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Deep Learning-based inaccuracy 
compensation in Reconstruction of 
High Resolution Xct Data
emre topal1 ✉, Markus Löffler1 & ehrenfried Zschech1,2

While X-ray computed tomography (Xct) is pushed further into the micro- and nanoscale, the 
limitations of various tool components and object motion become more apparent. for high-resolution 
XCT, it is necessary but practically difficult to align these tool components with sub-micron precision. 
the aim is to develop a novel reconstruction methodology that considers unavoidable misalignment 
and object motion during the data acquisition in order to obtain high-quality three-dimensional 
images and that is applicable for data recovery from incomplete datasets. A reconstruction software 
empowered by sophisticated correction modules that autonomously estimates and compensates 
artefacts using gradient descent and deep learning algorithms has been developed and applied. for 
motion estimation, a novel computer vision methodology coupled with a deep convolutional neural 
network approach provides estimates for the object motion by tracking features throughout the 
adjacent projections. The model is trained using the forward projections of simulated phantoms that 
consist of several simple geometrical features such as sphere, triangle and rectangular. the feature 
maps extracted by a neural network are used to detect and to classify features done by a support vector 
machine. For missing data recovery, a novel deep convolutional neural network is used to infer high-
quality reconstruction data from incomplete sets of projections. The forward and back projections of 
simulated geometric shapes from a range of angular ranges are used to train the model. the model 
is able to learn the angular dependency based on a limited angle coverage and to propose a new set 
of projections to suppress artefacts. High-quality three-dimensional images demonstrate that it is 
possible to effectively suppress artefacts caused by thermomechanical instability of tool components 
and objects resulting in motion, by center of rotation misalignment and by inaccuracy in the detector 
position without additional computational efforts. Data recovery from incomplete sets of projections 
result in directly corrected projections instead of suppressing artefacts in the final reconstructed 
images. the proposed methodology has been proven and is demonstrated for a ball bearing sample. 
The reconstruction results are compared to prior corrections and benchmarked with a commercially 
available reconstruction software. Compared to conventional approaches in XCT imaging and data 
analysis, the proposed methodology for the generation of high-quality three-dimensional X-ray images 
is fully autonomous. the methodology presented here has been proven for high-resolution micro-Xct 
and nano-XCT, however, is applicable for all length scales.

High-resolution XCT (HR-XCT) using laboratory sources, i.e. micro-XCT and nano-XCT, enables to study 
objects with micron resolution and even below. Micro-XCT uses a cone-beam projection geometry for imaging 
of object features of some microns (best resolution 0.7 μm resolution)1. Full-field X-ray microscopy and respective 
nano-XCT use a parallel-beam geometry and Fresnel zone plates as X-ray objective lenses to achieve resolutions 
down to 50 nm2. The schematics of cone-beam and parallel-beam XCT geometries are provided in Fig. 1. During 
the previous decade, HR-XCT has been increasingly applied to materials science and engineering, particularly 
for imaging of the morphology of composites and skeleton materials but also for 3D microstructure analysis3–5. 
Compared to other 3D imaging techniques such as focused ion beam (FIB) serial cutting and subsequent scan-
ning electron microscopy (SEM) imaging of the cross-sections as well as electron tomography in the transmis-
sion electron microscope (TEM), HR-XCT is non-destructive. Consequently, in-situ and operando studies of 

1Technische Universität Dresden, Dresden Center for Nanoanalysis, Dresden, Germany. 2Fraunhofer IKTS, Institute 
for Ceramic Technologies and Systems, Dresden, Germany. ✉e-mail: emre.topal@tu-dresden.de

open

https://doi.org/10.1038/s41598-020-64733-7
mailto:emre.topal@tu-dresden.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-64733-7&domain=pdf


2Scientific RepoRtS |         (2020) 10:7682  | https://doi.org/10.1038/s41598-020-64733-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

materials can be performed during thermomechanical loading6 and during chemical processes7 as well as in 
several environment8.

During the data acquisition time, the objects can move, and consequently, the position of features (relative to 
the X-ray beam) can vary between adjacent projections. Particularly for image acquisition with high resolution, 
mechanical instabilities of the sample holder and - in case of X-ray microscopy - of the X-ray optics, sample drift as 
well as inaccuracy in detector positions introduced by defective and/or underperforming detector elements cause 
errors in the reconstruction process and result in severe artefacts9. Conventional XCT reconstruction algorithms 
assume a static object and an ideal X-ray beam path, i.e., they do not consider thermomechanical instabilities of 
tool components and object resulting in motion10. This assumption is not fulfilled in many clinical applications 
due to motions of the patient, and it is violated in technical applications due to motions of sample holder, optics 
(in case of X-ray microscopy) and/or object, which becomes particularly critical for HR-XCT. Eventually, these 
issues lead to inconsistencies of the obtained 2D projections and they provide streaking and blurring artefacts in 
the 3D reconstruction. The quality of data reconstruction depends on amplitude and frequency of the motions 
of tool components and object relative to the X-ray beam. In order to obtain precise and reproducible informa-
tion of the internal structure of objects and materials from HR-XCT studies, errors introduced during the image 
acquisition process have to be eliminated or at least mitigated. Since it is practically impossible or at least costly to 
avoid these inaccuracies by tool improvements and precise adjustment, a computational methodology is needed 
to “improve” the raw data. Usually, the initial step is to detect and/or to estimate the motions of tool components 
and object, and subsequently, to compensate these motions by a reconstruction approach that takes into con-
sideration these estimated/detected motions. However, the majority of methods require additional signals and/
or measures to estimate the motion e.g. of the ECG signal in cardiovascular imaging11 or fiducial markers12,13. 
The last-mentioned approach uses detection and tracking of markers that are attached to the sample and that 
are located within the projection images. However, this is not the most convenient approach for HR-XCT due 
to the limited size of the sample. Entropy-based correction14–17 and frequency-based correction18 are further 
approaches that have been reported to address this issue. The entropy-based correction uses the entropy as meas-
ure for the reconstruction quality. In order to mitigate the motion effect, the entropy is minimized by iteratively 
reconstructing with 2D data acquired at several angles during sample rotation19. Similarly, the frequency-based 
correction uses mathematically formulated data consistency conditions to estimate the motion in the frequency 
domain of a sinogram20–22. In this case, the Fourier consistency condition is used to estimate the motion in the 
sinogram domain, mitigating the 3D motion by a cost function considering 2D detector translations23. Epipolar 
Consistency Condition, another proposed approach, takes advantage from the epipolar geometry of two pinhole 
cameras using Grangeat’s theorem and Beer-Lambert law. This approach defines a consistency metric between an 
arbitrary pair of projection images to estimate the motion24–27. Neural networks, developed in the 1950s not long 
after the emergence of Artificial Intelligence research, attempted to simulate the way the brain works though in 
a greatly simplified form28. With the improvements in numerical algorithms and the availability of increasingly 
powerful computers more and more layers of virtual neurons can be modeled. This progress enables deep learn-
ing, and especially neural networks, to beat other machine-learning techniques in image processing and pattern 
recognition29–31. In the purest form, a neural network is a program that maps out a set of virtual neurons and that 
assigns random numerical values, or “weights”, to connections between them. These weights determine how each 
simulated neuron responds - with a mathematical output between 0 and 1 - to a digitized feature. If the network 

Figure 1. The schematics of (a) cone-beam and (b) parallel-beam CT geometries.
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does not accurately recognize a particular pattern, a numerical algorithm will adjust the weights. This is the way 
artificial neural networks can train themselves to recognize complex patterns. In the era of big data, inevitable, 
deep learning applications have been extended to the field of X-ray computed tomography to provide solutions 
to issues like artefact reduction and missing data: One attempt of solving the XCT image reconstruction prob-
lem is the mapping of filtered back projections identically onto a deep neural network architecture32. The use of 
deep neural networks allows to add different compensation layers for several types of artefacts such as missing 
data, beam hardening and scatter compensation by end-to-end training. Analogously, the deep neural network 
can be adapted as post-correction approach subsequently to the reconstruction step. Zhang and Yu suggested a 
convolutional neural network by training the network using a large database of reconstructed images resulting 
in a significantly improved reduction of beam hardening artefacts33. Another study applied a similar approach to 
limited-angle tomography. The missing data artefacts were reduced by training the convolutional neural network 
to extract and to suppress implicit features of artefacts from reconstructed images34,35. Neural networks were 
also used successfully for noise reduction, which results in shorter image acquisition times while retaining the 
expected internal structure information of an object36–40.

This paper presents a fully automated methodology that effectively suppresses artefacts caused by systematic 
and random errors. Such artefacts can result e.g. from motions of tool components and object during image 
acquisition in HR-XCT. In order to obtain high-quality reconstruction data, a reconstruction software package is 
developed that employs the following well known reconstruction algorithms: FBP (Filtered-back-projection)41, 
FDK (Feldkamp-Davis-Kress)42, SIRT (Simultaneous Iterative Reconstruction Technique)43, MLEM 
(Maximum Likelihood Expectation-Maximization)44, SQS (Separable Quadratic Surrogates)45, ART (Algebraic 
Reconstruction Technique)46, DART (Discrete Algebraic Reconstruction Technique)47 and SART (Simultaneous 
Algebraic Reconstruction Technique)48. In addition, artefact suppression tools for tool component and object 
motions, center of the rotation misalignment, detector offset, beam hardening as well as missing data is devel-
oped and applied, for both parallel-beam and cone-beam XCT geometries. In order to compensate motion, a 
novel computer vision methodology coupled with a deep neural network approach is developed which provides 
estimates for motion by tracking features through adjacent projections. Data recovery from an incomplete data-
set is achieved by employing the deep convolutional neural network approach to obtain a new set of 2D pro-
jection images instead of suppressing artifacts in the final reconstructed images. The proposed reconstruction 
methodology is compared with the commercially available software using Signal-to-Noise Ratio (SNR), Peak 
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE). Furthermore, the effect of each component of the correction module is investigated, and 
a quality assessment of these reconstructed images is performed using a blind/reference-less image spatial quality 
evaluator (BRISQUE).

Results
The main motivation for the development of the reconstruction algorithm and the respective in-house software 
is to improve the reconstruction quality, and ultimately, to suppress all correctable artefacts. The reconstruction 
quality of this customized software is compared with a commercially available software of Xradia Inc., which 
includes user-defined beam-hardening correction, detector offset correction and thermal drift correction, for a 
special example, a ball bearing. The micro-XCT measurements were performed using a Versa-520 micro-XCT 
tool of Carl Zeiss (Germany) with a maximum photon energy of 160 keV and a power of 10 W (target current 
62 μA). The projections were collected using a polychromatic X-ray source with HE6 source filter at 2301 views 
with an angular spacing of 0.11° through a detector array of 2048 × 2048 with a pixel size of 0.13 µm. The recon-
structed image array is 20483 with a voxel size of 3.7 µm. The reconstruction results are shown in Fig. 2. With our 
customized software, the total computational time for 3D reconstruction including all the correction steps was 
about 73 minutes using a computer with Intel Xeon E5-2643 dual CPU, Nvidia Quadro K5000 single GPU and 
160 GB RAM.

As shown in the results from exactly the same FDK42 algorithm, our customized software outperformed the 
commercial software. To proof this statement which is based on a visual impression and to validate the numerical 
approach described in this paper, the reconstruction performance of the commercial software and the custom-
ized software was compared based on the PSNR values as shown in Table 1. The PSNR value is an expression for 
the ratio between the maximum value of a signal and the power of distorting noise that affects the quality of its 
representation. It is 12.7% higher for the customized software compared to commercial software, which demon-
strates the power of including neural network approaches. Furthermore, the customized software achieved to 
produce lower RMSE and MAE values which means a smaller error compared to the commercial software. Both 
software packages generated similar results for SSIM.

The customized software package is used for the reconstruction of the ball bearing dataset and the recon-
structed images with and without applying the proposed methodology is shown in Fig. 3. Ultimately, to under-
stand the contribution of each component to the improvement of the reconstructed image quality, the same 
dataset is used to explain the effect of each component of the proposed correction methodology separately in the 
following sub-sections.

Center of rotation and offset of detector correction. The doubling effect caused by center or rotation 
and offset of detector misalignments deteriorates the quality and the accuracy of reconstruction. In order to 
suppress the artifacts and improve the quality and the accuracy of reconstructed image, we applied total vari-
ation minimization with the gradient descent algorithm. The result for the center of rotation and the detector 
offset corrections is shown in Fig. 4. The center of rotation and the detector offset are calculated as 5.1 μm and 
−190.8 μm, respectively. These corrections suppressed the doubling effect effectively. That means, the applied 
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novel methodology provides a robust way to remove detector misalignment artefacts. The smaller BRSISQUE 
score indicates a better perceptional quality49. The correction improves the quality metric value from 45.7 to 41.6.

Motion compensation. In order to estimate the motion of the object, a computer vision methodology cou-
pled with a deep neural network approach is applied. The procedure of object detection and tracking is illustrated 
in the projection data of the ball bearing in Fig. 5. Since the data from ball bearing were not used as part of train-
ing and validation datasets, they are benchmarks characterizing the performance of the trained network. The 
centroid positions of tracked features are fitted into the center the X-ray beam path using the one term Fourier 
model. The R2 values of the model in x and y directions are 0.99 and 0.79, respectively, indicating a good fit with 
the experimental data.

The obtained residual deviations from the ideal X-ray beam path are translated into shifts of the detector 
plane. These shifts are corrected in the back-projection step of reconstruction. The result of motion compensation 
is shown in Fig. 6. The developed region-based convolutional neural network is successfully tracking the features 
available on the projection data. The applied novel motion estimation and compensation methodology removes 
blurring artefacts and significantly improves the quality of the reconstruction by rearranging detector coordinates 
according to obtained motion shifts. The proposed method improves the BRISQUE quality metric value from 
55.2 to 41.6.

Figure 2. The reconstruction results of the ball bearing sample. Both images are reconstructed with the FDK 
algorithm using 3200 projections with 2048 × 2048 pixels. The voxel size of the reconstructed images is 3.7 µm. 
(a) commercial reconstruction software, (b) customized reconstruction software, and (c) respective histograms 
of reconstructed images.

Comparison SNR PSNR SSIM RMSE MAE

Commercial 
software/ground 
truth

6.33 12.51 0.99 54.90 35.93

Customized 
software/ground 
truth

7.91 14.10 0.99 45.73 33.15

Table 1. The quantitative comparison between reconstruction performance of commercial software and 
customized software with the ground truth. Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), 
Structural Similarity Index (SSIM), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
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Missing data recovery. In order to obtain a high-quality image reconstruction, a deep convolutional neural 
network is used to suppress missing data artefacts on the reconstructed image, and eventually to get high-quality 
3D reconstructed data from an incomplete set of projections. This novel methodology is applied to the identical 
ball bearing data for several data sets, e.g., for an angular coverages of 360° and 180°, respectively. Again, the data 
acquired from the ball bearing sample were not used for training or validation, and thus, it benchmarks the per-
formance of the trained network. The as-detected and the artifact-corrected projections are compared in Fig. 7. 
This comparison shows that the proposed methodology effectively suppressed the missing data artefacts that 
are visible as streaks causing uneven intensity dissipation. The use of corrected projections within the proposed 
methodology increased the quality metric score from 45.8 to 43.1. Thus, the performance of the applied training 
model is proven by this validation test.

Discussion
A fully automated reconstruction methodology and a respective software package were designed and developed 
to obtain a high-quality reconstruction of high-resolution X-ray computed tomography data, applicable for 
cone-beam and parallel-beam geometries. The results demonstrate that it is possible to suppress artefacts caused 
by thermomechanical instability of the tool components and object motion, by center of rotation misalignment 
inaccuracy in detector positions as well as by incomplete sets of projections. The proposed methodology uses a 
combination of available software routines and novel solutions in order to improve the quality of reconstruc-
tion data with reasonable computational efforts. For the ball bearing sample, the total computation time for 3D 

Figure 3. The reconstruction results of the ball bearing using the customized reconstruction software: (a) 
The image is reconstructed using the standard FDK algorithm. (b) The image is reconstructed using the FDK 
algorithm with the proposed correction methodology.

Figure 4. The reconstruction results of the ball bearing. For the reconstruction, the center of rotation and the 
detector offset correction modules are (a) disabled, and (b) enabled.
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Figure 5. The drilling holes in the ball bearing are used to calculate the motion. The centroid positions of these 
features are tracked for several rotation angles of the sample. During this procedure, the positions of features 
are recorded even though they are not available at every projection angle during data acquisition. Once the 
procedure is completed, one term Fourier fitting is applied to translate the centroid positions to residual shifts 
from the ideal position of the center beam.

Figure 6. The reconstruction results of the ball bearing. For the reconstruction, the motion compensation 
module is (a) disabled, and (b) enabled. The motion is estimated applying the proposed deep-learning based 
feature tracking method, and the image is reconstructed by considering calculated shifts on the detector plane.

Figure 7. The reconstruction results of the ball bearing. The images are reconstructed with (a) projection data 
with angular coverage of 180°, (b) corrected projections with the proposed methodology (same input data as for 
a), and (c) projection data with angular coverage of 360°.
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reconstruction including all the correction steps was ~73 minutes using a single GPU. The software is developed 
for multiple GPU, and thus, the computation time can be further reduced using multiple GPUs. Deep learning 
algorithms were used to enable robust feature tracking in the projection data. Compared to the fiducial marker 
approach, the novel methodology provides an advantageous alternative to suppress effects of misalignment and 
object motion. For the example used in this study, the ball bearing, the proposed methodology improved the 
BRISQUE score remarkably by 13.6 points. The robustness of the developed region-based convolutional neural 
network was proven for different features. Since multiple features were tracked simultaneously at each given 
acquired projection image, the accuracy of the detection was validated at the end of each step to eliminate the risk 
of missing and/or faulty data points. Missing data recovery was demonstrated too, using a novel convolutional 
neural network methodology. The proposed method effectively suppressed the missing data artefacts by using 
convolutional neural network (CNN) -generated projections.

Methods
Software architecture. The general architecture of the software package is shown in Fig. 8. The Python 
programming language was selected for the software development since it offers a free, open-source, modular, 
readable and manageable framework. Furthermore, Python offers an easy integration to low-level programming 
languages like C and CUDA (Compute Unified Device Architecture). Numba is used as LLVM (Low Level Virtual 
Machine) compiler infrastructure in order to compile the Python syntax to machine code. Numba supports 
CUDA GPU programming by directly compiling a restricted subset of Python code into CUDA kernels50 and 
device functions following the CUDA execution model that reduces the computation time significantly.

The software package uses a modular architecture which enables to control the entire process by checking the 
quality of data analysis at each individual step. The entry point of the reconstruction pipeline is loading the meta-
data that include information about the data acquisition conditions and the projection data. Once the data and 
the corresponding acquisition angles are imported, the intensities of raw data are normalized with dark and white 
field correction, and minus logarithm operation. The reconstruction of these input data is performed applying 
one of the available algorithms in the algorithm module and subsequently of the available artefact compensation 
tools in the correction module.

The default approach of the methodology presented in this paper is using a computationally less demanding 
FDK42 algorithm in cone-beam geometry and an FBP36 algorithm in parallel beam geometry for data recon-
struction, and it is coupling them with the powerful correction module for improving the quality of the resulting 
reconstructed data. In order to enable a reproducible correction, a voxel-based bilinear interpolation approach is 
applied for the back-projection step which enables to tailor voxel positions according to pixel positions.

Figure 8. The framework of the software package. The package consists of different modules of algorithms and 
correction tools which eventually allows users to test several options without compromising the modularity.
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Center of rotation and offset of detector correction. In order to suppress ring artefacts introduced 
by the offset of the detector, the inaccuracy of the detector position has to be taken into consideration during the 
reconstruction step. We applied a reconstruction-based total variation minimization method with a multi-range 
testing approach to estimate the detector offset and the center of rotation. The total variation of reconstructed 
images is used as a measure for the quality of the resulting data, and the optimization of this function is fulfilled 
using the gradient descent algorithm51–54. The total variation is the sum over all pixels of squared differences 
from neighboring pixels. Given an image with n × m pixels, and I(x, y) as the intensity of the pixel (x, y), the total 
variation is defined as Eq. (1):
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We can replace ′F u v( , )i i  with total variation operator ′TV R P u v( ( , , ))  in Eq. 2:

α= −+ + ′u v u v TV R P u v u v( , ) ( , ) ( ( , , )) ( , ), (4)i i i i
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where R is the reconstruction operator and P is the projection. As i approaches to k, gradient descent recursion 
approaches toward the minimum and the least total variation yields the corrected parameters. The algorithm 
describing the applied methodology is given in Fig. 9.

Considering the size of typical HR-XCT data sets, the 2D projection images are initially downscaled by bin-
ning to increase the overall performance of the algorithm. After the initial optimization, the corrected parameters 
are upscaled and further optimized with the same approach with a fine-tuned range, and eventually used as final 
reconstruction parameters for center of rotation and offset of detector.

Motion compensation. The approach used for motion estimation is based on the fiducial marker 
approach12,13, however, detection and tracking purely relies on intrinsic patterns of the object on two adjacent 
acquired 2D projections. Computer vision methodologies have been developed for various applications, from 

Figure 9. The implementation of the algorithm for the center of rotation and the offset of detector corrections. 
Subscripts a and b defines the range, and 0 means the initial point for the recursion.
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cancer diagnosis to defect inspection, which require high efficiency and sensitivity to detect features in the inte-
rior of the objects in 2D and 3D55. However, the main drawback of the direct application of computer vision 
methodologies in computed tomography reconstruction, particularly for HR-XCT, is the change of the features 
detected and tracked in the acquired projections over time, e.g. every single projection provides an individual 
view of the object. In order to overcome this obstacle, a robust feature detection and tracking methodology that 
considers rotation and change of shapes of detected features is required. Consequently, we combined computer 
vision and deep neural network approaches to detect and to track features throughout the adjacent projections. A 
region-based CNN (R-CNN) is used for extracting feature maps for detection of intrinsic patterns/features from 
acquired projections and giving a unique id to each of them. The network design is completed with addition of a 
Support Vector Machine (SVM) classifier to provide a robust tracking over the entire projections. The proposed 
R-CNN+SVM architecture for feature detection and tracking is illustrated in Fig. 10.

The CNN used for the model is a standard deep-CNN with 3 convolutional layers and two fully-connected 
layers. Each convolutional layer uses a 5 × 5 kernel, and a rectified linear unit (ReLU) is used as activation func-
tion. The CNN part extracts feature maps from input and passes these maps through a region proposal network 
(RPN)56. The RPN in the R-CNN57 is used to determine searching positions in order to reduce computational 
efforts for the overall inference process. The RPN uses a selective search to quickly and efficiently scan possible 
locations and to discard unlikely feature positions by outputting bounding box proposals with scores representing 
the probability of containing the object or not at each location. An SVM classifier is used to classify and to decide 
whether the predicted bounding box include the feature or not. The output of the model includes the centroid 
coordinates of detected features and their respective id numbers.

The model training is performed by adapting an unsupervised training approach. The training data used for 
the model is generated through forward projections of simulated phantoms including several simple geometrical 
patterns such as sphere, triangle and rectangular which might be easily encountered in real tomographic datasets. 
The sample size of generated dataset was consisted of 3600 projection images. An example of used phantoms 
is given in Fig. 11. Finally, the feature maps extracted applying the CNN part are used to train the SVM part. 
R-CNN is optimized or a multi-task loss function which combines the losses of classification and bounding box 
regression. During the training, we found that smaller learning rates converge faster and thus we used a learning 
rate of 0.001.

The algorithmic implementation of the proposed methodology is given in Fig. 12. Each individual projection 
is loaded to the trained model as input, and the outputs are recorded. Once the detection and tracking task is 
completed for each projection, the motion compensation module combines the outputs - feature id numbers and 

Figure 10. The architecture of a R-CNN + SVM used for feature detection and tracking. All the convolutional 
layers use 5 × 5 kernels and ReLU as activation functions.

Figure 11. An example of simulated phantoms used for training of R-CNN.
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respective centroid coordinates - and calculates the confidence score of each id which simply provides a rate of 
how many times the same feature is detected until the entire angular range is covered. The respective coordinates 
of feature id with highest confidence score then used for further steps. The coordinates of the central point of 
angular coverage are used as a reference point, and subsequently, the absolute difference of the coordinates from 
this reference point is calculated for each angle. Then, these absolute difference values are fitted into Fourier 
series, i.e. a sum of sine and cosine functions that describe a periodic signal, to obtain the position of the center 
of the X-ray beam path. The outcome of this fitting step are the motion shifts in the detector plane for each pro-
jection angle. Ultimately, the motion compensation module transfers the obtained motion shifts to geometry 
metadata which provide rearranged detector positions for the back-projection step in order to compensate the 
motion effect.

The proposed methodology eliminates the dependency of object and feature tracking on fiducial markers, and 
it provides a powerful and adaptable way to determine the motion of the object. Furthermore, it is applicable for 
both parallel-beam and cone-beam geometries.

Missing data recovery. To infer high-quality reconstruction data from incomplete sets of projections, we 
used a deep-learning approach which enables a way to understand the transformation between complete and 
incomplete projections and the angular dependency of the limited angle reconstruction artifacts. A deep convo-
lutional neural network (CNN) was used for extracting feature maps from incomplete set of projections through 
convolutional layers in the encoder part and deconvolutional layers in the decoder part. The proposed CNN 
architecture for data recovery is illustrated in Fig. 13. The use of encoder/decoder architectures58,59 allows to gen-
erate an image as output since the decoder part maps the feature representation generated by encoder part back 
to input data space.

The encoder part of CNN used in the model is composed of 8 convolutional layers which use 3 × 3 convolu-
tional kernels with numbers changing between 16 and 64, and a fully connected layer. Three of eight convolu-
tional layers use 2 × 2 convolutional stride that computes the convolution from every 2 pixels, in order to reduce 
the size by half at each. The fully connected layer transfers encoded data with new image size to decoder part. 
The decoder part of CNN is composed of 9 deconvolutional layers which use 3 × 3 convolutional kernels with 
numbers changing between 1 and 64. This time, 2 × 2 deconvolutional strides in three deconvolutional layers 
up-sample the data back to the original input size. The final convolutional layer generates an output image. The 
feature maps generated from the deconvolutional layers of the decoder part are merged with the preceding feature 
maps at the same scale generated from convolutional layers of the encoder part. These merged layers are used to 
avoid the resolution loss during the down-sampling process in the encoder part.

The model training is done by adapting an unsupervised training approach. The complete and incomplete 
projection set pairs of simulated phantoms (see Fig. 11) with angular coverage of 30°, 60°, 120° and 180° are used 
as training dataset. The CNN is optimized by using Adam60. The learning rate, the exponential decay rate for the 
first moment estimates, the exponential decay rate for the second moment estimates and epsilon were respectively 

Figure 12. The algorithmic workflow of proposed feature detection and tracking method.
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0.001, 0.9, 0.99 and 10−8. Once the training is performed, the CNN transformation model fits weights of the 
network to predict a new set of projections by learning the transformation between complete and incomplete 
projections.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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