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Experimental and numerical study 
on photocatalytic activity of the 
ZnO nanorods/CuO composite film
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The photocatalytic activity of the ZnO NRs/CuO composite film was investigated by using both 
experimental and numerical methods. The ZnO NRs/CuO composite film exhibits significantly enlarge 
absorption range to visible-light and suppress the recombination rate of the photogenerated electron-
hole pairs, which can be well utilized as a photocatalyst. The ZnO NRs/CuO composite film also presents 
good stability, and reusability, and durability for photo-decomposition purpose. The optimal ZnO 
NRs/CuO composite film contains 1μ-thick of CuO film and 10 nm-thick of ZnO NRs film. The donor 
concentration in ZnO NRs film should be lower than 1016 cm−3. The short circuit current density of 
the optimal composite film is 25.8 mA/cm2 resulting in the calculated pseudo-order rate constant of 
1.85 s−1. The enhancement in degradation efficiency of this composite film is attributed to the inner 
electric field and large effective surface area of ZnO NRs film.

The treatment of organic pollutants in waste-water by semiconductor has been a promising method among 
advanced oxidation processes1–5. Photocatalytic technology plays as an environmental-friendly and potential 
way to degrade organic pollutants into nontoxic inorganic compounds without generating secondary contam-
ination. Under light irradiation, semiconductors can generate electron-hole pairs that are highly reactive and 
can participate in a series of a redox reaction to produce efficient superoxide radicals (*O2

−, HO2
*) for pollution 

decomposition2,5. Among several semiconductors such as V2O5
6, Fe2O3

7, Cu2O8, TiO2
9, and BiVO4

10, the pure 
ZnO which has been widely used as a photocatalyst in the photocatalytic degradation of organic pollutants in 
aqueous solutions because of its nontoxicity, low cost, high redox potential11,12. However, ZnO was shown as a 
pristine semiconductor with wide bandgap (Eg = 3.37 eV), which operates well under ultraviolet (UV) irradiation, 
but poorly under visible light13,14 while the UV light accounts for only a small proportion (4%) of solar irradiation 
in comparison to the visible light percentage (43%). Therefore, most portions of sunlight cannot be absorbed by 
the pure ZnO and the improvement of degradation efficiency under the catalyst of ZnO was severely restricted by 
solely modifying its size, morphology, and structures11,15–17. Furthermore, the ZnO exhibits direct pathways for 
charge carrier transfer, which causes fast recombination of generated electron-hole pairs16. These are unfavorable 
properties of ZnO preventing it from the high performance of photocatalysis. Therefore, it is urgent to expand 
visible absorption range and suppress electron-hole pair recombination by fabricating ZnO-based composite 
photocatalysts which would contribute to the enhancement of photocatalytic activity.

Recently, ZnO was studied in the form of ZnO-based heterojunctions of other p-type narrow-bandgap semi-
conductors such as Si, CuO, Cu2O, NiO, and CdS, which is considered as a promising solution to solve the above 
disadvantages1,2,18–26. Photogenerated electrons and holes can migrate to related counterparts by an inner electric 
field created by the heterojunction, leading to an enhancement in the charge separation, which contributes to 
the improvement of photocatalytic activity due to the more generated charge carriers taken part in the redox 
reactions of the photocatalytic process18,27. In addition, the heterojunction between wide-bandgap ZnO and nar-
row bandgap semiconductors expands UV-light photoresponse of ZnO to UV-visible region, as a result of the 
enhancement of the light absorption ability. Among all p-type narrow bandgap semiconductors, copper oxide 
(CuO) has turned out to be one of the excellent candidates for creating p-n heterojunctions with ZnO because 
of its narrow-bandgap (1.35 eV), high optical absorption, nontoxicity, and low electrical resistance values28–31. 

1Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology, Vietnam 
National University, 144 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam. 2Faculty of Physics, Hanoi 
National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam. ✉e-mail: 
lamnd2005@gmail.com

OPEN

https://doi.org/10.1038/s41598-020-64784-w
mailto:lamnd2005@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-64784-w&domain=pdf


2Scientific Reports |         (2020) 10:7792  | https://doi.org/10.1038/s41598-020-64784-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

However, ZnO/CuO structures were usually fabricated in the form of nanopowders, nanowires, or flower-like 
three-dimension32,33, which have disadvantages in separating and recovering catalytic materials after the water 
treatment process. Therefore, a film of ZnO/CuO structure should be investigated to solve the above problems. 
Furthermore, CuO nanomaterial is usually synthesized on the surface of the ZnO nanostructure2,34. That means 
the CuO material will cover a part of surface of the ZnO nanostructure, which leads to a decline in the photocat-
alytic efficiency of a synthesized nanostructure. To specify, when a composite of CuO and ZnO was exposed to 
the light source, most of the high energy photons (UV light) of the incident light will reach and be absorbed by 
CuO materials first, as a result, the number of photons in UV regions approach and are absorbed by ZnO will be 
reduced. Therefore, further investigation of the ZnO-based heterojunction of p-type CuO composite films (ZnO 
NRs/CuO) with CuO doing not cover the surface of ZnO NRs in photocatalytic activity is still required in detail.

In this work, the ZnO NRs/CuO composite film were fabricated on a glass substrate by sputtering, thermal 
annealing, spin coating and simple hydrothermal methods. For comparison, CuO film, ZnO NRs, and CuO/ZnO 
NRs composite films were also fabricated on glass substrates by the same methods. The photocatalytic activities of 
all fabricated samples have been investigated. The results indicated that the ZnO NRs/CuO composite films show 
the highest photocatalytic activities compared to other samples. The highest photocatalytic activities of the ZnO 
NRs/CuO composite film would be ascribed to the extension of the optical absorption range and the efficient 
separation of photogenerated electron-hole pairs. These results were also confirmed by numerical study using 
SCAPS device simulation. Based on the simulation program, characteristics of the ZnO NRs/CuO composite film 
such as the thickness of the CuO, ZnO NRs films, and donor density in the ZnO NRs film were also investigated 
to find out the optimal structure. Furthermore, the photocatalytic activity of the ZnO NRs/CuO composite film 
also depends on the illuminated side.

Results and Discussion
SEM analysis.  Figure 1 shows the SEM morphology evolution of the fabricated samples. 300 nm thick of 
CuO nanosheet film formed from CuO nanoparticles and 450 nm thick of ZnO nanorods film on the glass sub-
strates can be clearly observed in Fig. 1(a,b), respectively. The ZnO NR diameters which are grown on the glass 
substrate are in range from 50 – 70 nm and well-aligned. These are also similar for the ZnO NR structure grown 
on the CuO nanosheet film as shown in Fig. 1(c). This result indicated that the ZnO NRs/CuO composite film was 
well constructed via the processes in the experimental part. The inverted CuO/ZnO NRs composite film structure 
was also fabricated for comparison purpose and shown in Fig. 1(d). In this figure, the CuO nanoparticles were 
adhered to the ZnO NRs, which also create contact between CuO and ZnO NRs according to a p-n heterojunc-
tion formed.

XRD analysis.  The crystalline structures of the CuO film, ZnO NRs, and the ZnO NRs/CuO composite film 
were investigated by the XRD analysis as shown in Fig. 2. The diffraction peaks of all samples are well defined, 
revealing the good crystallinity of the fabricated samples, and no peak of other phase and impurity is detected.

Figure 1.  Top- and side-view SEM images of (a) CuO film and (b) ZnO NRs film, (c) ZnO NRs/CuO composite 
film, (d) CuO/ZnO NRs composite film.
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In the diffraction pattern of ZnO NRs, it indicates that the crystalline structure of the ZnO NRs film synthe-
sized by the hydrothermal method is in a hexagonal wurtzite structure4. Beside that the much higher intensity of 
the (002) diffraction peaks indicates the excellent c-axis orientation of this ZnO NRs film which is consistent with 
the observation in the SEM images.

In the diffraction pattern of the CuO film, two peaks at 2θ of 35.4o (0 0 2) and 38.1o (2 0 0) are clearly observed 
which are well assigned to the presence of the CuO phase. The XRD peaks of the CuO film show a large full width 
at half maximum (FWHM) of the peaks and low intensity, which most probably is due to the small grain size 
of CuO nanoparticles, that construct the CuO film. The absence of any other copper species peaks in the XRD 
patterns proves that copper nanoparticles after the thermal annealing process are completely converted to copper 
oxide.

In the diffraction pattern of the ZnO NRs/CuO composite film, all of the peaks related to the ZnO and CuO 
crystalline structures can be easily observed. This result is another evidence to confirm the forming of the ZnO 
NRs/CuO composite film.

Optical absorption analysis.  Figure 3 shows the optical absorption spectra of the CuO film, ZnO NRs 
film, ZnO NRs/CuO composite films. The ZnO NRs film shows a band gap energy at around 375 nm (~3.3 eV). 
The CuO film shows a high and broad range of light absorption up to 800 nm. Meanwhile, the ZnO NRs/CuO 
composite film behaviors not only a broad range absorption but also the highest optical absorption in comparison 
to that of the ZnO NRs film and the CuO film. This phenomenon can be explained by attributions of the high sur-
face roughness of the ZnO NRs film in the ZnO NRs/CuO composite film, which can reduce the optical reflection 
at the surface of the composite film13.

Photocatalytic activity.  The photocatalytic activities of the fabricated samples were examined by the rate 
of degradation of RhB contamination under the irradiation of the Xenon lamp, which were shown in Fig. 4. After 
30 min of maintaining in the dark, the change in concentration of RhB solution was insignificant, which indicates 
that the adsorption of RhB in the fabricated samples is negligible. During the photodegradation investigation, the 

Figure 2.  XRD patterns of the CuO, ZnO film and ZnO NRs/CuO composite film.

Figure 3.  Absorption spectra of the CuO, ZnO film and ZnO NRs/CuO composite film.
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variation of RhB concentration was analyzed by the RhB absorption peak intensity at a wavelength of 554 nm. The 
mechanism of photocatalytic activity of samples was well described in our previous publication18. The obtained 
results were incorporated in the Eq. (1) to calculate the degradation efficiencies for different samples which are 
shown in Fig. 4(a). After 120 min of illumination on the fabricated samples side, the degradation efficiencies of the 
CuO film, ZnO NRs film, and ZnO NRs/CuO composite films are 55, 78, and 93%, respectively. This result indi-
cated that the degradation efficiency of ZnO material can be enhanced by incorporation with the CuO material. 
Furthermore, the degradation efficiency of the inverted structure (CuO/ZnO NRs composite film) is 73% after 
120 min of illumination, which is about 20% lower than that of the ZnO NRs/CuO composite film. The lower in 
the degradation efficiency of the inverted structure could be explained by the absorbing UV light of ZnO when 
its surface is covered by CuO material. To specify, when incident light from xenon lamb come to the inverted 
structure (CuO/ZnO NRs composite film), high energy photons from UV light will approach CuO materials first 
and be absorbed mostly by CuO, which leads to the smaller amount of UV light will approach and be absorbed 
by ZnO NRs in comparison with that of ZnO NRs/CuO structure. As a result, the light absorption efficiency of 
the inverted structure is reduced. To find more evidence to demonstrate that photon absorption is affected by the 
cover of CuO materials on the ZnO NRs, the comparison of the photodegradation efficiency of the ZnO NRs/
CuO composite film under light illumination on different sides (the ZnO NRs side and the CuO side (through 
glass substrate side)) was investigated. After 120 min of illumination, the degradation efficiencies of the ZnO NR/
CuO composite film with ZnO NRs side and CuO side illumination are 93% and 87%, respectively. The degra-
dation efficiency of ZnO NRs/CuO composite film under illumination on the CuO side is about 6% lower than 
that under illumination on the ZnO NRs side and 14% higher than the efficiency of the inverted structure (CuO/
ZnO NRs composite film). The lower in photocatalytic activity of the ZnO NR/CuO composite film when it is 
illuminated on the CuO side confirms that the photon absorption of ZnO NRs film is reduced when its surface 
was covered by CuO. In this case, ZnO NRs which are covered by CuO materials in the structure only create the 
heterojunction to reduce the photogenerated electron-hole pairs recombination. Furthermore, when incident 
light illuminates on the top surface of ZnO NRs/CuO composite film, ZnO NRs are not covered by CuO materi-
als like the inverted CuO/ZnO NRs structure. Therefore, ZnO NRs will effectively absorb UV light first and the 
remaining UV light and visible light will approach to CuO layer and be absorbed by that CuO materials, as a result 
of photon absorption increased and higher degradation efficiency obtained in comparison to that of the inverted 
CuO/ZnO NRs structure.

The first-order kinetics of RhB photodegradation were calculated and depicted in Fig. 4(b). The pseudo-order 
rate constant (k) was determined from the slope of the line and shown in Fig. 4(c). The result indicated that the 
k value of the ZnO NRs/CuO composite film in degrading RhB concentration is approximately 2 times higher 
than that of the inverted CuO/ZnO NRs structure. In addition, the cycling photodegradation in Fig. 4(d) shows 
that the ZnO NRs/CuO composite film maintains good degradation efficiency for RhB contamination after three 
cycling experiments. This result indicates that the ZnO NRs/CuO composite film is a high photostable and a 
reusable photocatalyst.

Figure 4.  (a) Photodegradation of RhB under Xenon lamp (b) the first-order kinetic plot for RhB 
photodegredation, (c) pseudo-order rate constant, and (d) recycling photodegradation of fabricated samples.
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Simulation of the ZnO/CuO heterojunction.  The J-V characteristics for the ZnO/CuO heterojunction 
related to the non-illumination, illumination on the ZnO side, and the CuO side were shown in Fig. 5(a). Under 
1 sun illumination, the short circuit current density when the CuO side is shined is 14.1 mA/cm2 and is 19.4 mA/
cm2 if the ZnO side is shined. The short circuit current density when the ZnO NRs side is shined is approximately 
1.38 times higher compared to case shining on the CuO side shining. That means the degradation efficiency of 
ZnO/CnO composite film under illumination on the ZnO side can be 1.38 times faster than that under illumina-
tion on the CuO side. This result is consistent with the experimental pseudo-order rate constant in both cases as 
shown in Fig. 4(b). Furthermore, the k value of the ZnO NRs/CuO composite film is 2 times higher than that of 
the inverted CuO/ZnO NRs structure. These results demonstrated that the effective surface area of ZnO NR film 
might contribute up to 62% of the improvement of the degradation efficiency of the ZnO NR/CuO composite 
film.

Figure 5(b) shows the quantum efficiency of the ZnO/CuO composite heterojunction when it is shined on 
each sides. The quantum efficiency when light shines on the ZnO NRs side is much higher than that case illumi-
nation on the CuO side, especially at wavelengths of around 400 nm. In this structure, when the ZnO NRs side 
is illuminated, the UV light with wavelength up to 375 nm will be absorbed by the ZnO NRs film. The light with 
wavelength longer than 375 nm will go through the ZnO NRs film and reach to the CuO film at the depletion 
area, and will be absorbed by the CuO film. The photogenerated electron-hole pairs at this position will be easily 
separated by the inner electric field and transferred to each electrode parts. In another case, when illumination on 
the CuO side, most incident light is absorbed by the CuO film at the position near the electrode part. Therefore, 
photogenerated electron-hole pair at this position is weakly controlled by the inner electric field and easily recom-
bination resulting in lower photon induced current efficiency13.

Based on this SCAPS program, the influences of the thickness of CuO and ZnO NRs films, and donor con-
centration in ZnO NRs film on the opto-electronic of the ZnO NRs/CuO heterojunction were also investigated to 
find out the optimal structure (see Supplementary Information). The results indicated that the optimal structure 
could be obtained with 1μ-thick of CuO film and 10 nm-thick and low donor concentration (under 1016 cm-3) of 
ZnO NRs film. This result indicated that, using the ZnO NR/CuO composite film for photocatalyst application, 
the dopant in ZnO film lacks efficient.

Conclusions
The photocatalytic activity of the ZnO NR/CuO composite film was investigated by using both experimental and 
numerical methods. The results indicated that the ZnO NR/CuO composite film can be well utilized as a pho-
tocatalyst. The optimal ZnO NR/CuO composite film contains 1μ-thick of CuO film and 10 nm-thick and low 
donor concentration (under 1016 cm−3) of ZnO NRs film. The short circuit current density of the optimal com-
posite film is 25.8 mA/cm2 resulting in the calculated pseudo-order rate constant of 1.85 s−1. The enhancement 
in degradation efficiency of this composite film is attributed to the inner electric field and large effective surface 
area of ZnO NRs film.

Methods
Materials.  Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, ≥99%), hexamethylenetetramine (C6H12N4), NaOH, 
and methanol were all purchased from Sigma-Aldrich. All reagents were analytic reagent grade and utilized with-
out further purification. Glass substrates with a size of 2 cm ×2 cm ×0.1 cm were used in this work to support the 
ZnO NRs/CuO composite film.

Preparation of ZnO NRs/CuO composite film on a glass substrate.  Firstly, CuO film was synthe-
sized on a glass substrate using the sputtering and thermal annealing methods. To specify, the clean glass substrate 
was put in a vacuum chamber and then sputtered of copper for 30 min and under the pressure of 2.6×10−3 Torr to 
create a thin copper film with a thickness of approximately 180 nm. After the sputtering process, the copper film 
on the glass substrate was annealed at 500 oC for 3 h to obtain the CuO film which was well adhered to the glass 
surface. The thickness of the fabricated CuO film is approximately 300 nm as shown in Fig. 1(a).

Figure 5.  (a) J-V curves and (b) Quantum efficiencies of the ZnO/CuO heterojunction with illumination on 
different sides.
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Secondly, ZnO NRs film was grown on the CuO film by the hydrothermal method. Particularly, the ZnO nan-
oparticles seed layer was synthesized on the CuO nanosheet film by uniformly spin coating at speed of 3000 rpm 
for 2 min following by thermal annealing at 500 oC for 1 h. Then, ZnO NRs were grown over the ZnO seed/CuO 
film under the hydrothermal process. In detail, a growth solution which contains 50 mL of 20 mM zinc nitrate 
hexahydrate and 20 mM hexamethylenetetramine was transferred into an autoclave. Afterward, the glass which 
was covered by a CuO film and coated with a ZnO seed film was immersed into the growth solution and baked at 
100 oC for 2 h. After 2 hours of baking, the autoclave was allowed to cool down naturally.

Finally, the sample (ZnO NRs/CuO composite film) was cleaned ultrasonically in ethanol and deionized water 
(DI water) for 30 min for several times and then dried at 60 oC for 12 h in an oven under the atmospheric condi-
tions to remove organic residuals and evaporate the remained DI water.

For comparison purpose, the ZnO NRs film, CuO film, and CuO/ZnO NR composite film on glass substrates 
were also fabricated by the same process for each films.

Characterization.  The crystal phases of the fabricated samples were determined using an X-ray diffractome-
ter (XRD) D5000 with CuKα radiation (λ = 1.5406 Å) over the 2θ range 30~70° at room temperature. The surface 
morphologies were characterized using a field emission scanning electron microscopy (FESEM, Hitachi, S-4800). 
The optical absorption spectrum was measured by a UV-Vis spectrophotometer (Jasco, V-670).

Photocatalytic activity measurement.  The photocatalytic activity measurement was carried out at room 
temperature. In this work, a 250 W Xenon lamp was used as a light source and was placed about 30 cm vertically 
relative to the organic pollution solution to diminish the heat effect. The organic pollution solution temperature 
was kept at 27 oC by the circulating cool water. The fabricated samples (2 cm × 2 cm) were immersed in 100 ml 
RhB solution with the initial concentration of 10 ppm under stirring and maintained in the dark for 30 min to 
allow adsorption-desorption equilibrium before light irradiation. The schematic diagram of photocatalytic activ-
ity measurement was shown in Fig. S1. During the photocatalytic activity measurement, after each given interval 
(20 min), 3 mL of solution was withdrawn and analyzed by an UV-vis spectrometer (Jasco, V-670) with RhB peak 
at a wavelength of 554 nm. For the reusability test of the ZnO NRs/CuO composite film in photocatalytic activity, 
after each cycle, the composite film was rinsed to remove residual molecules and re-immersed into a fresh RhB 
solution with the same volume and concentration. The process was repeated for 3 times to confirm the reusability 
of the ZnO NRs/CuO composite film as a photocatalyst. The degradation efficiency of RhB molecules was calcu-
lated from the following equation:

=
−

×Degradation C C
C

% 100%
(1)

o t

o

where Co and Ct are the initial absorbance and the absorbance at a certain time t, respectively.

The simulation program SCAPS.  In this work, the simulation program SCAPS (Solar Cell Simulation 
Program in One Dimension) was utilized to investigate the ZnO NRs/CuO composite film. This program has 
been normally designed to simulate some kind of thin film solar cells such as CIGS, CdTe, and etc35–37. Based on 
this program some characteristics like I-V, C-V, C-f, QE(λ), etc. can be calculated according to the variation in 
the parameters of materials and operating conditions. Furthermore, the photocatalytic activity strongly depends 
on the number of the photo-generated electron-hole pairs which can reach to the counter parts and do the deg-
radation work. These active electron-hole pairs also relate to the photon induced current density. Therefore, this 
simulation program SCAPS can be utilized to find out the opto-electrical characteristics of the ZnO NRs/CuO 
composite film. The simulation results were also compared to experimental results and find out optimal parame-
ters of the ZnO NRs/CuO composite film (see Supplementary Information).
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