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Genetic polymorphisms, 
Mediterranean Diet and 
Microbiota-Associated Urolithin 
Metabotypes can predict obesity in 
childhood-Adolescence
Adrián cortés-Martín1,3, Gonzalo colmenarejo  2,3, María Victoria Selma  1 & 
Juan carlos espín  1 ✉

environmental and genetic factors are associated with pandemic obesity since childhood. However, 
the association of overweight-obesity with these factors, acting as a consortium, has been scarcely 
studied in children. We aimed here to assess the probabilities of being overweighed-obese in a randomly 
recruited cohort of Spanish children and adolescents (n = 415, 5−17 years-old) by estimating the odds 
ratios for different predictor variables, and their relative importance in the prediction. The predictor 
variables were ethnicity, age, sex, adherence to the Mediterranean diet (KIDMED), physical activity, 
urolithin metabotypes (UM-A, UM-B and UM-0) as biomarkers of the gut microbiota, and 53 single-
nucleotide polymorphisms (SNPs) from 43 genes mainly related to obesity and cardiometabolic 
diseases. A proportional-odds logistic ordinal regression, validated through bootstrap, was used to 
model the data. While every variable was not independently associated with overweight-obesity, 
however, the ordinal logistic model revealed that overweight-obesity prevalence was related to being 
a young boy with either UM-B or UM-0, low KIDMED score and high contribution of a consortium of 24 
SNPs, being rs1801253-ADRB1, rs4343-ACE, rs8061518-FTO, rs1130864-CRP, rs659366-UCP2, rs6131-
SELP, rs12535708-LEP, rs1501299-ADIPOQ, rs708272-CETP and rs2241766-ADIPOQ the top-ten 
contributing SNPs. Additional research should confirm and complete this model by including dietary 
interventions and the individuals’ gut microbiota composition.

Obesity is an aetiological condition associated with some types of cancer and cardiometabolic diseases such as 
type-2 diabetes, metabolic syndrome, non-alcoholic steatohepatitis, and hypertension1. Nowadays, it is widely 
accepted that the combination of high-energy diets, genetic make-up, sedentary lifestyles and gut dysbiosis 
(impaired composition and functionality of the gut microbiota) are involved in the obesity pandemic2–4. The 
prevalence of these significant health threats has risen to shocking proportions worldwide, including countries 
like Spain with ancestral adherence to the Mediterranean diet5. The increase in the rate of obesity has been mainly 
attributed to the ‘Westernization’ of the diet, the decrease of physical activity from childhood, currently aggra-
vated by the abuse of playing videogames, and the increasingly early access to digital devices such as smart-
phones6. However, other potential variables could be participating in this pandemic.

Many studies have associated obesity in children and adults with single nucleotide polymorphisms (SNPs). For 
example, in genome-wide association studies (GWAS), the rs9939609 SNP in the fat-mass-and-obesity-associated 
(FTO) gene has been reported to account for a modest, but a statistically significant, increase of 0.4 kg/m2 body 
mass index (BMI) units for each risk allele (A)7. Although it is not fully understood yet, this association is par-
tially mediated via controlling feeding behaviour8. However, not all the studies report this association, including 
those conducted in the child population9,10. Indeed, more than one million SNPs have been detected in the human 
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genome11, and thus, instead of only one or few specific SNPs, it is more conceivable to expect the complex action 
of a consortium of SNPs potentially interacting with many other variables and associated with different condi-
tions, including obesity.

The gut microbiota is also involved in the pathophysiology of obesity, although the associated mechanisms 
are not fully known yet3. Nevertheless, a number of pathways have been identified such as the translocation 
of lipopolysaccharides (LPS) from the gut to the bloodstream12, the regulation of gut hormones, energy har-
vest, inflammatory responses, lipogenesis and immune interactions13 as well as the regulation of white adipose 
tissue inflammation via microRNAs14. Recently, a potential nexus between the dissimilar metabolism of some 
dietary constituents by the microbiota and obesity has been proposed. This has been suggested for the metabo-
lism of the polyphenols isoflavones15 and ellagitannins16–18 that yield specific metabolites19, that is, equol and(or) 
O-desmethylangolensin (ODMA) in the case of isoflavones20, and different urolithin combinations in the case of 
ellagitannins17. These particular types of metabolisms, in the context of polyphenols, give rise to specific metab-
olizing phenotypes: the so-called ‘metabotypes’16,19. A metabotype is characterized by the production of specific 
metabolites derived from the gut microbiota (which are characteristic of the precursor polyphenol metabolism), 
and also by the associated microbial ecology in terms of composition and activity16,19. Therefore, the capacity to 
excrete high or low amounts of microbial-derived metabolites is not within the concept of metabotype19. The 
definition of metabotypes in the metabolism of polyphenols, only fits currently for the equol and(or) ODMA 
‘producers’ vs ‘non-producers’ metabotypes in the case of isoflavones20, and also for the urolithin metabotypes 
associated with the metabolism of ellagitannins, i.e., metabotype A (UM-A; individuals that produce only uro-
lithin A), B (UM-B; production of isourolithin A, urolithin B and also urolithin A) and 0 (UM-0; urolithin 
non-producers)17,19 (Supplementary Fig. 1). The occurrence of specific gut microbiota metabotypes is behind 
the inter-individual variability upon polyphenol consumption21,22 and could be indirect markers of gut dysbio-
sis reflecting the individuals’ gut microbiota composition, richness, diversity, and functionality19,23–25. Although 
the gut microbiota associated with UM-B and UM-0 individuals show a dysbiotic-prone pattern25, however, the 
unequivocal association between these metabotypes with obesity has not been confirmed so far due to its multi-
factorial aetiology25,26.

In the present study, we aimed to assess the probabilities of being overweighed or obese in a cohort of children 
and adolescents from the Southeast of Spain by estimating the odds ratios (ORs) for different predictor variables 
and their relative importance in the prediction of the response. In this proof-of-concept, we considered as pre-
dictor variables the urolithin metabotypes as biomarkers of the gut microbiota, ethnicity, age, sex, the adherence 
to the Mediterranean diet, physical activity, and a consortium of 53 SNPs from 43 genes mainly related to obesity 
and cardiometabolic diseases.

Methods
Study population. This research (‘The PolyMicroBio study’) was included in the Spanish National Project 
AGL2015-64124-R and complied with the ethical guidelines outlined in the Declaration of Helsinki and ethi-
cal principles for medical research involving human subjects (Seoul, Korea, 2008). The study was conceived to 
stratify the participants according to their urolithin metabotypes after three days of walnuts or pomegranate 
juice consumption26 and was not intended to modify any variable in the children. The trial was registered at 
clinicaltrials.gov (NCT03318042), and the Spanish National Research Council’s Bioethics Committee (Madrid, 
Spain) approved the protocol. Inclusion criteria were ages from 5 to 17 years old and good health status. Exclusion 
criteria were diagnosed pathology, previous gastrointestinal surgery, chronic medication and antibiotic intake 
one month before participating. A total of 415 children and adolescents were randomly recruited. Children 
within the 5 to 12 years old group (n = 202) were recruited from the public primary school ‘CEIP Jara Carrillo’ 
(Alcantarilla, Murcia, Spain) and adolescents aged from 13 to 17 (n = 213) from the public high school ‘IES 
Alcántara’ (Alcantarilla, Murcia, Spain). Parents were fully informed and gave their written informed consent 
before the participation of all students.

Urolithin metabotypes. Children and adolescents consumed 25 g peeled raw walnuts daily or 250 mL 
of pomegranate juice daily (in the case of individuals allergic to nuts) for three days. Packs of peeled walnuts 
were kindly provided by Borges International Group, S.L. (Reus, Tarragona, Spain) and pomegranate juice by 
the AMC Group (Espinardo, Murcia, Spain). In the morning of the fourth day, a sample of urine was provided 
for its analysis by high-performance liquid chromatography with diode array detection coupled to electrospray 
ionisation and ion-trap tandem mass spectrometry (HPLC-DAD-ESI-IT-MS/MS), and ultra-high performance 
liquid chromatography coupled with electrospray ionization-quadrupole-time-of-flight-mass spectrometry 
(UPLC-ESI-QTOF-MS) as described elsewhere27. This allowed the stratification of the participants according to 
their different capacity to metabolise ellagic acid derivatives into urolithins, i.e., urolithin metabotypes UM-A, 
UM-B or UM-0 as previously described26.

Anthropometric measurements and validated questionnaires. The determinations of height, 
weight, and waist and hip circumference were performed always by the same research staff, using the same equip-
ment in all cases, and in the presence of teachers from the educational centres. The child growth standards from 
the World Health Organization (WHO) were used to define the BMI (kg/m2) cut-offs for underweight, nor-
moweight, overweight and obese individuals as a function of sex and age5. The students were asked to record 
possible incidences (medication, protocol compliance, etc.), and also their physical activity level28, which took 
into account the two hours of physical activity a week in their schools (low activity) and the practice of additional 
extracurricular sports at least three days a week (high activity). Besides, a validated questionnaire to assess the 
adherence to the Mediterranean diet in children (KIDMED) was used29. The score in this questionnaire (ranging 
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from 1 to 13, from very poor to optimum adhesion, respectively) was grouped as ‘Low’ (score from 1 to 4), 
‘Medium’ (from 5 to 8), and ‘Good’ (from 9 to 13).

Selection of Snps and genotyping. Candidate genes and polymorphisms were identified after browsing 
the Single Nucleotide Polymorphism Database (dbSNP) and examining the published literature regarding each 
known gene and variant (favourable and unfavourable) associations30–32, and analysing their potential regula-
tory and biological functions with the Regulome DB and HaploReg v4.1 databases33,34. On the same day of the 
anthropometric evaluation, saliva samples were obtained by gently rubbing the inside part of the cheek with 
a sterile swab, free of human RNA and DNA (Deltalab, Barcelona, Spain). Children were asked to clean their 
mouths and avoid eating or drinking 60 min before collection of samples to prevent contaminations. Two sam-
ples were obtained per student. The swabs were immediately stored in refrigeration and further frozen at −80 °C 
until their processing. Genomic DNA extraction and genotyping were carried out at the GENYAL Platform 
(IMDEA-Food, Madrid, Spain) using the OpenArray™ AccuFill™ System (Life Technologies Inc. Carlsbad, CA, 
USA) as described elsewhere35. Data analysis was made by TaqMan Genotyper Software v1.3 (autocaller confi-
dence level >90%).

Statistical analysis. A proportional-odds logistic ordinal regression was used to model the data with the 
software R version 3.5.1 (www.r-project.org). Nine subjects with >40% missing SNPs were removed, resulting 
in a final sample size of 406 students (Supplementary Fig. 2). The missing data was singly imputed using the 
missForest R package. Redundant predictors (rs9928094-FTO, rs9935401-FTO) were identified and removed 
using the Hmisc R package. SNPs with either favourable or unfavourable genotype frequencies below 5% were 
also removed (rs4994-ADRB3, rs7913948-ALOX5, rs7412-APOE, rs328-LPL, rs16139-NPY, rs6008259-PPARγ, 
rs2066826-PTGS2) (Supplementary Table 1). Using the ‘n/15 rule’36, only 21 predictors could be used to get 
reliable estimates. Consequently, data reduction was applied to the SNPs by applying Multiple Correspondence 
Analysis (MCA) and using only the first 15 MCA dimensions. Ethnic groups representing less than 1% each were 
merged into the ‘Other’ category.

Wald tests for all the predictors in the model were generated, and they were further ranked by importance 
based on the χ2-degrees of freedom (-df) score. A simplified model was obtained by applying a ‘fast-backwards’ 
variable elimination approach37 based on the Akaike’s Information Criterion (AIC)38. The approximate βs and 
ORs (and their 95% confidence intervals, CI) of the remaining variables were reported. The full model was val-
idated through bootstrap to provide estimates of the performance of the model in new data in comparison with 
the training data, in the form of Sommers Dxy, R2, intercept, slope, Emax, and Briers B score. The significant con-
tributions (coefficients of determination R2 with p values < 0.05) of SNPs to the essential MCA dimension were 
plotted to deconvolute it.

We used the proportional odds assumption in the model. ‘Physical activity’, ‘KIDMED’ and ‘Urolithin metabo-
type’ showed some deviation from this assumption. However, alternative extended continuation ratio models 
with this assumption relaxed for these variables did not result in better models according to the AIC, i.e., the 
higher complexity of the model was not compensated by the increase in the fit. The inclusion of transformations 
of some predictors, including a restricted cubic spline for both ‘Age’ and ‘KIDMED’, did not result in improved 
models, as judged by the AIC. Finally, a genetic score (computed as the sum of risk alleles) was also tested as a 
possible surrogate for the SNPs variables, but this did not result in a better replacement for the MCA dimensions. 
All tests were bilateral, with a significance level of 0.05.

Other statistical analyses were carried out using the SPSS software, v23.0 (SPSS Inc., Chicago, IL, USA). When 
more than two groups were compared, analyses of variance (ANOVA), followed by Bonferroni-corrected t-test 
(for post-hoc analysis) or the Kruskal–Wallis followed by Dunn’s test were used for normally and non-normally 
distributed data, respectively (KIDMED score vs FTO genotype TT, AT or AA, etc.). Comparison of non-normally 
distributed quantitative variables between two clusters was approached using the Mann-Whitney U-test (FTO TT 
genotype vs BMI or waist, etc.). Comparison of categorical variables was assessed using the Pearson’s χ2 test. 
Spearman’s rank or Pearson correlations were applied to explore possible associations between variables (BMI vs 
hip/height, etc.). Plots of data were performed using Sigma Plot 13.0 (Systat Software, San Jose, CA, USA).

Results
characteristics of the cohort and associations with overweight-obesity. Table 1 shows character-
istics of the cohort as a function of age and sex, including anthropometric values (hip, waist, weight and BMI), 
the distribution of urolithin metabotypes (A, B and 0), the KIDMED scores (grouped as low, medium and good 
adherence), physical activity and the percentage of normoweight, overweight and obesity. The participants were 
mainly Caucasian-Europeans (93.5%), with a small proportion of Arabs (2.9%) and Amerindians (2.2%), and a 
marginal presence of Black-Africans (0.96%), Asian-Chinese (0.22%), and Indo-Aryans (0.22%).

The hip-to-height ratio was the best anthropometric index associated with BMI (r = 0.78, p = 1.3 × 10–86) 
vs the waist-to-hip ratio (r = 0.13, p = 0.007) and the waist-to-height ratio (r = 0.32, p = 0.001) (Supplementary 
Fig. 3). As expected in growing children, BMI values increased on average from 5 to 17 years (Fig. 1A). The per-
centage of overweight-obesity decreased from 5 to 17 years (from 50% to 25%, respectively) with the exemption of 
boys from 9 to 12 years old (n = 64) that reached the highest prevalence of overweight-obesity (∼70%) (Fig. 1B). 
This categorized representation (Fig. 1B) was coincident with the quantitative evolution of BMI z-scores for girls 
(Fig. 1C) and boys (Fig. 1D) as a function of age.

Regarding the SNPs analysed, after correcting for multiple tests, three SNPs did not satisfy the Hardy-Weinberg 
equilibrium (HWE) (rs1801253, rs5082, rs11868035) (Supplementary Table 1). The rest of the SNPs were in 
equilibrium and were close to European frequencies. In the case of these three SNPs, we can speculate that the 
reason could be the association established by the presence of certain consanguinity (several sibling groups in the 
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Age 
(y) Sex

Hip 
(cm)*

Waist 
(cm)*

Weight 
(kg)*

Height 
(cm)*

BMI (kg/
m2)*

BMI 
z-score*

NW 
(%)

OW 
(%)

OB 
(%)

KIDMED (%) 
(L/M/G)

Physical 
Activity (%) 
(H/L)

Metabotype (%) 
(A/B/0)

5

F (n = 16)
65.5 
(58.0–
81.0)

58.5 
(48.0–
76.0)

20.9 
(15.9–31.1)

110.5 
(103.5–
119.0)

16.4 
(13.6–
25.7)

0.8 
(−1.4–2.9) 50.0 18.8 31.2 28.6/64.3/7.1 76.9/23.1 81.3/0.0/18.7

M 
(n = 14)

66.5 
(58.0–
83.0)

59.5 
(51.0–
71.5)

22.2 
(17.4–34.2)

114.5 
(110.0–
124.0)

16.7 
(13.7–
24.4)

0.9 
(−1.8–3.5) 50.0 21.4 28.6 57.1/28.6/14.3 84.6/15.4 64.3/0.0/35.7

6

F (n = 10)
69.5 
(59.0–
81.0)

59.3 
(52.0–
76.0)

23.7 
(16.8–37.1)

118.9 
(110.0–
128.5)

15.9 
(13.9–
24.9)

0.4 
(−1.1–2.6) 60.0 10.0 30.0 30.0/50.0/20.0 60.0/40.0 90.0/10.0/0.0

M (n = 9)
68.0 
(64.0–
78.0)

59.0 
(55.0–
71.0)

22.7 
(20.8–32.5)

121.5 
(116.0–
125.5)

16.3 
(14.5–
21.9)

0.7 
(−0.8–2.5) 55.5 0.0 45.5 11.2/44.4/44.4 77.8/22.2 77.8/11.1/11.1

7

F (n = 9)
70.0 
(66.0–
82.0)

64.0 
(55.0–
76.0)

26.8 
(24.5–40.5)

130.0 
(123.5–
132.9)

17.6 
(15.0–
24.0)

1.0 
(−0.3–2.3) 55.5 11.1 34.4 22.2/44.4/33.3 88.8/11.2 55.5/33.3/11.2

M 
(n = 16)

70.5 
(65.0–
85.0)

59.5 
(55.0–
76.0)

26.6 
(21.1–44.5)

123.8 
(116.0–
140.6)

17.0 
(13.9–
24.6)

0.9 
(−1.4–2.6) 56.3 12.5 31.2 33.4/53.3/13.3 93.8/6.2 68.8/18.8/12.4

8

F (n = 16)
74.5 
(67.0–
91.0)

60.5 
(53.0–
80.0)

32.1 
(24.1–48.5)

132.5 
(124.1–
142.0)

18.3 
(15.1–
26.4)

1.0 
(−0.4–2.4) 50.0 18.8 31.2 6.7/86.6/6.7 56.3/43.7 93.8/0.0/6.2

M 
(n = 16)

75.0 
(62.0–
97.0)

63.0 
(53.0–
85.0)

28.4 
(19.8–63.1)

128.2 
(118.3–
153.5)

17.6 
(11.4–
26.8)

0.9 
(−5.7–2.5) 50.0 18.8 31.2 37.4/56.3/6.3 73.3/26.7 81.3/0.0/18.7

9

F (n = 12)
77.0 
(68.0–
103.0)

64.0 
(53.0–
82.0)

36.9 
(27.9–63.2)

141.6 
(134.9–
149.8)

18.4 
(14.5–
30.0)

0.8 
(−1.1–2.5) 58.3 16.7 25.0 41.7/50.0/8.3 100.0/0.0 100.0/0.0/0.0

M 
(n = 12)

80.6 
(71.0–
97.0)

70.0 
(58.0–
90.5)

38.5 
(27.9–59.6)

137.3 
(125.7–
152.2)

20.1 
(16.1–
28.3)

1.2 
(0.0–2.4) 33.3 41.7 25.0 33.3/66.6/0.0 91.7/8.3 75.0/16.7/8.3

10

F (n = 14)
79.0 
(74.0–
99.0)

65.5 
(57.0–
82.2)

38.5 
(30.4–61.7)

143.0 
(137.8–
159.5)

19.2 
(15.6–
27.3)

0.8 
(−0.6–2.2) 50.0 28.6 21.4 35.7/50.0/14.3 57.1/42.9 78.6/14.3/7.1

M 
(n = 15)

87.0 
(73.0–
98.0)

71.0 
(60.0–
90.0)

46.7 
(30.5–66.4)

146.7 
(132.6–
152.5)

20.8 
(16.1–
30.7)

1.4 
(−0.3–2.5) 26.7 33.3 40.0 40.0/53.3/6.7 93.3/6.7 86.7/13.3/0.0

11

F (n = 20)
86.5 
(74.0–
106.0)

65.0 
(58.0–
83.0)

46.4 
(32.4–74.3)

153.0 
(143.0–
173.2)

19.3 
(15.5–
28.0)

0.6 
(−1.0–2.1) 65.0 25.0 10.0 10.0/80.0/10.0 60.0/40.0 95.0/5.0/0.0

M 
(n = 17)

88.0 
(69.0–
101.0)

73.0 
(58.0–
85.0)

47.0 
(29.6–63.2)

149.0 
(138.0–
161.0)

20.8 
(15.2–
27.4)

1.2 
(−1.2–2.1) 35.3 35.3 29.4 11.7/82.4/5.9 76.5/23.5 94.1/0.0/5.9

12

F (n = 21)
88.0 
(79.0–
108.0)

66.0 
(60.0–
84.0)

48.8 
(36.7–72.6)

156.5 
(146.0–
165.2)

20.4 
(16.5–
29.5)

0.7 
(−0.8–2.1) 66.7 19.0 14.3 33.3/52.4/14.3 71.4/28.6 61.9/23.8/14.3

M 
(n = 20)

90.0 
(74.0–
107.0)

72.0 
(62.0–
93.0)

54.1 
(33.9–77.5)

156.5 
(142.9–
170.5)

22.2 
(16.1–
28.8)

1.3 
(−0.9–2.2) 25.0 50.0 25.0 30.0/60.0/10.0 80.0/20.0 85.0/10.0/5.0

13

F (n = 14)
89.0 
(75.0–
123.0)

67.5 
(58.0–
100.0)

51.2 
(35.0–92.9)

154.6 
(145.3–
167.1)

20.8 
(14.6–
38.4)

0.6 
(−2.2–2.6) 71.4 7.1 21.5 21.4/78.6/0.0 50.0/50.0 57.1/35.8/7.1

M 
(n = 17)

91.0 
(81.0–
128.0)

71.0 
(62.0–
100.0)

59.1 (42.2–
112.6)

165.6 
(152.1–
180.2)

20.4 
(15.1–
38.5)

0.7 
(−2.0–2.3) 58.8 5.9 35.3 29.4/70.6/0.0 81.3/18.7 82.4/17.6/0.0

14

F (n = 19)
90.0 
(81.5–
106.0)

69.5 
(58.0–
90.0)

53.2 
(43.4–73.5)

160.5 
(151.7–
171.5)

19.3 
(16.1–
29.6)

0.0 
(−1.5–1.9) 68.4 26.3 5.3 36.8/63.2/0.0 36.8/63.2 78.9/15.8/5.3

M 
(n = 11)

94.0 
(71.0–
123.0)

72.0 
(67.0–
101.0)

61.7 (46.0–
106.9)

171.5 
(162.5–
189.5)

20.9 
(17.1–
36.1)

0.6 
(−1.0–2.5) 63.6 27.3 9.1 9.1/90.9/0.0 81.8/18.2 81.8/0.0/18.2

15

F (n = 15)
88.0 
(82.0–
99.0)

68.0 
(59.0–
81.0)

52.5 
(43.5–63.4)

158.5 
(156.0–
175.5)

20.3 
(16.9–
24.5)

0.1 
(−1.3–1.1) 93.3 6.7 0.0 40.0/60.0/0.0 42.8/57.2 86.8/6.6/6.6

M 
(n = 23)

94.0 
(80.0–
112.0)

75.5 
(60.0–
96.0)

62.6 
(43.5–93.3)

173.1 
(156.0–
184.5)

21.2 
(17.9–
30.3)

0.5 
(−0.9–2.1) 78.3 8.7 13.0 52.2/39.1/8.7 52.2/47.8 82.6/8.7/8.7

16

F (n = 23)
94.0 
(82.0–
138.5)

70.0 
(61.0–
137.0)

57.1 (41.0–
146.1)

157.8 
(143.5–
172.2)

23.1 
(17.5–
49.3)

0.7 
(−1.3–2.7) 73.9 21.7 4.4 34.8/52.2/13.0 39.1/60.9 65.2/21.7/13.1

M 
(n = 22)

97.0 
(83.0–
121.0)

76.0 
(64.0–
100.0)

71.1 (49.4–
110.8)

176.0 
(164.2–
186.5)

22.8 
(18.2–
35.8)

0.7 
(−1.1–2.5) 63.6 27.3 9.1 22.7/68.2/9.1 77.3/22.7 77.3/4.5/18.2

Continued
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cohort). Nevertheless, this did not affect our results, since we aimed to compare variables from different domains 
and not only in estimating the particular effect of a single SNP. Overall, it is not absolutely necessary to have HWE 
in our approach, i.e., to estimate odds ratios of an MCA dimension and rank the predictors.

The distribution of urolithin metabotypes in this cohort (Fig. 1E) revealed that both a lower prevalence of 
UM-A and a higher occurrence of UM-0 were associated with an increased percentage of overweight-obesity after 
bivariate analysis (p = 0.015) (Fig. 1F).

No significant association between physical activity and overweight-obesity distribution was found (results 
not shown). On the contrary, there were many overweight-obese children with high physical activity, which 
should be explained as a consequence of their overweight-obesity status (results not shown). Regarding the 
diet, the KIDMED scores showed mean values of 6.9 ± 2.1 for the entire cohort (Supplementary Table 2) and 
ranged from the lowest value of 5.7 ± 1.4 in 15-year-old girls to the highest value of 8.8 ± 2.2 in 6-year-old boys 
(Fig. 2A). However, no significant differences were found between boys and girls as well as through the range of 
age (Fig. 2A). Besides, no significant association was found between overweight-obesity and KIDMED in this 
group (results not shown).

We next explored the potential association of both adherence to the Mediterranean diet and percentage of 
overweight-obesity with the well-known obesity risk allele A of the rs9939609 SNP in the FTO gene. Figure 2B 
shows the KIDMED scores and the percentage of normoweight and overweight-obesity in children depending 
on their genotype TT, AT or AA. Remarkably, the adherence to the Mediterranean diet was significantly lower in 
children with the risk-associated genotypes AT and AA vs the TT genotype (Fig. 2B). Although the proportion of 
overweight-obesity was the highest for the AA genotype (45.5%), however, the difference vs that of the TT geno-
type (38.7%) did not reach statistical significance (Fig. 2B). Once again, many exemptions prevented the useful-
ness of the combination of KIDMED scores and rs9939609 genotypes as unique predictors of overweight-obesity 
in this cohort.

Therefore, although both the urolithin metabotypes and rs9939609 SNP-FTO could partially contribute to 
the overweight-obesity distribution as independent predictor variables in this cohort of children and adoles-
cents; however, all the possible SNP-SNP interactions together with the rest of variables had not been taken into 
account. Therefore, we next developed an ordinal logistic model to identify the consortium of variables that could 
estimate the odds ratios of the overweight-obesity distribution in this cohort.

An ordinal logistic model to identify the consortium of variables associated with 
overweight-obesity. In this model, we used as the ordinal response the normoweight, overweight and obe-
sity classification for children, based on sex and age to estimate the odds ratios (and the corresponding 95% 
confidence intervals) for different predictor variables, as well as their relative importance in the prediction of 
the response. In this holistic approach, we used as predictors the ‘Ethnicity’, ‘Urolithin metabotypes’, ‘KIDMED 
score’, ‘Physical activity’, and genetic polymorphisms (44 SNPs were finally included and compressed into 15 MCA 
dimensions, hereafter termed ‘SNP.Dim.’), together with sex and age. Although the distribution of normoweight, 
overweight and obesity WHO-based categories was apparently adjusted by sex and age, we still observed a trend 
for decreasing average age when moving from normoweight, overweight and obese children, as well as enrich-
ment in boys in the same order. Therefore, we also included these variables in the model.

Figure 3 displays the predictors used in the ordinal logistic model ranked by their apparent importance, as 
measured by their χ2-df score. The model was highly significant (p < 0.0001), yielding the components ‘Age’, and 
‘SNP.Dim.14’ as the two most important predictors. Therefore, in the prediction of overweight-obesity in this 
population, apart from ‘Age’ and ‘Sex’, the most critical contributing variables were SNPs (through the variable 
SNP.Dim.14), followed by ‘Ethnicity’, ‘Urolithin metabotype’ and ‘KIDMED’. The ‘Physical activity’ seemed to be 
irrelevant in this sample.

We next applied a fast-backwards approach based on AIC to obtain a reduced model and estimate the cor-
responding βs and ORs (as well as their 95% CI). The variables kept were ‘Sex’, ‘Age’, ‘Urolithin metabotype’, 
‘KIDMED’, and the genetic components ‘SNP.Dim.3’, ‘SNP.Dim.11’, and ‘SNP.Dim.14’ (Table 2). The vari-
able ‘Ethnicity’ was not retained in the simplified model, probably due to its high complexity (4 levels). Our 
results reveal that being a boy either with UM-B or UM-0 and having a higher SNP.Dimension.14, all increased 
the chances of overweight-obesity in this study population. On the contrary, ageing, better adherence to the 
Mediterranean diet (higher KIDMED score), and being UM-A was associated with lower probabilities of 
being overweighed-obese. Remarkably, all these variables operated additively to build the final probability of 
overweight-obesity for each subject.

Age 
(y) Sex

Hip 
(cm)*

Waist 
(cm)*

Weight 
(kg)*

Height 
(cm)*

BMI (kg/
m2)*

BMI 
z-score*

NW 
(%)

OW 
(%)

OB 
(%)

KIDMED (%) 
(L/M/G)

Physical 
Activity (%) 
(H/L)

Metabotype (%) 
(A/B/0)

17

F (n = 19)
91.5 
(84.0–
110.0)

72.0 
(59.0–
87.0)

60.6 
(50.7–76.1)

163.0 
(149.5–
170.0)

23.0 
(17.9–
28.0)

0.6 
(−1.3–1.5) 73.7 26.3 0.0 0.0/84.2/15.8 21.1/78.9 84.2/10.5/5.3

M 
(n = 15)

92.0 
(85.0–
111.0)

73.5 
(64.0–
91.0)

66.5 
(50.5–96.0)

176.2 
(160.5–
186.8)

22.2 
(17.8–
30.0)

0.3 
(−1.2–1.9) 80.0 13.3 6.7 46.7/40.0/13.3 73.3/26.7 66.7/26.7/6.6

Table 1. Characteristics of the study population. *Results are expressed as median and (range); F, Female; M, 
Male; KIDMED (L/A/G): Low quality, Medium quality and Good quality diet, respectively. NW, normoweight; 
OW, overweight; OB, obesity; Physical activity: H, high; L, low.
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Figure 4 shows the R2 values of the 24 SNPs that significantly contributed to SNP.Dim.14 (p < 0.05). The 
most contributing SNP to this consortium was rs1801253-ADRB1, as well as other obesity risk-associated SNPs 
(UCP2, ADIPOQ, LEP, MC4R, etc.). However, there were other SNPs with less known involvement in obesity. 
Table 3 shows all the SNPs contributing to SNP.Dim.14 with their definitions and main processes in which they 
are involved.

Model validation. We used bootstrap to validate the model (Table 4). The model showed some degree of 
overfitting, reflected in a decrease of the indexes after correction for optimism. The discriminative capacity of 
the model was modest, although not negligible according to the Dxy, R2 indexes (it must be taken into account 
that the typical values of R2 in ordinal models are much lower than those observed in linear regression models), 
and the Brier score of 0.23. The calibration showed some degree of shrinkage, as seen from the deviation of the 

Figure 1. Distribution (%) of (A) BMI, (B) overweight–obesity (OW–OB), (C,D) BMI z-scores, and (E) 
urolithin metabotypes in the cohort (n = 415) from 5 to 17 years. (F) Distribution of urolithin metabotypes 
(UM-A, UM-B and UM-0) in normoweight (NW) and OW + OB children. The shadow area in C and D 
designates overweight-obesity according to WHO (https://www.who.int/growthref/who2007_bmi_for_age/
en/). ★, median of the group for each age.

https://doi.org/10.1038/s41598-020-64833-4
https://www.who.int/growthref/who2007_bmi_for_age/en/
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Figure 2. (A) KIDMED scores in girls (•) and boys (▴) from 5 to 17 years. Results are expressed as mean ± 
SD. (B) KIDMED scores (box plots) as a function of the genotypes (TT, AT and AA) of the rs9939609 SNP in 
the FTO gene. Significant differences are shown after the Kruskal Wallis test. Bar charts show the proportion 
of normoweight (NW) and overweight-obesity (OW + OB) in the cohort depending on the rs9939609-FTO 
genotype of the individuals.

Figure 3. Apparent predictor importance in the ordinal logistic model. Variables are ranked by relevance 
(based on their χ2-df score). The χ2 of the Wald test for each predictor is also shown.

Variables* βs (CIs) ORs (CIs)

Sex (boy) 0.51 (0.10, 0.918) 1.67 (1.11, 2.5)

Age −0.12 (−0.17, −0.0664) 0.88 (0.83, 0.93)

UM-B 0.21 (−0.40, 0.837) 1.24 (0.66, 2.31)

UM-0 0.68 (0.02, 1.34) 1.98 (1.03, 3.81)

KIDMED −0.06 (−0.16, 0.0256) 0.93 (0.85, 1.03)

SNP.Dim.3 1.05 (0.03, 2.07) 2.86 (1.03, 7.94)

SNP.Dim.11 1.18 (−0.01, 2.37) 3.25 (0.98, 10.7)

SNP.Dim.14 2.32 (1.08, 3.55) 10.1 (2.94, 35)

Table 2. Beta estimates (βs), odds ratios (ORs), and their corresponding confident intervals (CIs). *SNP.Dim, 
dimensions (consortium) of SNPs obtained after Multiple Component Analysis; UM-B and UM-0, urolithin 
metabotype B and 0, respectively.
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intercept and slope from 0 and 1, respectively. Emax, the maximum calibration error in predicting p (Y > normal), 
was 0.11, showing some degree of miscalibration. Overall, we obtained a significant model that still showed pre-
dictive power in external data.

Discussion
The present study shows that the probabilities of childhood overweight-obesity cannot be explained by specific 
isolated variables (that is, one or a few SNPs, or just physical activity, or diet, etc.), but by complex, multifactorial 
associations of environmental and genetic components. Besides, a genetic score, widely used in the literature39, 
and understood as the theoretical equal-additive contribution of every single SNP could not explain the distri-
bution of overweight-obesity in our cohort. In this regard, our analysis adds significance to previous studies that 
have associated the genetic background of adult individuals with the adherence to the Mediterranean diet and 
some markers related to obesity and metabolic syndrome39–41. However, to the best of our knowledge, there are no 
previous studies that explore the occurrence of overweight-obesity in children and adolescents by estimating the 
odds ratios for the predictor variables ‘urolithin metabotypes’ as gut microbiota biomarkers, ‘age’, ‘sex’, ‘adherence 
to the Mediterranean diet’, and an identified consortium of 24 SNPs from 22 genes, mainly related to obesity and 
cardiometabolic diseases.

The purpose of the ordinal logistic regression model was to estimate the odds ratios of the different explan-
atory variables and rank them by importance, rather than a tool to predict the probability of overweight and 
obesity of new individuals. There are in the literature several previous reports that model the probabilities of over-
weight and obesity in children through ordinal regression models42–46. However, to the best of our knowledge, this 
is the first time that this type of model is used with such a wide set of predictors comprising different putatively 
influencing domains (genetic, diet, exercise, microbiome urolithin metabotype, and ethnicity, in addition to sex 
and age) and ranks them according to their relative importance. The χ2-df score returned the following impor-
tance ranking: age >SNP.Dim.14 >ethnicity >sex >urolithin metabotype >KIDMED; while physical activity 
seemed to have a negligible importance. The use of an AIC-based fast-backwards reduction of the model removed 
‘Ethnicity’ from the final model, probably because of the large number of categories in this predictor42, that would 
be highly penalised by the AIC criterion. Besides, our sample was mainly of Caucasian-European origin (93.5%), 
and it is expected that in a sample with a more balanced distribution of ethnicity, this predictor would have high 
importance. Furthermore, the modest predictive capability of the model suggested the need for additional predic-
tors, which is not unexpected, given the multifaceted aetiology of obesity. Still, the model, derived for estimating 
purposes, allowed us to rank predictors of different domains by their importance, as well as to estimate odds 
ratios for them.

The classification of overweight and obesity in adults is rather simple and independent of age and sex (i.e. 25 ≤ 
BMI < 30 for overweight, and BMI ≥ 30 for obesity). However, the WHO-based definition for overweight-obesity 
in children and teens uses age- and sex-based percentiles5, and a higher BMI does not necessarily correspond with 
overweight-obesity in growing children. Therefore, using overweight and obesity as response variables instead 
of BMI values is especially useful in children and adolescents. This is due to the difficulty in comparing them at 
different ages and of the two sexes, given the remarkable, sex-dependent change in weight and height, during this 
period of development (i.e., while our model predicted that overweight-obesity decreases upon ageing, the use of 
BMI yielded the opposite result, masking the real result). Still, sex and age were essential predictors in our model, 
with estimated ORs of 1.67 for boys, and 0.88 for a one-year increase, respectively, which means an increased 
percentage of overweighed-obese boys, and a reduction of overweight-obesity upon ageing.

The gut microbiota contributes to the pathophysiology of obesity3, and a recent report shows the role of gut 
microbial metabolites in the expression of the microRNA-181 family, which regulates white adipose tissue inflam-
mation and obesity in children14. However, the gut microbiota, as a predictor of childhood obesity, has been 
scarcely approached and not usually considered together with SNPs and other variables. In a targeted approach, 

Figure 4. Description of components of SNP Dimension-14. Significant R2 (p < 0.05) for each SNP within the 
SNP Dimension-14 are shown.
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among a few analysed microbial groups, Scheepers et al. reported that the Bacteroides fragilis group was associ-
ated with childhood weight development47. Later, Rampelli et al. connected the onset of obesity in children to an 
increase of Proteobacteria and a decrease of Clostridiaceae and Ruminococcaceae48. In the same line, Bai et al. 
described that the Proteobacteria phylum had significantly enriched OTUs for higher BMI levels in a cohort of 
children from the American Gut Project49. This is relevant since the microbiota-associated with UM-B is enriched 
in Proteobacteria25. Interestingly, Nirmalkar et al. reported that the Coriobacteriaceae family was 3-fold more 
abundant in obese children and adolescents than normoweight50. Specifically, the genus Collinsella was more 
abundant in obese adolescents, a microbial group that could be related to the endothelial dysfunction50,51. Overall, 
all these results are remarkable since we recently reported that UM-B was enriched in the Coriobacteriaceae fam-
ily, which was positively correlated with blood total-cholesterol, LDL-cholesterol, and BMI in adults25. Although 

R2* SNP Gene Location

(Positive) 
contributing 
genotypes Name Gene-related process Gene-related disease

0.294 rs1801253 ADRB1 Coding C/C Adrenoceptor β1 Lipolysis and fat oxidation CVD#

0.096 rs4343 ACE Coding A/A A/G Angiotensin I converting enzyme Signalling, metabolism CVD, MetS, Alzheimer’s

0.091 rs8061518 FTO Intronic G/G A/G Fat mass and obesity-associated Metabolism Obesity, CVD, MetS, 
diabetes

0.076 rs1130864 CRP Intronic G/G C-Reactive Protein Inflammation CVD

0.067 rs659366 UCP2 Intronic C/C Uncoupling protein 2 Metabolism Obesity

0.058 rs6131 SELP Coding C/C Selectin P Cell adhesion CVD

0.057 rs12535708 LEP Intronic C/C A/C Leptin Signalling, metabolism Obesity

0.041 rs1501299 ADIPOQ Intronic T/T Adiponectin Metabolism MetS, diabetes, cancer

0.036 rs708272 CETP Intronic A/A Cholesteryl ester transfer protein, plasma Metabolism CVD

0.033 rs2241766 ADIPOQ Coding T/T Adiponectin Metabolism MetS, diabetes, cancer

0.033 rs696217 GHRL Intronic T/T G/T Ghrelin/obestatin prepropeptide Signalling, metabolism Obesity, cancer

0.031 rs11868035 SREBF1 Intronic G/G Sterol regulatory element-binding 
transcription factor 1 Metabolism Diabetes

0.027 rs17782313 MC4R Intronic T/T Melanocortin 4 receptor Signalling, metabolism Obesity, diabetes, 
cancer

0.023 rs1801282 PPARγ Intronic C/C Peroxisome proliferator-activated receptor-γ Signalling, metabolism Diabetes, cancer

0.020 rs5443 GNB3 Coding C/C (G protein), β-polypeptide 3 Signalling, metabolism Obesity, CVD, diabetes

0.019 rs3758538 
(3944 A > C) RBP4 Intronic G/G G/T Retinol binding protein 4 Inflammation Obesity

0.018 rs1801133 MTHFR Coding G/G Methylenetetrahydrofolate reductase Metabolism CVD, cancer

0.017 rs1143634 IL1B Coding A/A A/G Interleukin 1β Inflammation Diabetes, periodontitis, 
cancer

0.016 rs693 APOB Coding G/G Apolipoprotein B Metabolism MetS, diabetes, cancer

0.014 rs894160 PLIN1 Intronic C/C Perilipin 1 Metabolism Obesity

0.013 rs1799883 FABP2 Coding C/C Fatty acid-binding protein 2 Metabolism Diabetes, MetS

0.013 rs662799 APOA5 Intronic G/G A/G Apolipoprotein A5 Triglycerides CVD

0.013 rs429358 APOE Coding C/C C/T Apolipoprotein E Metabolism Alzheimer’s, CVD

0.010 rs9930333 FTO Intronic T/T Fat mass and obesity-associated Metabolism Obesity, CVD, MetS, 
diabetes

Table 3. The consortium of significant single-nucleotide polymorphisms (SNPs) integrated into the MCA 
dimension SNP.Dim.14. *R2, Contribution of the SNPs to Dim.14 according to Fig. 3. #CVD, cardiovascular 
disease; MetS, metabolic syndrome.

Index-
orig Training Test Optimism

Index-
corrected

Dxy
* 0.4136 0.4688 0.3518 0.1170 0.2967

R2 0.1824 0.2418 0.1323 0.1095 0.0729

Intercept 0.0000 0.0000 −0.1099 0.1099 −0.1099

Slope 1.0000 1.0000 0.6633 0.3367 0.6633

Emax 0.0000 0.0000 0.1110 0.1110 0.1110

B 0.2097 0.1978 0.2222 −0.0243 0.2340

Table 4. Validation of the model using Bootstrap. *Dxy = bias-corrected Somers rank correlation coefficient 
that goes from −1 to 1; R2 = Nagelkerke R2 that goes from 0 to 1; Intercept and Slope of a logistic calibration 
equation (should be 0 and 1, respectively, for a perfect fit); Emax = maximum calibration error for p (Y = 0) based 
on the linear-logistic recalibration; B = Brier’s quadratic probability score, which goes from 0 (the best score) to 
1 (the worst score).
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we had previously observed a trend between UM-B occurrence and overweight-obesity in adult individuals, 
however, we could not establish a definitive link probably due to the lack of other interacting factors such as those 
included in the present study (SNPs, diet, etc.)26,52. Therefore, the Coriobacteriaceae family, and probably the 
Proteobacteria phylum, more abundant in obese children as well as in UM-B, could be the link between UM-B 
occurrence and overweight-obesity, which suggests that the microbiota associated with urolithin metabotypes 
could contribute in the prediction of the probability of being overweighed or obese. Regarding UM-0, its occur-
rence in the population is approximately constant (~10%), although there is both a higher occurrence and vari-
ability in the childhood26. The microbiota associated with UM-0 has been reported to show lower diversity than 
UM-B and UM-A, which could be indicative of an obesity-prone microbiota4. Nevertheless, we cannot exclude 
a possible shift of metabotype in children from UM-0 to either UM-A or UM-B determined by ageing26 or after 
ellagitannin-rich diets as previously described in adults21.

Regarding the possible health implications of belonging to one or another metabotype, we have recently 
reported that urolithin metabotypes determined the different restoration capacity of the gut microbiota and the 
anthropometric values (weight, waist and hip) of healthy women up to 12 months after delivery53. The gut micro-
biota of pregnant women is in dysbiosis, which persists at least 1 month after delivery. We observed that the gut 
microbiota associated with UM-B was more resilient than that of UM-A, which would have negative implications 
in the dysbiotic-prone UM-B. In contrast, the gut microbiota of UM-A women progressively became normal dur-
ing the year after childbirth. Therefore, we suggested that the determination of urolithin metabotypes in pregnant 
and lactating women could be a useful tool to predict their predisposition to the recovery of the gut microbiota 
and anthropometric values, significantly altered during pregnancy and after childbirth53.

Many studies describe the association, or lack of association, of specific SNPs with obesity. The rs9939609 
SNP-FTO has been reported to confer a predisposition to obesity by regulating the control of food intake and 
food choice, suggesting a link to a hyperphagic phenotype or a preference for energy-dense foods in Scottish 
children54. This agrees with the connection between the low adherence to the Mediterranean diet and the risk 
allele A of rs9939609 SNP-FTO in our cohort. However, we did not observe a clear association of this SNP with 
overweight-obesity, but only a trend with many exemptions, in agreement with other studies where some SNPs, 
previously reported to be involved in obesity, such as the rs17782313-MC4R and rs9939609-FTO, exerted weak 
effects and very scarce contribution to obesity in 773 pre-pubertal Portuguese children55. In the present study, a 
consortium of 24 SNPs was identified as the second contributing predictor to overweight-obesity in our cohort. 
The rs1801253 SNP (also called Arg389Gly), located in the gen ADRB1, was the most contributing SNP within 
this consortium. It is known the involvement of the ADRB1 gene polymorphisms in cardiovascular diseases56 but 
also in obesity57,58.

The ADRB1 gene codifies a G-coupled protein (the β1-adrenergic receptor) that binds the catecholamines 
epinephrine and norepinephrine and controls sympathetic responses in the heart, kidney and adipocytes. 
Interestingly, Dionne et al. reported that the rs1801253 SNP-ADRB1 was associated with higher body weight 
and BMI in a cohort of Caucasian women (n = 931)57. In the same line, Aradillas-García et al. reported that the 
rs1801253 SNP-ADRB1, but not the Trp64Arg ADRB3, was associated with obesity in Mexican children59. The 
connection between ADBR1 SNPs and obesity could rely on the catecholamines, which are considered significant 
lipolysis regulators60 and affect differentiation and proliferation of adipocytes61. In this regard, Lee et al.62 estab-
lished the association between impaired urinary epinephrine and norepinephrine excretion and obesity, insulin 
resistance, and metabolic syndrome in a cohort of 577 Chinese subjects.

Overall, all the above highlights again the need to consider SNPs consortia, interacting with other varia-
bles, instead of few SNPs in those studies aimed to associate SNPs with obesity. We are aware that the pres-
ent study is an exploratory validation for a proof-of-concept, i.e., an ordinal logistic model that associates child 
overweight-obesity with a consortium of SNPs potentially interacting with the urolithin metabotypes-associated 
microbiota, adherence to the Mediterranean diet, age, and sex. Although we claim for the rationale of our 
approach and its potential usefulness, however, our results should be confirmed with additional research. We 
also acknowledge some limitations that should be considered in further studies, which also could improve its 
prediction capability. For example, it would be interesting to include other possible variables, such as the detailed 
composition and functionality of the individuals’ gut microbiomes, and dietary interventions to evaluate not 
only associations but also individuals’ responses. The latter would be even better than the use of validated ques-
tionnaires. Besides, a higher number of SNPs (or many SNPs associated with a specific gene) should be explored, 
especially in children from other geographical origins and ethnicities. Also, the inclusion of serobiochemical var-
iables and traits related to obesity and its comorbidities (blood lipid profile, blood pressure, glucose homeostasis, 
etc.) could yield relevant information. Finally, a validation cohort (i.e., a parallel-group with all the children either 
normoweight or obese) should also be considered in further studies to confirm our model fully.

conclusions
The present research highlights the need for a holistic approach to unravel the predictors of overweight-obesity 
in children. Our results confirm, in agreement with the multifaceted aetiology of obesity, the link of childhood 
overweight-obesity to multifactorial associations of environmental and genetic components. The ordinal logistic 
model revealed that child overweight-obesity prevalence was related to being a young boy with either UM-B 
or UM-0, low KIDMED score and high contribution of a consortium of 24 SNPs, being rs1801253-ADRB1, 
rs4343-ACE, rs8061518-FTO, rs1130864-CRP, rs659366-UCP2, rs6131-SELP, rs12535708-LEP, 
rs1501299-ADIPOQ, rs708272-CETP and rs2241766-ADIPOQ the top-ten contributing SNPs. Therefore, it is 
of particular relevance the evaluation of interactive SNPs consortia along with the stratification of the children 
according to their urolithin metabotypes, which could be early biomarkers, in the case of UM-B and UM-0, of a 
dysbiotic-prone obesity-associated microbiota.
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