, 
other, modified versions of the Sperling paradigm4, and short term memory experiments5. However, despite 
this large body of supporting literature, the theory is contested; for example, Dehaene and co-workers6 have 
challenged this theory on the basis of change blindness, while others have pointed out that certain changes to the 
Sperling paradigm seem to compromise some key results7.

A paradigm that is well placed to shed light on this topic, and has been used previously8 to explore the 
all-or-none nature of subjective experience, is the attentional blink. The attentional blink is a phenomenon seen 
during RSVP (Rapid Serial Visual Presentation) in which participants frequently fail to detect a second target for 
a short time after the presentation of an encoded first target; see T2|T1 accuracy in Fig. 19,10. Recently, Pincham 
et al.11 noted that the temporal pattern of T2 visibility (which they called the experiential blink) is dissimilar to 
that of report accuracy (i.e. the classical attentional blink) and raised the possibility that this finding represents 
two distinct processes. However, having the tools to elicit dissimilar patterns of behaviour is not the same as 
being able to determine whether the cognitive processes that underlie them are distinct. Tackling such problems 
is usually performed by looking for functional dissociations. These arise when we find variables that allow us to 
independently modify performance on two separate tasks, providing putative evidence that the cognitive pro-
cesses embodied by the tasks are in some way separate. Such dissociation logic has been widely applied, and made 
an important contribution to the investigation of functional independence in the mind in such diverse sub-fields 
as short and long term memory12, word comprehension13 and consciousness14.
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In the context of our question, there are many who have claimed that the experience or awareness of a stim-
ulus and its reportability are doubly dissociated. As previously discussed, in the direction of awareness without 
report, we have the “phenomenological consciousness” of Block. In the opposite direction, there exist several 
paradigms that seem to provide evidence for modulation of behaviour without awareness, for example continu-
ous flash suppression15, visual masking16, blindsight17, or episodic face recognition18. However, we would argue 
that these paradigms provide evidence for a weaker claim than reportability without awareness; that of influence 
without experience. In every case, the identity of the unexperienced stimulus is not directly reportable, it merely 
influences the report of, or response to, something else. In contrast, the criterion for a true demonstration of 
reportability without awareness would be of free recall of a stimulus identity in the absence of awareness, which, 
if definitively demonstrated, would be both striking and surprising.

Regardless, even if a double dissociation of the required kind between experience and reportability was widely 
agreed to exist, there has been a long standing debate about the use of double dissociations as a measure by which 
to assess functional differentiation19–21. In this work, we adopt an alternative method to traditional dissociation 
logic. This alternative suggests that a dissociation arises, given certain assumptions, when it is not possible to 
demonstrate a monotonic relationship between task performances. In the context of the attentional blink, there 
is evidence that such non-monotonicity exists between accuracy and subjective visibility report11 (see Fig. 1), and 
one of the main contributions of this paper is to provide quantitative evidence for such an effect.

In order to provide statistical quantification, a method called state-trace analysis is typically employed. State 
trace analysis examines the monotonicity of data, across a state-trace plot in which our two task performances 
form the axes. In this work, we follow Prince, Brown and Heathcote22 and Davis-Stober et al.21 in advocating the 
use of a Bayesian approach to the analysis of these problems. The main reason for this is that we are solving a 
model comparison problem: comparing whether a non-monotonic or monotonic model best fits our data. Strictly 
speaking, a classical statistics approach would not enable us to find evidence for a non-monotonic outcome, since 
it would naturally take the role of the null. For a more detailed discussion on the various potential choices of sta-
tistical methods and their respective virtues, see22.

While dissociations can tell us about specific effects, placing findings in larger theoretical context is pivotal 
to the forward progress of science, especially when the theory is encapsulated in a computational model. In 
particular, a theoretical interpretation of the data from11 may be that items are encoded into working memory 
simultaneously, but only experienced serially. In combination with state-trace analysis, this allows us to explore 
not only the direction of the effect, but also some plausible mechanisms by which it may arise. In terms of specific 
models, the Simultaneous Type/Serial Token10 model is well placed to explore this question: it models data in the 
relevant context (the attentional blink), and naturally deals with the difference between simultaneity and seriality.

In this paper, we make two original contributions. We first apply Bayesian state-trace analysis to the results 
of our attentional blink experiment in which we collected both report accuracy and subjective visibility (see 
Fig. 1), and compare the respective evidence for a monotonic and a non-monotonic relationship between the two 
measures. Secondly, we explore our results in the context of the Simultaneous Type/Serial Token (STST) model. 
Since the STST model does not natively deal with subjective experience, one of the contributions of this paper 
is development of a simple method by which this might be incorporated into the model. Given this method, we 
then compare the behavioural and EEG data that the model predicts to the human data from11, and the results 
from our state-trace analysis.

Figure 1. (A) Results from11, comparing accuracy and subjective visibility across lags in the attentional blink. 
The T2 visibility curve demonstrates what Pincham and Bowman term the Experiential blink of subjective 
report. (B) State-trace plot comparing T2|T1 accuracy and T2 visibility from (A). Note the apparent non-
monotonicity of the relationship between accuracy and visibility. (Note, the T2|T1 blink curve here shows some 
very minor differences to that presented in11. This is because T2 accuracy in the original paper was mislabeled 
and in fact presented the accuracy of the conjunction of T2 and T1, whereas here we display the conditional 
probability of T2 given T1. None of the findings in11 are impacted by this difference).
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the Attentional Blink paradigm
Rapid serial visual presentation (RSVP) is a technique in which multiple stimuli are presented rapidly, one after 
the other in a fixed location. Typically, this stream of stimuli is composed of one or more targets to be detected or 
identified and a number of distractor stimuli to be ignored. The attentional blink (AB) is a deficit in performance 
on a second target when more than one target is to be identified9,10. It arises approximately 100–500 ms after the 
presentation of the first target, when it is successfully encoded. Typically, the AB is elicited using alphanumeric 
stimuli, but images, letters, digits or words will all elicit the blink. For an example of a typical attentional blink 
RSVP stream, see Fig. 2.

The main parameter of the attentional blink is the relative serial positions at which the two targets are pre-
sented, known as lag, for example, at Lag 1 there are no intervening distractors between the targets, while at Lag 2, 
the two targets are separated by one intervening stimulus. The main attentional blink result is typically plotted as 
T2|T1 accuracy (second target accuracy, given the first target was correct) against lag. Excluding Lag 1, typically, 
when the two targets are close, accuracy is significantly reduced compared to recovery baseline (lags 7 and 8). A 
typical blink is shown in Fig. 2(B). Performance at Lag 1 is above the deepest point in the blink. This is known as 
Lag 1 sparing, and is itself a robust result of the attentional blink23.

There has been extensive exploration of the attentional blink with respect to accuracy of report, but much less 
exploration of subjective visibility report in the attentional blink8,11,24,25. As we have discussed, the attentional 
limitations of the blink make it ideal for exploring dissociation between accuracy in reporting a stimulus and 
the strength of its conscious experience. Indeed11, mapped subjective report to lag, finding a blink of subjective 
experience, the so called Experiential Blink, akin to that of reportability, but without Lag 1 sparing. The results of 
this experiment are shown in Fig. 1.

functional dissociations and reversed associations
As mentioned previously, the functional dissociation is a technique that has been widely implemented across 
the fields of psychology and neuroscience as a marker of the functional distinctness of mental processes. There 
are several types of functional dissociations, but all arise when one is able to independently modify performance 
on a set of one or more tasks without affecting performance on other tasks in the set. The ability to differentially 
affect behaviours on different tasks is seen as evidence that the mental processes underlying them are in some 
way functionally separate. However, despite their wide use in the literature, it has been argued that while disso-
ciations are certainly indicative, they do not strictly provide either a necessary or sufficient basis for determining 
the separation of mental processes19–21. Broadly, it has been proposed that it is possible to construct cases in 
which dissociations exist but separate mental processes do not19–21, and to create cases in which there are separate 
mental processes without dissociations. For an overview of these arguments, and a demonstration of how such 
behaviours can be constructed, see26.

Regardless which side of this debate one stands, an alternative measure exists for which it is certain these 
issues will not arise: the reversed association proposed by20. The reversed association models the cognitive func-
tion that dissociations are trying to evaluate as a latent variable determining the relationship between a given 
task and task performance. It then assumes that, while the relationship between this latent cognitive function 
and task performance may not be proportional, it may at least be assumed to be monotonic in some direction27. 
Given this assumption of monotonicity between cognitive function and task performance, any tasks that share 
a single underlying cognitive process must then, by necessity, also share a monotonic relationship between their 
respective task performances. Therefore, under these assumptions, a non-monotonic relationship between task 
performances is sufficient to demonstrate a dissociation, this is our reversed association. Note that the opposite 
does not apply, a monotonic relationship is not sufficient to demonstrate that the cognitive functions underly-
ing the two lack a dissociation. In order to undertake statistical inference for a reversed association, we turn to 
Bayesian statistics.

Figure 2. (A) A typical attentional blink RSVP stream. Participants are instructed to report the two letters 
at the end of the stream. (B) Example illustration of expected accuracy for T1 and T2|T1 at each lag during a 
typical attentional blink study with a Stimulus Onset Asynchrony (SOA), the amount of time between the onset 
of each stimulus, of 80–120 ms.
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Quantifying the results – the Bayesian method
We describe state-trace analysis informally in terms of a state-trace plot, e.g. Fig. 3. We have a state factor con-
sisting of our two tasks, with the performance on each task forming an axis on our graph. We then plot on this 
graph each level of our dimension factor, the variable that we are varying across our tasks. If we can draw a mono-
tonically increasing (or decreasing) curve joining all the levels of our dimension factor, the relationship between 
our task performances across our variable is monotonic. In all other cases, it is non-monotonic. In the context of 
our attentional blink experiment, identity report and judging visibility are our two tasks so they give us our state 
factor, and the lags are the measure that we are varying across both tasks, so they give us our dimension factor. 
Plotting report accuracy on one axis and visibility on the other, we are trying to determine whether it is possible 
to draw a monotonic curve joining the data across each of our lags.

More formally, we have some state factor with two levels S = {S1, S2}, forming the state space over which we 
examine our question of interest, and some dimension space D = {D1, …, Dn}, a manipulation we are performing 
across it. When concerned with monotonicity versus non-monotonicity, we wish to see if the ordering of the 
levels of our dimension factor are either the same or the reverse of one another across each of the two axes of 
our state factor. If this is possible, we diagnose monotonicity, and if it is not possible we do not. Often, we also 
introduce a trace factor, but in our case, a trace factor is not required and we therefore exclude it from further 
discussion. Overall, we must consider each combination of Q = D! orderings for each axis and Q2 joint orderings. 
A visual example of both monotonic and non-monotonic state-trace plots can be found in Fig. 3.

At this point, the set of Q2 joint orderings corresponds to the whole space of possible configurations of the 
state-trace graph, and currently it can be divided into two different partitions. These are the non-monotonic 
orderings and the monotonic orderings. With respect to our Bayesian statistics, we are attempting to choose 
between the monotonic model consisting of all monotonic orderings, and our non-monotonic model consisting 
of all other (non-monotonic) orderings. To do this, we calculate a Bayes factor expressing how much the data has 
changed our preference between our two models. This is the measure of the ratio of evidence for each model. 
Explicitly, denoting our data as y, the prior probabilities P(x) where x = M or NM as πM and πNM for the mono-
tonic and non-monotonic models respectively, and the posterior probabilities P(x|y) where x = M or NM as πM
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We calculate our posterior using the library provided in21. We follow21 in referring to this calculation as 
BFN/NM, the bayes factor comparing the monotonic versus non-monotonic models.

Currently, we make use of a completely uniform prior, effectively assuming all possible orderings of the lags 
across the levels of the state factor are equally likely. In many data sets, including our own, this is clearly not true 
– we, for example, have strong prior expectations about the behaviour of the attentional blink. Previous work 
has approached this problem by using the prior to assert that certain constraints on the behaviour in the data are 
true. For example, in21 the authors pre-suppose that dual task performance will always be worse than single task 
performance in their analysis of a data set from28. However, while we have expectations about the behaviour in the 
attentional blink, setting specific ordinal qualifications of behaviour across lags in a similar manner is non-trivial. 
While we wish to take advantage of as much prior knowledge as possible, the behaviour of the attentional blink 
is variable, and it is well established that setting a poor prior can compromise the integrity of results29. As well as 
setting a prior based on previous literature, we also therefore make use of an empirical prior method to derive a 
suitable prior. This method takes the set of constraints on the prior identified from the literature, and reduces the 
set to one that accurately fits the data, using a measure of the validity of constraints orthogonal to the contrast 
of interest. Details of this method can be found in Supplementary Material. We denote the validity of a prior 
calculated using this method as BFD/N(D), and similarly any Bayes factor calculated from a prior that accounts for 
information on our dimension axis (whether generated from our empirical priors method or not) as BF(M/NM)|D.

Figure 3. (A) Example of a monotonic state-trace plot across 4 levels of a dimension factor D. It is possible to 
draw a monotonic (increasing) curve joining all points, therefore the relationship between the levels of the state 
factor is monotonic. (B) Example of a non-monotonic state-trace plot across 4 levels of a dimension factor D. 
The point furthest to the right makes drawing either a monotonically increasing or monotonically decreasing 
curve impossible, therefore the relationship between the levels of the state factor is non-monotonic.
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We must also consider how to apply this type of analysis across a group of participants. Notably, state-trace 
analysis does not work well with approaches based on averaging. In particular, it is possible both to average mul-
tiple non-monotonic datasets into a monotonic dataset, and multiple monotonic datasets into a non-monotonic 
one. A simple alternative analysis is the grouped Bayes factor introduced by22. This method treats each of our 
participants (of which there are M) as independent from one another and calculates the group Bayes factor as the 
product of each individual Bayes factor:

∏= =GBF BFi
M

i1

As long as participants are independent samples and the results are reasonably homogeneous (not, for exam-
ple, being driven by a single outlier), this grouped Bayes factor is a good summary of the group level effect. This 
will be the case in the data we analyse with one exception that will be discussed seperately.

StSt model
In addition to the methods of state-trace analysis, we explore the potential dissociation of subjective experience 
and report accuracy through modelling. Specifically, we investigate the hypothesis that the differences in behav-
iour in the data from11 that we analyse in this paper are the result of the systems of subjective experience and 
working memory encoding being dissociated. We suggest that stimuli are experienced in a serial manner (reflect-
ing the unitary nature of consciousness), but simultaneously encoded into working memory. The Simultaneous 
Type/Serial Token (STST) model10 is in a uniquely strong position to explore this, though the model does not 
natively deal with subjective experience. In this section, we explore a simple set of additions to the STST model 
that allow it to read out a measure of subjective experience in addition to reporting accuracy. Before this however, 
we briefly summarise the workings of the Simultaneous Type/Serial Token model.

The STST model, see Fig. 4, is a two stage model that builds on a type/token distinction to simulate how 
items are bound into temporal contexts. In this definition, the type of a stimulus encompasses all of its instance 
invariant properties: the features that do not change between occurrences. Take the letter K for example; parts 
of its type are its semantic features (e.g. it’s a letter, it’s after J in the alphabet) and its visual features (e.g. its shape 
and colour). Conversely, a token represents a specific episodic occurrence of a type e.g. where it occurred in time 
relative to other items. In the STST model, types are processed in parallel, with many types simultaneously but 
fleetingly represented, and it is the act of sequentially binding a type to a token that creates a solidified representa-
tion in working memory.

The first stage of the model concerns the types and consists of four layers supporting different aspects of visual 
processing: the input layer, the masking layer, the item layer and the task-filtered layers. The second stage of the 
model governs the tokenisation process, and consists of the binding pool and the tokens. Items first arise in the 
input layer, and then pass through the masking layer, which implements masking, and would most naturally 
be associated with iconic memory2. From here, items enter the item layer, which creates a brief, self-sustained 
representation. Then, the final layer of the stage: the task filtered layer, provides a salience filter that excites task 
relevant nodes while inhibiting others. From the task filtered layer, sufficiently active items can activate tokens 
through the binding pool, and become bound to them through a tokenisation process. This tokenisation process 
takes several hundred milliseconds, though it is shorter for more active items. In order to reach sufficient activa-
tion to achieve this binding however, most stimuli will need to benefit from the blaster. When an item becomes 
sufficiently active in the task filtered layer, the blaster provides a brief, powerful enhancement to the entire task 
filtered and item layers that allows items to reach the threshold for tokenisation. During this process, a powerful 
inhibitory signal holds the blaster low to prevent it from re-firing and corrupting the tokenisation process: it 
is this inhibition of the blaster that generates the attentional blink. A walk through of how an individual item 
becomes encoded into working memory can be seen in Fig. 4.

Through these mechanisms, the Simultaneous Type/Serial Token model creates an account of working mem-
ory encoding in which types are processed simultaneously, but due to the way the blaster and the tokenisation 
process work, types can only be bound in serial. There exists a computational model of STST from which it is 
possible to generate both behavioural data, and also “virtual” ERP’s30,31 that closely mimic the results from human 
participants. It is an ideal choice for modelling the data which we are exploring, because it is specific to the para-
digm we are using (the attentional blink), and it already deals naturally with the difference between simultaneity 
and seriality.

As discussed, the published STST model does not however, deal with subjective experience, and one of the 
contributions of this paper is to propose and implement a system by which this can be obtained. However, very 
many, and often any behaviours can be obtained from a model with sufficient modification and parameter adjust-
ments32. In order to make the fairest possible assessment of the hypothesis in question, the dissociability of sub-
jective experience and report accuracy during the attentional blink, we therefore limited ourselves in two ways in 
our modelling. Firstly, we would attempt to build on top of the existing model to provide a new “readout” without 
changing the existing model in any way. Secondly, this readout must be simple; ideally arising from one or two 
principles.

The result of these conditions is the following model to encapsulate serial experience: Subjective visibility is 
indexed by the strength of the P3 ERP component. When an item is above a given amplitude (the threshold of 
subjectivity), it is being “subjectively experienced” and when it is below, it is not. Additionally, this experience is 
serial. If the individual activation traces for two items are both above the threshold, then the second item cannot 
be experienced until the first one falls below the threshold. For an illustration of this, see Fig. 5. Specifically, the 
strength of an item’s subjective experience is the duration for which its activation trace exceeds the threshold of 
subjectivity, subject to no other stimulus already being above the threshold. In this manner, a system allowing a 
subjective experience that is exclusively serial in manner is created, with only one addition on top of the existing 
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Figure 4. (A) Input Layer. Stimuli enter the system through this layer. As well as providing input, this layer 
implements backward masking through inhibitory connections to all other stimuli in the masking layer. (B) 
Masking Layer. Simulates further masking dynamically through lateral inhibitory connections to all other 
stimuli. These lateral inhibitory connections are weaker than the forward ones from the input layer, such that 
backward masking is stronger than forward masking. (C) Item Layer. Creates a temporary representation of 
a stimulus through self-reinforcing connections. (D) Task Filtered Layer. Implements a “salience filter” to 
filter out task irrelevant stimuli, by enhancing task relevant stimuli, and suppressing others. (E) Tokenisation. 
When a stimulus has reached an appropriate level of activation, it excites the currently ready token through 
the binding pool. In a process that takes several hundred ms, the token is bound to the type. Once this binding 
has occurred, the type-token connection can be maintained without any further input. (F) The Binding Pool. 
Contains the binding resources that enable stimuli to bind to tokens. (G) The Blaster. Provides a short, powerful 
enhancement to items in the item and task filtered layers when there is sufficient activation in the task filtered 
layer to indicate the ‘detection' of a target and warrant the onset of tokenisation. While the tokenisation process 
is ongoing, a powerful inhibitory signal from the binding pool prevents the blaster firing again. (H) Virtual P3. 
A virtual P3 can be generated from the STST model from the excitatory post synaptic potentials of the item 
layer, the task filtered layer, and a subset of the tokens and binding pool (the token gates and the binder gates).

Figure 5. (A) Seriality of experience in the SESE model. In (A), though the amplitude of the response of both 
stimuli is the same, the duration of the experience of the second stimulus is greatly reduced because it cannot be 
experienced until the first stimulus falls below the threshold. Comparatively, in (B), the response amplitude of 
both stimuli is the same, although the T2’s activation trace is longer with a slightly delayed onset, consequently 
they are both experienced for similar durations.
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model. We call this readout-enhanced STST model, the Simultaneous Encoding, Serial Experience model (SESE). 
In order to evaluate the success of this modified STST model, we will compare its behavioural output to that of 
human participants and the virtual ERPs it generates to human EEGs in the data from11. This specification of sub-
jective experience mandates a change to how we calculate the grand P3 ERPs from the model. The ERPs generated 
from the model in31 are calculated by summing all components together. In this model, when a first target’s acti-
vation trace crosses the threshold, it starts contributing to the P3, however, the activation traces of other targets 
do not contribute to the P3. A more detailed desciption of how virtual ERPs can be obtained from the model is 
available in Supplementary Material Section D.

predictions and Validation
Our current model makes some strong predictions, some of which cannot be immediately validated through the 
analysis of our first, dataset which we distinguish by referring to it as the colour-marked task (since in the task, the 
T1 is colour marked, which is not the case in the letters-in-digits task that we introduce shortly). In this section, 
we discuss these analyses and propose several further analyses to support our hypothesis.

One critiscism of an analysis based on the colour-marked data we present in Fig. 1 is that the the very sub-
stantial differences in report accuracy and subjective visibility at Lag 1 may be due to the use of a colour-marked 
T1. Previous experiments that have examined subjective report in the attentional blink often find some degree of 
sparing of subjective visibility at lag 1 (see, for example8,24), which is not observed in the colour-marked T1 data. 
In light of this, we propose a replication without a colour marked T1, giving a pure letters-in-digits paradigm. 
Details of the experimental procedure will be given in our materials and methods section, but the behavioural 
results can be seen in Fig. 6, and interestingly, we do see sparing for subjective visibility at Lag 1, although we 

Figure 6. Behaviour of replication (pure letters in digits) data, comparing accuracy and subjective visibility 
across lags in the attentional blink. (A) A comparison of report accuracy and visibility ratings for T1. (B) A 
comparison of report accuracy and visibility ratings for T2. (C) A state-trace plot comparing accuracy and 
visibility for T1. (D) A state-trace plot comparing accuracy and visibility for T2. What we show as T2|T1 
visibility is the visibility rating of T2 on all trials in which T1 was correctly reported. Note that compared to the 
analysis in11, T2 visibility shows a level of Lag 1 sparing. This dataset also measures visibility of the first target, 
which was not collected in the (colour-marked AB) study of11. Importantly, however, the basic dissociation of 
report accuracy and subjective visibility at short lags that underlies our hypothesis is qualitatively present for 
T2; see panel (B). For example, Lag 1 sparing is substantially higher for report accuracy than subjective visibility 
relative to other lags. This is illustrated by the black arrows, which indicate a constant distance for each graph. 
This can also be seen by noticing that, for T2 report accuracy, Lag 1 is considerably higher than Lag 7, while for 
subjective visibility it is marginally lower. Notice that the T1 curves do not seem to show the dissociation at early 
lags between report accuracy and subjective visibility that we see for T2. In particular, the differences in vertical 
distance across lag that are present in panel (A) may just be a facet of the small dip in T1 accuracy at later lags, a 
feature that we have not observed previously and which may just reflect “sampling error”.
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will still be able to show the dissociation between report accuracy and visibility at Lag 1 that is central to our 
argument.

We also need to buttress ourselves against the possibility that we are observing a dissociation between report 
accuracy and subjective experience for reasons that do not entail the sight-blind recall effect we are considering. 
This might occur if there is a different mechanism modulating visibility at Lag 1, than at other data points. This 
is a very pertinent concern, since the Lag 1 data-point is often argued to be unique in respect of attentional blink 
lags; it is, for example, by far the most vulnerable to order errors23, or integration of both targets into one percep-
tual episode25. We take two routes to addressing this potential concern. Firstly, and most directly, we show that 
with the removal of the Lag 1 data-point in the replication (pure letters-in-digits) experiment just discussed, the 
effect still remains non-monotonic.

Secondly, contrary to a temporal integration explanation, a clear prediction of our proposal is that “if the 
individual P3s for two items are above the (conscious awareness) threshold, then the second item cannot be 
experienced until the P3 for the first one falls below threshold”. As a result, the visibility (relative to accuracy) 
for T1 should remain intact at Lag 1 compared to other lags, since it will be experienced to completion, or, in 
other words, the co-active T2 cannot interrupt the ongoing experience of T1. According to a temporal inte-
gration account, visibility of T1 should be impaired at Lag 1, since integration fundamentally suggests a T1-T2 
“composite” is constructed, which would surely imply an impact of T2 onto T1. In contrast, we predict that T1 is 
isolated from the interference of a proximal T2. To address this concern, we propose a state-trace analysis of the 
T1 data of the replication (letters-in-digits) experiment. This has several advantages. First, it allows us to robustly 
examine whether visibility is changing differently with respect to accuracy across lags, when compared to our first 
(colour-marked) experiment. Second, a monotonic finding for T1 in the replication experiment would provide 
evidence directly against target integration.

One further analysis we perform is to examine report accuracy when participants indicate an absence of sub-
jective visibility at Lags 1 and 3. This is a key analysis for the idea of sight-blind recall. That is, being able to show 
above chance report accuracy for T2, when participants select the bottom subjective visibility bin, i.e. nothing 
seen, suggests recall without experience. Showing that this phenomenon is larger at lag-1 than lag-3 further sup-
ports our position that co-activation (although not co-experience) of T1 and T2 particularly drives the dissocia-
tion of visibility from report accuracy. A preliminary version of this analysis was reported in the Supplementary 
Material of11. To maximise the available data for this analysis, we perform it on the second set of data from11, 
which sampled fewer lags with more trials, compared to the first set of data from11, which we have examined thus 
far in this paper. Focusing on this higher-powered data set enabled us to more robustly measure this effect.

Materials and methods
original colour-marked RSVp data. Ethics. All experiments were performed in accordance with the 
relevant guidelines and regulations. The study was approved by the Psychology Research Ethics Committee at the 
University of Cambridge, UK and participants provided informed, written consent.

Data. Our set of data is a behavioural attentional blink dataset previously presented in11. Full details of the 
experimental procedure is given in the original paper, we summarize this here for clarity. Data was collected for 
two experiments, a behavioural set that sampled a large number of lags over fewer trials per lag (Experiment 1), 
and an electrophysiological set that additionally collected EEG data, and sampled fewer lags (Experiment 2).

Targets were uppercase letters and distractors were single digits, each trial contained one or two targets - T1 
occurred on every trial and was always presented in red, and T2 (if it occurred) was presented in white. Targets 
could be any one of 21 letters, with 5 letters excluded because of similarity to numbers. Each RSVP stream con-
tained 15 items. T1 randomly appeared as the fourth, fifth or sixth item in the RSVP stream. Stimulus Onset 
Asynchrony (SOA), the amount of time between the onset of each stimulus, was 90 ms. At the end of each RSVP 
stream, participants were asked to rate the subjective visibility of T2 using a 6 point self-report scale. The numbers 
1 2 3 4 5 6 were presented in a horizontal line on the screen, with the description “not seen” presented beneath the 
number 1 and the description “maximal visibility” presented beneath the number 6. Participants then reported 
the identity of T1 and T2 (even if a second target did not occur). Participants were required to guess if they were 
unsure of the target identities. In Experiment 1, T2 appeared at lags 1, 2, 3, 4, 6, 8, or not at all with equal fre-
quency. Results of this experiment for 18 participants were presented in Fig. 1. In Experiment 2, targets appeared 
at Lag 1 (40% of trials), Lag 3 (40% of trials), Lag 6 (10% of trials) and not at all (10% of trials). Experiment 1 
deliberately sampled a large number of lags in order to examine the relationship between T2 accuracy and subjec-
tive visibility across the entire AB curve, while Experiment 2 sampled fewer in order to facilitate the creation of 
robust EEG data. Note that in contrast to the original study, for our state-trace analysis of second targets (T2s), we 
only include trials in which T1 is present and T1 and T2 are reported in the correct order in order to avoid order 
errors as a confound. This applies for both our accuracy and visibility ratings.
NImplementation specifics. Setting the priorWe set the prior of our Bayesian analysis from prior literature, spe-
cifically based on the results from24. This paper presents both a classic attentional blink with lag 1 sparing of report 
accuracy, and a similar “experiential” blink of subjective report in which lag 1 is spared a great deal less. Due to the 
well-established evidence for the pattern of behaviour in the attentional blink, we encoded strong expectations 
of behaviour, including lag 1 sparing, of the report accuracy in our data. Comparatively, the evidence for the 
behaviour of subjective report during the blink is less well established, so we refrained from imposing such strong 
constraints about it, particularly at the important lag 1 data point. We also recognise some uncertainty about 
the deepest point in the attentional blink: given the SOA of 90 ms, we could reasonably expect either of lags 2 or 
3 to be the deepest point in the blink. We therefore set our prior to be consistent with several potential deepest 
points. Finally, Lag 8 is a serial position outlier (A common finding in attentional blink experiments is that a last 
lag that is a serial position outlier, e.g. if there is no Lag 7 and most lags in the experiment are short, participants 
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will come to learn this regularity and optimize the allocation of attentional resources to short lags, causing lag 8 
performance to be relatively low across the experiment.) in our experiment and was therefore removed from our 
analysis. These considerations resulted in a uniform prior subject to the following constraints across our data: 
for report accuracy, Lags 1, 4 and 6 would be held to be larger than Lags 2 and 3, with Lag 1 additionally being 
held to also be larger than Lag 4. For subjective report, Lag 6 would be held to be higher than Lag 4, Lag 4 higher 
than Lag 3, and Lag 3 higher than Lag 2. The validity of these constraints, as determined by our empirical priors 
method discussed in the Supplementary Material Section A was strong, but not completely homogenous. We 
therefore applied our method of empirical priors to reduce them to a set with a better fit. After application of our 
method, our prior was still uniform, subject to constraints as follows: For report accuracy, Lags 1 and 6 would be 
held to be larger than lags 2 and 3, and Lag 1 additionally would be held to be larger than Lag 4. The constraints 
for subjective report remained unchanged.
Distribution of dataThe state-trace method we are applying, based on the work of21,22, assumes a binomial distribution 
of the data. This is suitable for our accuracy data, which is a dichotomous variable, but not for our visibility scale that 
forms a multinomial distribution over 6 values. Consequently, we grouped our visibility results into two bins, a high 
visibility bin and a low visibility bin. To decide the fairest way of applying this split, we calculated the grouped bayes 
factor comparing the validity of the constraints for each possible method of splitting the data, for both the full and 
empirically determined prior. The results (see Supplementary Material Section C) clearly show that the “best” split is 
that of assigning the top 50% of visibility ratings to the high visibility bin and the bottom 50% to the low visibility bin.

Replication pure letters-in-digits RSVp Data. Ethics. All experiments were performed in accordance 
with the relevant guidelines and regulations. The study was approved by the Faculty of Sciences Ethics Committee 
at the University of Kent, UK and participants provided informed, written consent.

Data. Our data is a set previously presented in33, collected by Ellis Luise Gootjes-Dreesbach as part of her 
doctoral research at the University of Kent. 12 young adults took part in this study, aged 18–30 with a mean age 
of 21.83 years. Targets were upper case letter and distractors single digits. Targets could be any one of 21 letters, 
with 5 letters excluded because of similarity to numbers. Each trial contained two targets, with no colour marking 
for either target. Each RSVP steam contained 20 items. T1 randomly appeared as the 7th, 8th or 9th item in the 
steam. T2 was pseudorandomly presented at Lags 1, 2, 3, 5 or 7, ensuring an equal number of trials in each con-
dition. Stimulus Onset Asynchrony (SOA), the amount of time between the onset of each stimulus, was 83 ms. At 
the end of the stream, participants were asked to respond (via the keyboard) to four questions about the visibiltiy 
and identity of T1 and T2. The query for target visibility (‘On a scale of 1–6, please indicate how well you saw the 
first [second] letter') was paired with an ASCII representation of a 6-point scale with the low end labelled as “not 
seen” and the high end labelled “maximal visibility”. Target identity was queried by asking “What was the first 
[second] letter you saw? If you are not sure, give your best guess”. We analysed all trials whatever the report order. 
The whole experiment consisted of 4 blocks of 45 trials, each randomised with respect to lag and T1 position.
Implementation specifics. Setting the priorThis experiment sampled slightly different lags to the original 
colour-marked experiment, but we attempted to replicate the constraints used in the previous experiments as 
closely as possible for the analysis of T2. Specifically, we substituted all constraints in the previous experiment, 
with Lag 5 replacing Lag 4, and Lag 7 replacing Lag 6. For T1, lacking any precedent in the literature for the 
behaviour of T1 visibility, we placed no constraints on the possible orderings of our data. For this replication 
experiment, in order that constraints did not change from those in the original data set, we did not make use of 
our method of deriving empirical constriants.
Distribution of dataTo provide the fairest comparison to our original (colour-marked) analysis, we maintained 
the previous split of visibility ratings into high and low bins.

Results
original colour-marked data. State-trace results (T2). Figure 7(A) shows validity for each participant 
for the original set of prior constraints derived from24. At the group level, the evidence is strongly in favour of the 
constraints fitting the data with grouped (not log) BFD/N(D) = 1.22 × 109. However, we note that while the group 
validity is strong, four participants show the opposite pattern. Figure 7(B) shows the respective non-monotonicity 
for this set of constraints. Results are strongly and almost homogenously in favour of the non-monotonic model, 
with grouped (not log) BF(M/NM)|D = 2.25 × 10−14.

Figure 7(C) shows validity for each participant for the set of prior constraints derived from the original using 
our empirical prior method. At the group level, the evidence is strongly in favour of the constraints fitting the data, 
with grouped (not log) BFD/N(D) = 1.07 × 1013. However, we note that while the group validity is strong, there remains 
some variability across participants, though this situation has noticeably improved compared to 7(A). Figure 7(D) 
shows the respective non-monotonicity for this set of prior constraints. Results here are strongly and almost com-
pletely homogenously in favour of the non-monotonic model, with grouped (not log) BF(M/NM)|D = 1.17 × 10−17.

Replication letters-in-digits data. T2. Figure 8(A) shows validity for each participant for the prior 
adapted from the original colour-marked T1 data analysis. At the group level, the evidence is strongly in favour 
of the constraints fitting the data with grouped (not log) BFD/N(D) = 1.46 × 1011. Figure 8(B) shows the respective 
non-monotonicity for this set of constraints. Results are in favour of the non-monotonic model, with grouped 
(not log) BF(M/NM)|D = 1.14 × 10−2.

T2 No Lag 1. Figure 9(A) shows validity for each participant for the prior adapted from the original colour-marked 
T1 data analysis, with Lag 1 removed. At the group level, the evidence is strongly in favour of the constraints fitting 
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the data with grouped (not log) BFD/N(D) = 2.5 × 109. Figure 9(B) shows the respective non-monotonicity for this set 
of constraints. Results are in favour of the non-monotonic model, with grouped (not log) BF(M/NM)|D = 5.75 × 10−4.

T1. Figure 10 shows the respective non-monotonicity test for T1. Results are in favour of the monotonic model, 
with grouped (not log) BF(M/NM)|D = 7.36 × 104.

Figure 7. Log10 Bayes factors for each participant across 4 different tests, for T2 in the original (colour-marked T1) 
experiment. Note that participants are in the same order in all graphs to facilitate comparison. Lines overlaying the 
figure correspond to bayes factors of 1
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validity of the prior by participant for the original prior based on24. (B) Evidence for monotonicity (positive) vs 
non-monotonicity (negative) by participant for the original prior. (C) Evidence for validity of the empirically 
derived prior. (D) Evidence for monotonicity (positive) vs non-monotonicity (negative) by participant for 
empirically derived prior.

Figure 8. Log10 Bayes factors for each participant for monotonicity and validity of constraints for T2 in the 
replication (pure letters-in-digits) experiment. Note that participants are in the same order in all graphs to 
facilitate comparison. Lines overlaying the figure correspond to bayes factors of 1
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and 1000 respectively. (A) Evidence for validity of the prior adapted from the original (colour-marked T1) 
analysis. (B) Evidence for monotonicity (positive) vs non-monotonicity (negative) by participant for this prior. 
Although the effect here is not as strong as it is for the original (colour-marked T1) experiment, the data does 
not exhibit the pattern in which the grouped Bayes Factor becomes a problematic measure, which arises, for 
example, if there is a single outlier subject driving the effect.
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Simultaneous type/serial token model results. Our first comparison is the behavioural results of the 
STST model and those from11; see Fig. 11. Note the qualitative similarity in behaviour. Such a high similarity 
between empirical and model findings is rare without a fitting of model parameters to the data.

We also compared the human ERPs with the virtual ERPs generated by the STST model, see Fig. 12. For full details 
on how these are obtained, see the Supplementary Information. We present two sets of model ERPs, comparing each of 
them to the same human ERPs, i.e. Lag 1. Panel A) compares to model Lag 1 and B) to model Lag 2. It should be clear 
from this that there are features of both the models Lag 1 and Lag 2 that are similar to the human Lag 1. This is perhaps 
not surprising and suggests a fixed offset timing difference between model and human data. Additionally, there are 
further reasons why it is unrealistic to expect a more perfect fit between simulations and empirical findings. Firstly, the 
task modelled by STST does not have a colour marked T1, which is likely to explain why the transient around 200 ms in 
the human data is not replicated by STST. Secondly, we are comparing scalp EEG directly to model deflections, without 
recourse to a forward (lead field) model of how brain sources are projected into sensor space. Critically though, the key 
property that a clear conscious percept of T2 (i.e. the high visibility condition) coincides with a longer P3 is qualitatively 
present in both sets of virtual ERPs. This pattern resonates with the notion that conscious perception imposes a seriality 
constraint that is not required for encoding into working memory. Some further results are available in Supplementary 
Section E, where we compare human and virtual ERPs at later lags.

For illustrative purposes, we also present the activation traces for high and low visibility, for each of the T1, 
T2 and distractors seperately. We do this for each lag separately. This can be seen in Fig. 13(A,B) (Lag 1) and 
Fig. 13(C,D) (Lag 2). This clarifies how the Virtual ERPs in Fig. 12 emerge from the underlying STST activation 
traces. An STST virtual ERP, as presented in31, is a summation of the traces in a panel of Fig. 13, including the 
low amplitude responses to distractors, which contribute to the “rougher” contours of the Fig. 12 model time 
series compared to the Fig. 13 target time series. Critically, the experience read-out mechanism we are proposing 
here means that the T1 and T2 traces are not simply summed when they are co-active. Rather, the T2 trace only 
starts contributing to the virtual P3 once the T1 trace has fallen below the visibility threshold, as shown in Fig. 5. 

Figure 9. Log10 Bayes factors for each participant for monotonicity and validity of constraints for T2 in the 
replication (pure letters-in-digits) experiment with no Lag 1. Note that participants are in the same order in all 
graphs to facilitate comparison. Lines overlaying the figure correspond to bayes factors of 1
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3, 20, 100, and 1000 respectively. (A) Evidence for validity of the prior from the (colour-marked T1) analysis. 
(B) Evidence for monotonicity (positive) vs non-monotonicity (negative) by participant for this prior.

Figure 10. Log10 Bayes factors for each participant for monotonicity for T1 in the replication (pure letters-in-
digits) experiment. Note that participants are in the same order in all graphs to facilitate comparison. Lines 
overlaying the figure correspond to bayes factors of 1
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Accordingly, only the the back-end of the T2 trace in Fig. 13(A) contributes, almost none of it in Fig. 13(B) and a 
much larger proportion in Fig. 13(C).

Report accuracy at minimal subjective visibility. To further justify the term sight-blind-recall, we directly 
investigated T2|T1 accuracy at the lowest level of subjective visibility. The question of interest is whether we can actually 
demonstrate that report accuracy is above chance when subjects report zero visibility of the T2. To this end, T2|T1 
accuracy was calculated only on trials where participants selected a visibility rating of 1 (the lowest possible visibility 
rating, indicating ‘not seen'). For each lag, T2|T1 accuracy was compared with the degree of accuracy expected due 
to chance (4.76%, one out of 21 letters presented), using one-sample t-tests. In other words, we investigated whether 
T2|T1 accuracy was greater than 4.76%, at relevant lags. As discussed, this analysis was conducted for lags 1 and 3 in the 
(colour-marked T1) second experiment from11, as that is where the trial counts were sufficiently large to examine a spe-
cific subjective visibility (200 trials for each of those lags). As expected, accuracy was significantly greater than chance, 
despite participants indicating that the subjective visibility of the target was nil (lag 1: μ = 37.98%, σ = 25.25%, t(1,17), 
p < 0.001, d = 1.3156), (lag 3: μ = 15.03%, σ = 12.5%, t(1,17), p = 0.0014, d = 0.8214). We also examined the hypothesis 
that at minimum visibility report accuracy at lag 1 was greater than report accuracy at lag 3. We found evidence for this 
hypothesis, (lag 1 > lag 3, t(1,17) = 5.2033, p < 0.001, d = 1.2264).

Figure 11. (A) Accuracy and subjective visibility by lag for the STST model. (B) T2|T1 Accuracy and T2 
subjective visibility by lag for the data from11, i.e. the original (colour-marked) task. Note that these results 
have appeared in a different figure (Fig. 1(A)) above, but we present them reformatted here to better facilitate a 
comparison. Importantly, as previously discussed, neither the function or the structure of the STST model, as 
given in10 were changed when generating this fit.

Figure 12. A comparison, for both high and low T2 visibility, given correctly reported T1, of the human ERPs 
from the original colour-marked T1 data analysis11. (A) Lag 1 Human ERPs vs Lag 1 STST virtual ERPs. (B) Lag 
1 Human ERPs vs Lag 2 STST virtual ERPs. Importantly, as previously discussed, neither the function or the 
structure of the STST model, as given in10 were changed when generating the virtual P3s. Note that the human 
ERPs presented are slightly different to those from11, as ours exclude order errors to be consistent with previous 
sections.
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Discussion
Monotonicity verseus non-monotonicity. Our state-trace analysis, comparing the measures of accu-
racy and subjective experience in the attentional blink, found strong evidence for a non-monotonic model of 
the relationship between these two measures at both the individual participant and group level. This was further 
supported by the methods developed as part of our own contributions to the current state-trace methodology. We 
would argue that our empirical priors approach identifies a more accurate set of results across the data, however 
it is encouraging that our results are similar both with and without our empirical priors.

Previous literature21 has advocated the use of both the Grouped Bayes Factor (GBF) that we have calculated, 
as well as an Aggregated Bayes Factor (ABF) to confirm the homogeneity of the results, something we have not 
done. There seems little need to apply the ABF, since our data shows substantial homogeneity in both contrasts 
for which it is tested: for example, considering our main state-trace finding for our original colour-marked T1 
data set, only three participants demonstrate even incidental evidence for a monotonic model (cf. Fig. 7B) with 
the original prior, and only one with the empirical prior (cf. Fig. 7D). Additionally, we note that the ABF cannot 
be used to confirm homogeneity, only identify heterogeneity.

There is one potential exception to this, Fig. 8B). In this instance, ignoring the absolute quantity of the effect, 
exactly half the participants show one Bayes factor direction, and half the other. This is heterogeneous in nature, 
which, as we have discussed, may be a problem case for the GBF. However, in this instance, we do not believe that 
we need to be overly concerned. The dangerous case of heterogeneous results in respect of the GBF is that it can 
potentially lead to a misleading summary of the overall effect. However, that is not the case in Fig. 8B). While 
it is true that we have a substantial number of participants supporting both monotonic and non-monotonic 

Figure 13. Activation traces by target for virtual data presented in Fig. 12, split up by visibility and lag. 
Unlabelled activation traces are from distractors. Each one of these activation traces corresponds to the sum 
of the excitatory post synaptic potential of the neurons on the 3rd, 4th, 6th and 8th layers of the neural-STST 
model, corresponding to the item layer, the task filtered layer, the binder gates and the token gates. This is 
illustrated in Fig. 4. The ‘full' activation traces that are presented in Fig. 12 are generated from the sum of each 
of these individual traces at each timepoint, subject to the seriality of experience we have discussed previously; 
when one target is being experienced, the activation trace of the other target (or indeed, distractors) makes no 
contribution to the grand activation trace. (A) individually depicted activation traces from the SESE model for 
each target, for high visibility targets at Lag 1. (B) individually depicted activation traces from the SESE model 
for each target, for low visibility T2s at Lag 1. (C) individually depicted activation traces from the SESE model 
for each target, for high visibility targets at Lag 2. (D) individually depicted activation traces from the SESE 
model for each target, for low visibility T2s at Lag 2.
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directions, the only non-incidental Bayes Factors we have provide evidence for non-monotonicity. In this case, 
the most natural interpretation of the data is non-monotonicity, which supports the calculated GBF.

One aspect of our analysis that is notable is the lack of a trace factor. However, the introduction of a trace 
factor is only required in the case in which there are only two levels of the dimension factor; in other cases, the 
introduction of a trace factor is a convenience designed to sweep out the behaviour of a system. In our case, we 
have 5 levels of our dimension factor, which is very close to, or exceeds the combined total trace × dimension 
factors in other state-trace experiments18,28,34.

Working memory encoding without subjective experience. Our results suggest some kind of disso-
ciation between working memory encoding and subjective report. Despite this, we have only demonstrated that 
a dissociation exists and have not definitively characterised it: we would claim that our findings are indicative of 
a particular relationship of dependency between working memory encoding and conscious perception, but no 
more than that. However, our results do not exist in a vacuum. It is clear that the dissociation we observe is a phe-
nomenon of very short lags. In particular, it is largest at Lag 1. For example, in the original (colour-marked T1) 
study, the series of interactions performed in11, in which lags were systematically excluded, suggest a strong dis-
sociation at Lag 1, with weakening dissociations from Lag 2 to Lag 3 and nothing at higher lags, additionally, the 
state-trace analysis performed here on that same data showed non-monotonicity when all lags were included, but 
the removal of Lag 1 from the state-trace analysis nullified that effect, see Supplementary Material Section B for 
details of this analysis. Furthermore, the state-trace analysis we perform here on the replication (letters-in-digits) 
data set shows non-monotonic patterns with all lags in and when Lag 1 is excluded, but the effect is lost when 
further lags are excluded.

A dissociation restricted to just very early lags, and particularly Lag 1, raises the possibility, but no more 
than that, of working memory encoding being a necessary, but not sufficient, condition for conscious perception 
(although, the existence of phenomenological awareness would mean WM encoding was also not necessary for 
conscious perception). This is because it is at these lags that the activation of T1 and T2 is most strongly simulta-
neous. Thus, we can say that it is specifically when T1 and T2 are active together that T2 is encoded into WM, with 
a weakened, or absent, perceptual experience, suggesting a capacity to encode T1 and T2, while the T2 conscious 
percept is impaired. In addition, our finding in subsection “Report accuracy at minimal subjective visibility”, 
that there is above chance report accuracy when participants report zero visibility, an effect that is substantially 
stronger at Lag 1 than Lag 3, provides probably the most direct evidence that on some trials encoding into WM 
can occur without visibility.

We also view the P3s we have observed in the original (colour-marked-T1) experiment as consistent with this 
interpretation although certainly not definitive verification of it. For example, in Fig. 12, it is clear that the Lag 1 
High Vis (human) is considerably longer than the Lag 1 Low Vis (human). Additionally, in11, Fig. 8 compares the 
ERPs for T2 correct with T2 high visibility (compare the green traces in panels A and F), again the high visibility 
T2 has a substantially extended P3. This seems to suggest that consciously seeing the T2 dramatically extends the 
P3, while the curtailed P3 when T2 is just correct, but not necessarily vividly seen, might be considered indicative 
of a T2 being encoded, with little, if any, conscious experience.

This profile of findings could suggest a phenomenon called “sight-blind recall”, however, further empirical 
support from the RSVP domain and beyond is required to fully justify this interpretation. In particular, the 
critical demonstration would be that when T2 is correctly reported but given a zero visibility response, the lag 1 
P3 is the same as that for a T1 alone. We do not though have sufficient trials in our ERP experiment to reliably 
construct this average. This, then, is a key test that needs to be performed.

Importantly, this purported sight-blind recall is different from more familiar notions of preconscious pro-
cessing, such as subliminal priming, implicit perceptual learning as well as related findings demonstrated with 
continuous flash suppression15 and phenomena such as blindsight17, or episodic face recognition18. These exper-
iments demonstrate only an indirect effect on a later test; in no case is the “invisible” stimulus that is not con-
sciously perceived directly reportable. We would argue that these results are not strong enough to demonstrate 
the “sight-blind recall” that we have described, indicating instead influence without experience. In contrast to 
this, our results suggest the potential for free recall of a stimulus that has not been conscious perceived, a much 
stronger result that we would argue is far closer to constituting sufficient evidence for “sight-blind recall” and 
working memory encoding without conscious experience.

The decoupling of subjective visibility from report accuracy at early lags is particularly striking in our orig-
inal (colour-marked-T1) data set, where there is no evidence of Lag 1 sparing for subjective visibility at all; see 
Fig. 11(B). However, it is important to realise that the decoupling effect we have identified is not dependent 
upon the complete absence of sparing for subjective visibility, and this is important, since other studies that col-
lected subjective visibility, e.g.8 and24, did see lag-1 sparing for subjective visibility. Importantly, the replication 
(letters-in-digits) data set, indeed, has sparing of subjective-visibility; see Fig. 6. However, critically, this kick-up 
at early lags is, in relative terms, considerably smaller for visibility than for report accuracy. Accordingly, we are 
still able to demonstrate the state-trace non-monotonicity that is central to the argument in this paper, and, in 
fact, the interaction that was central to11 can also be demonstrated, see33.

These findings though raise the question of why different lag-1 subjective visibility patterns have been 
observed, i.e. why is it that the original (colour-marked-T1) data did not show lag-1 sparing for subjective visi-
bility, but24 and our replication (letters-in-digits) data set did? Considering our data sets, one factor that surely 
impacts this is the T1 colour-mark in the original study. This, we believe, makes the T1 perceptually strong and, 
also, more easily distinguishable from the T2. Indeed, in this data set, T1 report accuracy is considerably higher 
than T2 report accuracy performance at all lags.

In contrast, the replication (letters-in-digits) study was a straight letters-in-digits task, with no colour marking.  
This may have caused the T2 to be more strongly perceived, since the T1 is not as strong as it is in the original 
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(colour-marked-T1) study. It is less clear how to reconcile our findings with24, since they did have a colour-marked 
T1. However, their colour-marking may not have been as salient as ours: cyan in theirs versus red in ours. This 
could potentially mean that there is also increased relative strength for T2s in their experiment, increasing its 
visibility. A definitive answer to these inconsistencies, though, awaits further empirical work.

Broadening out fron the attentional blink, there are several pieces of work that present findings consistent with 
our results. Firstly, evidence of working memory maintenance without conscious awareness35 sits very nicely with 
our results, and this is even more the case for such a demonstration with the attentional blink36. If we have indeed 
found a case in which working memory representations can be formed, without awareness of their formation then 
we would have identified an explanation for how items could enter working memory without being experienced, 
which then could be maintained without experience. Our results may help explain how these pre-conscious work-
ing memory traces arise by giving them a mechanism through which they can be encoded without conscious 
experience37 also present experimental conditions in which they are able to use metacontrast masking to vary the 
subjective report of consciousness, while stimulus discriminability is maintained. Further, the authors find that as 
SOA decreases (down to around 50 ms, at which point the effect reverses) shorter SOAs result in lower subjective 
experience, consistent with our finding that subjective experience drops as T1 and T2 become closer37. is a land-
mark study; our results, though, move beyond their work by applying state-trace analysis rather than single disso-
ciations, and by considering identification with free recall, rather than two alternative forced choice decisions. In 
this sense, our objective behaviour relies upon a significantly more complex cognitive process.

Taking our results along with those from1,3,4 that indicate some degree of perception without reportability, it 
may be tempting to conclude that working memory encoding and perception are highly correlated but mutually 
dissociable processes. However, all of the studies above provide their evidence in the form of the single dissocia-
tions. Further state-trace analysis could provide additional evidence for the dual question to that studied in this 
paper.

From a theoretical point of view, it is interesting that perception is most taxed at Lag 1. As we have discussed11, 
note that this pattern of behaviour is consistent with a model of the attentional/experiential blink in which stimuli 
are consciously perceived in a serial manner, but encoded in a simultaneous manner. This is discussed in further 
detail below.

integrated percepts. One potential criticism of our results is that the low subjective experience at Lag 1 is 
caused by the rather unique nature of the Lag 1 data point. Lag 1 is the only data point without any intervening 
distractors, and is, notably, by far the most vulnerable point to order errors23, or integration of both targets into 
one perceptual episode25. In this case, the poor report of subjective experience of T2 might be confounded by 
the presence of T1. Participants might report poor T2 visibility not because T2 was not vividly experienced, but 
because the experience of T1 in the same perceptual episode causes confusion. This issue was discussed at length 
in11, but we return to the point, since it remains an important potential confound that is worth revisiting in the 
light of the new findings being presented in this paper. We additionally note that there are an unusually small 
number of putative integrated percepts in the experiment of11. The colour marking of T1 in this experiment 
reduced the classical indicator of integrated percepts, order errors, from 30% in classic letters/digits tasks38 to 
approximately 10% in the task from11. Further, we note that the pattern of behaviour we see at Lag 1, with low 
subjective experience and high accuracy is also visible to a lesser extent at lags 2 and 3, in which there are inter-
vening distractors.

Another important point that stands against an integrated percepts explanation is the evidence that the reduc-
tion in relative subjective visibility can also be observed at Lag 2, and perhaps also weakly at Lag 3. The interaction 
analysis in11 showed this, and the state-trace analysis we performed in this paper, suggested a non-monotonic pat-
tern was still found in the replication (letters-in-digits) task when Lag 1 was removed. The integration argument 
is though classically ascribed specifically to Lag 1 and not later lags, in which there are intervening distractors. 
A further reason for believing that perceptual integration is unlikely to explain our findings is that it seems T1 is 
immune to the decoupling of report accuracy and subjective visibility, a point we discuss next.

Target specificity of decoupling. Importantly, the replication (letters-in-digits) data set that we analyse 
in this paper strengthens the specificity of the argument we are able to make. This further data set has enabled us 
to, firstly, replicate the decoupling between report accuracy and subjective visibility for T2. This was done with 
the state-trace analysis of T2 reported in subsection “Replication (letters-in-digits) Data” of section “Results”. In 
addition33, reports the classic T2 interaction between Report Measure (report accuracy vs subjective visibility) 
and Lag for the letters-in-digits data set, which we reported in11 for the original (colour-marked T1) data set.

Secondly, and perhaps most significantly, while subjective visibility ratings for T1 were not collected in the 
original (colour-marked T1) data set, the replication data set has that data point. As a result, we have been able 
to investigate whether there is a dissociation of report accuracy and subjective visibility for T1; and, importantly, 
there does not seem to be one33 failed to find an interaction between Report Measure (report accuracy vs subjec-
tive visibility) and Lag, and, in this paper, we identified a monotonic state-trace pattern for T1 in the replication 
data set; see subsection “Replication (letters-in-digits) Data” and Fig. 10.

The immunity of T1 to the report accuracy – subjective visibility dissociation suggests that the relation-
ship between working memory encoding and conscious perception is unchanged across lags, and, notably, that 
co-activation of T1 with T2 (as occurs at very short lags) does not impair the conscious experience of T1, in the 
way it does T2. This finding is wholly consistent with the serial experience interpretation we are arguing for in this 
paper. That is, at very short lags, particularly Lag 1, T1 typically starts being perceived before T2 does, conferring 
it occupancy of the exclusive “focus of conscious experience”, and the, late coming, T2 is excluded. This manifests 
in a, relative (to report accuracy), loss of visibility for T2, but not for T1, which is what we observe. In other words, 
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the T1 claims “the brain’s experiencer” before T2 arrives, and holds it until T2 has decayed, but there is no such 
exclusivity to the encoding into working memory.

This T1 immunity to the report accuracy – visibility dissociation also stands against a perceptual/event inte-
gration interpretation. This is because, at its very heart, event integration suggests a composite of T1 and T2 is 
experienced. But, if that were the case, one would surely expect any impairment in T2 visibility associated with 
that composite, to also impact T1, In other words, if one is going to argue that T2 subjective visibility being low at 
Lag 1 is due to a confused “joint” binding, why would that decoupling of subjective visibility and report accuracy 
not also impact T1?

Simultaneous type/serial token model. There is no certainty with regard to an explanation of data such 
as we are presenting in this paper, but a computational account is as good a demonstration as one can have that a 
group of theoretical positions are consistent with each other, since a computational model has to run and generate 
this range of phenomena. Thus, we would argue that the STST computational account and the extension of it in 
the current paper is the demonstration that the theoretical positions we are taking are reconcilable. In particular, 
this shows that the subjective visibility findings we have named the Experiential Blink are reconcilable with the 
STST computation model, in particular, additions to the simultaneous type/serial token (STST) model of tempo-
ral attention allow it to index subjective experience as well as report accuracy, with the goal of providing a model 
that can explore the dissociations we discuss in this paper. In order to verify this model, we compared its predic-
tions with the human data from11. The first comparison we made is between the behavioural results, specifically, 
we compare the respective report accuracies and subjective visibilities predicted by the SESE model to those from 
the human data. The results from this can be seen in Fig. 11(A,B). Overall, there is a strong similarity between 
the two. One notable difference is that the SESE model is simulating a slightly more difficult task than the human 
data – report accuracy lower by around 10%. Perhaps because of this, the SESE model also demonstrates a more 
marked downturn in subjective report at earlier lags than the human data.

We also compared the virtual ERPs generated by the SESE model with the human ERP data. The most signif-
icant difference between the two is the respective late dynamics of SESE compared to the human data, with the 
SESE data ERPs showing differences to the human data from approximately 600 ms onward. Despite this, there 
is still a strong qualitative fit between the SESE data and the human data. It is important to note that we have 
taken the STST model exactly as it was formulated over 10 years ago, i.e. in10. Most notably, we have not refitted 
the parameters of the model in order to improve the match to the experimental data presented in this paper. This 
surely means that the match between model and experimental data is not going to be quantitatively perfect. In this 
respect, it is perhaps only reasonable to just expect a qualitative match between model and experimental results. 
In this context, the quality of match to the empirical data is, we would argue, impressive. Most importantly, the 
simulations we have run with SESE have provided a proof of principle that the explanation presented in Fig. 5 
for why report accuracy and subjective visibility diverge is tenable. This explanation rests on the concept that 
encoding into working memory can proceed in parallel, but conscious perception cannot, a concept which we 
have noted suggests a theory called simultaneous encoding/serial experience. The natural electrophysiological 
correlate of this is a time-extended P3 when both T1 and T2 are consciously perceived, as opposed to just T1. This 
is what we observe in our data, and simulations in Fig. 12.

It is also important to observe that without a full investigation of the range of input strengths and parameter 
values within the STST family of models, the full range of patterns of data that can be embraced by the SESE 
model is not certain. For example, in its current configuration, the model generates very low visibility at lag-1 (see 
Fig. 11), which seems inconsistent with the observation that subjective visibility can exhibit sparing at lag-1, just 
substantially less than observed for report accuracy; see Fig. 6B). However, within the STST family of models, 
there may be a region of parameter settings that enable weak sparing for visibility at lag-1. In particular, the model 
is on something of a “knife-edge” at lag-1 and small changes in input strength and parameter settings can greatly 
change the model’s behaviour.

One possible way in which sparing could be obtained for visibility would be if the T1 activation trace were 
high amplitude but short in duration, only excluding perception of T2 for a short period and thereby enabling it 
to be seen relatively vividly. If this were accompanied by very weak activation traces for T2 during the blink, weak 
lag-1 sparing of visibility may be obtainable. In this respect, aspects of the eSTST model23 could be relevant, since 
they enable a more marked difference in dynamics between sparing and the blink. These aspects ensure that it is 
hard to reactivate the blaster (STST’s attentional enhancement) once a blink has been initiated, naturally leading 
to weak T2 activation traces at lags 2 and 3. This said, modelling sparing of visibility at lag-1 is likely, at the least, 
to require retuning of STST’s parameters, a step we have avoided to date.

A potentially far-reaching claim of the SESE model is that the generation of P3s is more involved than previ-
ously proposed (see31) for STST. We are not in a position to completely define this approach with full neural detail; 
that has to await further work. However, the new interpretation is required in order to be consistent with the 
results we present here and particularly in11. Specifically11, suggests that the P3 indexes conscious perception, not 
working memory encoding, so if we are proposing seriality of conscious perception, we have to propose seriality 
of the P3. Although a definitive mechanistic explanation awaits further modelling work, the intuition is that the 
activation traces currently generated by STST (which aggregate across a number of layers of the model) are pre-
cursors to the actual P3 and are earlier in the processing pathway. These activation traces feed into our “readout” 
mechanism, which is serial, excluding the second target from contributing to the P3 until the first has completed 
being experienced, i.e. has dropped below threshold.

Thus, we are imagining that the activation traces for T1 and T2 that the original STST model generate remain 
unchanged and can unfold in parallel, as they currently do at lag-1. Working memory encoding is still driven 
from these traces, but conscious experience is driven by the traces read-out, a notion that could be related to 
ideas of self-observation prominent in theories of conscious experience39–41. This readout enhancement can be 
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considered speculative at this point. However, we include the idea here, since one purpose of theory is to provide 
strong claims that empirical work can attempt to disprove. This is a classic example of a scientific prediction that 
would be considered unlikely unless one subscribes to the theoretical position associated with the SESE theory. 
These are exactly the predictions that can carry the most evidence if experimentally investigated.

Indeed, it is central to scientific progress that testable predictions are made from models, in order that for-
malised theories can be disproved, the key to scientific progress from a Popperian perspective. In this spirit, the 
SESE model that we have presented in this paper makes two particularaly strong claims. The first being that that 
the P3 at lag-1 does not have the form of a double-amplitude single-target P3. Note, the vanilla STST, without 
readout-enhancement, does generate a double-amplitude P3 at lag-1, see Fig. 7 of31. Critically, it is important 
to rule out the possibility that the observed lag-1 P3 is reduced in amplitude because it is at ceiling. That is, the 
specific prediction is that the lag-1 P3 is a similar amplitude to a single-target P3 and the distribution of P3s 
observed is not skewed according to a ceiling effect. The second key prediction that the SESE P3 readout mech-
anism predicts is that the steady state visual evoked potential (SSVEP) weakens or even de-synchromises during 
the P3. This is because if one asserts that an ongoing P3 for a target excludes the activation trace for another tar-
get, it should also exclude or dampen the activation traces of distractors (which drive the steady state response). 
Clearly, the SSVEP is at least partially from generators substantially earlier in the processing pathway than those 
that might directly drive the P3. Nonetheless, some sort of reduction in the power of the SSVEP may be observ-
able. Disproving the first of these predictions would be a major problem for the readout-enhanced STST theory. 
Finding evidence for the second would provide converging evidence for the theory.

Seriality and StSt. It is important to clarify the STST theory in the light of the findings and the serial expe-
rience ideas presented here. The following are key points to consider.

 1. The original STST theory already makes a seriality assertion10. This, though, is a seriality over a longer 
time-frame than we are considering in this paper. That is, it proposes that the attentional blink has the role 
of delaying the start of a second episode, in order that all the bindings associated with a first episode can be 
completed before the next one starts. Thus, the seriality it focusses on is “across” the attentional blink, e.g. 
between a T1 and a T2 at, say, lag 5. As currently framed, it is focussed on working memory encoding, and 
does not explicitly speak to conscious experience.

 2. The seriality considered in the current paper, is focussed on what happens when targets are very close 
together in time, e.g. at Lag 1. The original STST theory presented in10 incorporated the notion of a “joint 
encoding” at Lag 1, whereby both T1 and T2 can be encoded into WM, but with a loss of episodic infor-
mation, e.g. order and conjunction properties. The Experiential blink and the experience read-out theory 
presented in this paper extends the “joint encoding” notion from the original STST model, by arguing 
that there can be “joint encodings”, but for T2 to be experienced, it has to be sufficiently strong that it can 
outlive the experiencing of T1. This is a new idea to the STST framework. The serialising considered here is 
specifically about conscious experience (the serialising of point 1. above is about working memory encod-
ing), and it specifically occurs within a single episode, not across them.

conclusion
We have examined the evidence for a dissociation between working memory encoding and subjective report 
in the attentional blink, and developed our own additions to current state-trace methodology. Our data stands 
clearly for a dissociation between working memory encoding and subjective report, and examining the data 
shows that this is the result of an increase in accuracy and a decrease of subjective visibility at lags 1, 2 and 3. 
Overall, we may have found evidence for a case in which it is possible to encode a stimulus into working memory 
without consciously perceiving it, a phenomenon we call sight-blind recall; however, a good deal more evidence 
needs to be acquired before this claim can be made with confidence. The SESE model is consistent with findings 
from human participants, and the results of the state trace analysis of this current work. However, more work will 
be required to determine the further predictions that the SESE model makes, and the sparseness of literature with 
respect to the experiential blink will require further experimentation to validate the predictions presented in this 
paper and those that will emerge. In particular, although there are a number of competing explanations of the 
decoupling of report accuracy and subjective visibility we observe (see11 for a detailed consideration of many of 
these), evidence for the capacity to encode in parallel and experience in sequence is accumulating.

Data availability
All of the code used in this project has been open sourced on Github, subject to an MIT liscence. See https://
github.com/william-r-jones/StateTrace for the modified state-trace code, and https://github.com/william-
r-jones/SESE for the modified STST model. All of the data used in this paper is also available alongside this 
code where possible, though some datasets (notably the EEG data) are too large for this to be possible and 
have instead been made available using the Dataverse Project. See https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi%3A10.7910%2FDVN%2FU9DFFI.
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