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A reconciliation of genome-scale 
metabolic network model of 
Zymomonas mobilis ZM4
Hoda nouri1, Hamideh fouladiha2, Hamid Moghimi  1 ✉ & Sayed-Amir Marashi  2 ✉

Zymomonas mobilis ZM4 has recently been used for a variety of biotechnological purposes. To rationally 
enhance its metabolic performance, a reliable genome-scale metabolic network model (GEM) of this 
organism is required. To this end, we reconstructed a genome-scale metabolic model (iHN446) for Z. 
mobilis, which involves 446 genes, 859 reactions, and 894 metabolites. We started by first reconciling 
the existing GEMs previously constructed for Z. mobilis to obtain a draft network. Next, recent gene 
annotations, up-to-date literature, physiological data and biochemical databases were used to upgrade 
the network. Afterward, the draft network went through a curative and iterative process of gap-filling 
by computational tools and manual refinement. The final model was evaluated using experimental data 
and literature information. We next applied this model as a platform for analyzing the links between 
transcriptome-flux and transcriptome-metabolome. We found that experimental observations were in 
agreement with the predicted results from our final GEM. Taken together, this comprehensive model 
(iHN446) can be utilized for studying metabolism in Z. mobilis and finding rational targets for metabolic 
engineering applications.

Bioethanol production has received increasing attention as a sustainable replacement for fossil fuels. Zymomonas 
mobilis, as an ethanologenic Gram-negative bacteria, possesses desirable characteristics because of its unique 
usage of the Entner-Doudoroff (ED) pathway. Compared to other ethanologenic microorganisms, Z. mobilis 
shows a higher glucose uptake rate and also higher yields of ethanol production. These characteristics are consid-
ered as the prerequisites for an industrially effective ethanol production process1,2.

In addition to ethanol, Z. mobilis’ metabolism consists of endogenous metabolic pathways that produce other 
industrially notable products including levan, sorbitol, glycerol, gluconic, succinic, lactic and acetic acids3. Levan 
is an important biopolymer has versatile applications in pharmaceutical, food and cosmetic industries3. Levan is 
a homo-exopolysaccharide which is composed of d-fructose monomers linked by β (2 → 6) bonds. Levansucrase 
(EC 2.4.1.10) is involved in the polymerization of fructose units, using sucrose as substrate4. All these characteris-
tics suggest that Z. mobilis has significant potential for the production of an extended range of valuable biochem-
ical compounds for industrial biotechnology applications3,4

Recently, manipulation and improvement of Z. mobilis have been reported via systems biology and com-
putational modeling, evolutionary engineering, genome editing, omics technology (genomics, transcriptomics, 
proteomics, metabolomics) and synthetic biology3–5. In addition, diverse metabolic engineering approaches have 
been used to redesign the new metabolic pathways in Z. mobilis such as deletion of competing pathways, insertion 
of new genes to increase substrate ranges, improve tolerance to extreme process conditions, ethanol toxicity and 
lignocellulosic hydrolysate inhibitors4,6.

In 2005, the primary genome sequence of Z. mobilis ZM4 was published and its annotation upgraded in 
20097,8. Recently, complete chromosome along with four native plasmids were sequenced in ZM4. These plas-
mids were in the size range of 32 to 39 kb and containing about 150 predicted ORFs9. In recent decades, in silico 
genome-scale metabolic models (GEMs) have introduced novel avenues for systems-level redirection of meta-
bolic fluxes, and consequently, rational strain improvement10,11. Z. mobilis is generally considered as a suitable 
platform for genetic engineering because of its GRAS (Generally recognized as safe), genome size, and efficient 
fermentation performance during a low biomass production rate2. Thus, purposeful metabolic engineering mod-
ifications can potentially be done in this organism.
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In the present study, our goal is to develop an updated GEM for Z. mobilis ZM4. Several studies have pre-
viously reported core metabolic model12 or GEMs13,14 for Z. mobilis ZM4. Furthermore, a GEM for a related 
strain, Z. mobilis ZM1 was reported15. However, due to the existing limitations and inconsistencies of those mod-
els, we decided to reconstruct an updated, reconciled and comprehensive Z. mobilis ZM4 GEM. None of the 
previously-published Z. mobilis GEMs were made in formats that are ready for simulation testing. We tried to 
check and find the required reactions to make a working model because none of these GEMs were able to produce 
biomass. The process of biomass correction, which was done for both GEMs (ZmoMBEL60 and iZM363), was 
in fact non-negligible. The previous GEMs use different metabolite names and different metabolic subnetworks. 
In addition, in some cases, multiple names of metabolites and reaction abbreviations were included. Both of the 
previously-published GEMs were constructed in the same year. Interestingly, their metabolic coverage, biochem-
ical evidence and GPRs are not consistent and differ in some cases. The core metabolic network was improved 
mainly based on literature evidence, but new enzyme-related together with new reactions and GPRs were not 
necessarily included.

Consequently, as more data about physiology, biochemistry and genetics was available for Z. mobilis ZM4, it is 
necessary to update the GEM of this organism by retrieving the relevant data from literature and publicly availa-
ble databases. We did this update with additional manual curation (Fig. 1).

Materials and Methods
Metabolic network draft reconstruction. The three previous Z. mobilis GEMs and one Z. mobilis core 
metabolic network were compiled for the reconstruction of our initial draft model12–14. In the first step, the list of 
all metabolic network components (including genes, proteins, reactions and metabolites) involved in the previous 
Z. mobilis models were collected. As a key bottleneck in metabolic models reconstruction, incompatibilities in the 
content of metabolic models such as multiple metabolites names, reaction abbreviations and stoichiometric errors 
were fixed. The redundancies were then verified and components with multiple/inconsistent IDs were detected 
and removed. Consequently, in our model, a consistent and unique ID (compatible with the KEGG database) was 
assigned to each protein, reaction and metabolite. obtained and manually checked for association with enzyme 
and/or reactions in KEGG.

In the next step, for each enzyme, all associated genes as well as all possible reactions were determined using 
KEGG16 and BRENDA17 databases. Furthermore, the list of all genes present in the Z. mobilis ZM4 genome was 
obtained and manually checked for association with enzyme and/or reactions in KEGG. Next, new genes that were 
not present in previous GEMs were identified and added to the model in order to improve gene-protein-reaction 
association correctness. In some cases, for confirming the functions of genes, sequence similarity with Escherichia 
coli was used. Non-gene-associated reactions, including spontaneous reactions and literature-based metabolic 
activities were also manually curated and added to the model. All instances of mass imbalance and stoichiomet-
ric errors were then found and fixed. The reversibility types of reactions were assumed to be the same as those 
of the template models. In cases of discrepancies among the templates, the reversibility types of reactions were 
determined based on BioCyc18 and KEGG. Exchange reactions were retrieved from the relevant literature and 
TransportDB19.

Gap detection. No-production and/or no-consumption metabolites often represent knowledge gaps in met-
abolic networks20. We identified such metabolites in the draft model. Then, in an iterative procedure, we tried to 
find a minimal set of biologically relevant reactions that were able to fix the gaps using fastGapFill21. Additionally, 
GapFind22 algorithm was used to find further dead-end metabolites and blocked reactions. Some reactions were 
proposed by these reaction-addition algorithms. We tried to identify those that are biologically reasonable by 

Figure 1. Schematic representation of the reconciliation workflow which was used for the reconstruction of 
iHN446, the updated genome-scale metabolic model of Z. mobilis ZM4.
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using genomic and biological evidences to avoid overfitting model. We also evaluated the accuracy of identifying 
filled gaps manually when possible, by finding missing reactions when compared to the GEMs in BiGG23 data-
base. In some cases, direction of reactions in model was changed based on biological knowledge. Some sponta-
neous reactions that were previously confirmed experimentally in E. coli were also added to our network. Finally, 
as there are several orphan reactions in each GEM, we analyzed blocked reactions of the E. coli model24. So, more 
biological discoveries should be done to fill these gaps.

Constraint-based modeling: Flux Balance Analysis. In a metabolic network model, there are prev-
alent interdependencies among reaction fluxes due to stoichiometry, reversibility and capacity constraints of 
metabolism. Flux balance analysis (FBA) is used for optimizing a pre-defined objective function in the specified 
metabolic constraints. Fundamentals of FBA have been explained previously10. Unless stated otherwise, in the 
present work, maximization of biomass production rate is considered as the objective function. All analyses were 
performed using COBRA Toolbox v2.025. GLPK was applied as the linear programming solver to perform FBA.

For all in silico simulations based on carbon source usage, the lower bound of the carbon source uptake rate 
was considered as −10 mmol gDCW−1 h−1. Unless stated otherwise, for all reactions, the upper bound was 
assumed to be +1000 mmol gDCW-1. The lower bounds of the irreversible and reversible exchange reactions were 
set 0 and −1000 mmol gDCW−1 h−1, respectively.

For simulation of the aerobic and anaerobic conditions, −1000 and 0 mmol gDCW−1 h−1 was considered for 
oxygen exchange reaction, respectively. ATP hydrolysis and synthesis flux values were set to −10 and 50 mmol 
gDCW−1 h−1 respectively, based on Motamedian et al. results15. The lower bound of amino acid exchange reac-
tions was set to 0.1 mmol gDCW−1 h−1 when the medium was consisting of yeast extract. Non-growth-associated 
(NGAM) and growth-associated maintenance (GAM) were same as Widiastuti et al. results14.

Model validation. We validated our model through four major approaches. Batch fermentation of Z. mobilis 
ZM4 grown on different culture media in aerobic and anaerobic conditions was done to examine whether our 
model correctly predicts the growth rate patterns. Moreover, a comprehensive literature search was performed 
to find studies of genetic engineering and gene knockout on Z. mobilis. Furthermore, gene essentiality anal-
ysis was done to check the accuracy of the model prediction. In order to further evaluate the accuracy of our 
model, the profile of differentially expressed genes in aerobic vs. anaerobic conditions was investigated. Then, the 
transcriptionally-changed enzymes were used to qualitatively validate the oxygen-related changes in the predicted 
fluxes26. Additionally, Biolog GN2 MicroPlate™ was used in order to profile growth phenotypes of Z. mobilis ZM4 
on diverse carbon sources. According to the standard protocol, a colony of the bacterium was inoculated on 5% 
Sheep Blood that is supplemented to a Biolog Universal Growth medium for an overnight at 37 °C. The bacteria 
were then removed using a sterile swab and suspended in GN/GP Inoculating Fluid to the definite turbidity. 
Then, 150 µl aliquot of cell suspension was inoculated into each of the 96 carbon source-containing wells. In 
positive cases, i.e., where Z. mobilis can grow, by making a redox potential, a purple color will appear because of 
reduced tetrazolium dyes. Additionally, a previously reported list of biochemical results was used to validate the 
predictions27.

Fermentation experiments with Z. mobilis. Z. mobilis ZM4 ATCC 31821 was cultured in RM medium 
(Glucose 20 g/L, KH2PO4 2.0 g/L, Yeast Extract 10 g/L) at 30 °C26. For ethanol production, fermentation was car-
ried out in either of two different media, namely, standard RM and modified RM (Glucose 20 g/L, Yeast Extract 
10 g/L, KH2PO4 2 g/L, MgSO4·7H2O 1 g/L, (NH4)2SO4 1 g/L)14. For levan production, the culture medium (SRM) 
contained sucrose 100 g/L, Yeast Extract 10 g/L, and KH2PO4 2.0 g/L. Cells were grown for preculture prepa-
ration in 50 mL medium in a 250 mL Erlenmeyer flask. Shaking and incubation were done at 150 rpm and at 
30 °C, respectively. Afterward, anaerobic condition for ethanol production was achieved by culturing in sealed 
bottles filled with 50 ml of culture medium. For aerobic ethanol or levan production, 20 mL medium was used in 
a 100 mL Erlenmeyer flask. Samples were withdrawn throughout fermentation at different intervals for further 
analysis. All experiments were repeated at least three times with three replicates under each of the conditions.

Analytical methods. During fermentation, growth was checked spectrophotometrically by measuring opti-
cal density at a wavelength of 600 nm (Rayleigh UV-1601). Glucose content of each sample was quantified by 
using an enzymatic kit that is based on glucose oxidase activity28. Gas chromatography was applied to determine 
the ethanol content of each distilled medium. Levan extraction was performed by absolute ethanol and dialysis 
(MWCO 14000 Da). Quantitative analysis of produced levan was done by phenol-sulfuric acid method and esti-
mated as fructose units29.

Results and Discussion
Genome-scale metabolic network of Z. mobilis ZM4. Figure 1 illustrates a summary of our GEM 
reconstruction procedure. Briefly, the three previously-published Z. mobilis ZM4 GEMs were unified and recon-
ciled. Furthermore, in order to construct our comprehensive GEM, several new genes, enzymes, reactions and 
metabolites were added to the previous models based on database searches and literature evidence.

Different data sources were used for model compilation, including (i) BiGG, BioCyc, KEGG, BRENDA, and 
TransportDB databases, (ii) genomic sequence of Z. mobilis ZM4 for analyzing sequence similarity by using 
BLAST and NCBI, (iii) previously-published Z. mobilis GEMs for gathering all reactions and genes, and other 
literature-based evidence that were reported earlier. Two models of Z. mobilis were genome-scale, while the other 
one is limited to central metabolism, in which the focus was mostly on biochemical and enzymatic evidence. 
Consequently, we gathered all these pieces of information for gaining a comprehensive draft model from previous 
researches. Furthermore, in some cases that dead-end metabolites or blocked reactions were found, E. coli24 and 
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B. subtilis30 GEMs were used, as high quality bacterial templates, to ensure the presence of spontaneous reactions. 
Then we checked the presence of these reactions in Z. mobilis, as well.

Since the two GEMs had different identifiers for metabolites, we searched for equivalent reactions and removed 
redundancies. Furthermore, whenever necessary, we fixed the discrepancies in stoichiometries, reversibility type 
of reactions and gene-protein-reaction associations. We then analyzed the orphan (i.e., non-gene-associated) 
reactions to check their reliability, followed by reaction gap filling. Altogether, 188 reactions were added from 
the KEGG database to refine our model. In this procedure, a considerable number of gaps were filled, and several 
blocked reactions were unblocked.

A recent report has presented comprehensive data on the sequences and annotations of plasmid-related 
genes in Z. mobilis ZM4 (including pZM32, pZM33, pZM36 and pZM39)9. However most of these genes have 
non-metabolic functions. Their function was characterized in the field of phage structure proteins, toxin-antitoxin 
proteins, membrane-associated transporters and transcriptional regulators, as well as several hypothetical pro-
teins. It should be noted that certain plasmid-related genes with metabolic functions had the same enzymatic 
activity as those genes which were present in our GEM. Finally, we updated our GEM and added some reactions 
based on these plasmid sequence revisions. The final GEM, which will be referred to as iHN446, includes 446 
genes, 859 reactions, and 894 metabolites. The iHN446 model, in XLS format, which includes the complete list of 
reactions and metabolites, can be found in File S1. We also provide the model in SBML format (File S2).

Figure 2 summarizes an overview of the number of non-gene associated and gene-associated reactions in each 
of the pathways in iHN446. For genetic engineering purposes, the gene-to-protein associations are of central 
importance. Our results suggest that the reactions included in iHN446 are reasonably reliable, as most of the reac-
tions in the model are associated with their corresponding metabolic genes (Fig. 2). One can obviously observe 
that amino acid metabolism had the most reactions in the metabolic network. Also, previous flux coupling results 
had confirmed the important role of this pathway in ethanol production and the growth of organism14.

We then compared iHN446 with all previously-published Z. mobilis metabolic network models (Table 1). In 
the chronological order, the two Z. mobilis ZM4 GEMs were reconstructed by Widiastuti et al. and Lee et al.13,14,  
respectively. Then, a core metabolic network model of Z. mobilis was released by Pentjuss and coworkers12. Finally, 
Motamedian et al. published another GEM for a related strain, namely Z. mobilis ZM115.

Total gene coverage of model is 22.3% in iHN446, while ZmoMBEL601 and iZM363 models each have 17.4% 
and 18.2% coverage, respectively. Since Z. mobilis ZM1 genome includes fewer genes in comparison to Z. mobilis 
ZM4 (i.e., 1929 vs.1998), the gene coverage of iEM439 should not be compared with the gene coverage of other 
GEMs.

Figure 2. The portion of gene associated reactions in each of nine functional categories. Non-gene-associated 
reactions in each subsystem are shown as the black part of each bar.

iHN446 
(this study)

Core 
model12 ZmoMBEL60113 iZM36314 iEM43915

No. of gene-associated reactions 689 43 493 414 585

No. of non-gene-associated reactions 170 12 70 190 107

No. of included genes 446 41 348 363 439

Gene coverage in the model * 22.3% 2% 17.4% 18.2% 22.7%

No. of metabolic reactions 859 55 563 604 692

No. of transport reactions 73 21 37 143 71

No. of cytoplasmic metabolites 821 62 578 605 649

No. of extracellular metabolites 73 24 31 99 37

Table 1. The characteristics of different genome-scale metabolic models of Z. mobilis. *Percentage of total gene 
coverage based on overall genes in Z. mobilis strains (iHN446, Core model, ZmoMBEL601 and iZM363 consist 
of 1998 genes. iEM439 consists of 1929 genes)
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In iHN446, the gene-associated reactions account for 80% of all non-transport reactions. In comparison, 
ZmoMBEL601, iZM363 and iEM439, 87%, 68% and 84% of the non-exchange reactions are gene-associated, 
respectively.

As expected, our reconciled model includes a considerable number of unique metabolites, genes and reac-
tions (and more specifically, gene-associated reactions). The number of unique (and also shared) genes, enzymes 
and reactions are depicted in Fig. 3 and Table S3. In comparison to previous GEMs, our new model has 567 new 
reactions, 122 new enzymes and 60 new genes. These data show that the upgraded model has significant improve-
ments in metabolic coverage. Among these 567 updates, reactions of energy, lipid, cofactor and vitamin metab-
olism, together with the metabolism of secondary metabolites are corrected. Comparison of previous models 
revealed that there are 357 reactions common between the two models, while 57 and 37 reactions were unique to 
iZM363 and ZmoMBEL60, respectively. In addition, iZM363 has 63 more unique enzymes and 30 more unique 
genes in comparison to ZmoMBEL60.

Although a great ratio of iHN446 is shared by the previous models, we excluded genes, enzymes or reactions 
from our model for which we did not find adequate evidence confirming their existence. Additionally, in certain 
cases, changes in the biochemical data or genomic annotations might have resulted in the inconsistencies (Table S4).

Taken together, we propose that our model is upgraded in various parts in comparison to previous models of 
Z. mobilis ZM4:

 I. Conversion of each GEM to a machine-readable format was required. In the first step, after we convert-
ed these GEMs to SBML format, COBRA toolbox was used for analysis, but none of these GEMs were 
able to synthesize biomass. This makes simulation analysis difficult because the conversion of a GEM to 
a mathematical format is required for biological studies. Note that addition of required reactions may 
inevitably result in a slightly different model in comparison to the original version of the models.

 II. In the present model, we assigned KEGG metabolite and reaction identifiers to most of the metabolites 
and reactions in the model, because different or multiple metabolite names were included in the each of 
the previous GEMs.

 III. The charged forms of metabolites are not presented in the previous GEMs. Also, both GEMs ignored 
mass and electrical charge balance.

 IV. Although in the same year both of the previous GEMs of Z. mobilis ZM4 were constructed, they showed 
different gene-protein-reaction coverage. In addition, in some cases, metabolic and biochemical data 
were considered differently.

 V. In ZmoMBEL60 model, although yeast extract is an ingredient of the culture medium, neither the amino 
acids nor the trace elements were included in the model (based on the present exchange reactions). Con-
sequently, simulation results are not performed in the same condition as experimental ones.

 VI. When we tried to build a biomass-producing model, ZmoMBEL60 was dependent on NMN entrance to 
the cell for biomass production in simulation tests. Besides, some exchange reactions for some metabo-
lites like, NAD+, AMP and NMN are considered to be present in the model. Such a dependency to the 
uptake of NMN (and other metabolites) does not occur in reality.

 VII. In iZM363 model, phospholipid and cardiolipin were not able to be produced, and consequently, no 
biomass production was obtained. Therefore, we decided to allow these two biomass constituents to enter 
the network by adding their exchange reactions and checking the biomass production. In the culture 
condition proposed in Widiastuti et al. article, biomass production was simulated. However, neither in 
the original condition nor in this new biomass formulation, a non-zero growth rate was seen. We tried in 
an iterative process to find essential metabolite(s) for enabling biomass production. In this case we found 
that isoleucine, glycine and S-adenosyl-l-methionine supplementation is vital for biomass production.

 VIII. In the core metabolic network, Pentjuss et al. included a number of biochemical reactions with exper-
imental evidence, mainly on NAD(P)H balance, which is necessary for stoichiometric balance. Also, a 
number of important changes were made in respiratory chain and catabolic genes in the central carbon 
metabolism, which were not incorporated in previous reconstructions. Although this model was im-
proved mainly based on literature evidence, new enzyme-related changes, together with new reactions 
and GPRs were not necessarily included. Basically, this model cannot be considered as a GEM with 
comprehensive list of genes, reactions and metabolites. The improvements suggested by Pentjuss et al. are 
included in our GEM.

Figure 3. Comparison of genes (A), enzymes (B) and reactions (C) shared by iHN446, ZmoMBEL60 and iZM363.

https://doi.org/10.1038/s41598-020-64721-x


6Scientific RepoRtS |         (2020) 10:7782  | https://doi.org/10.1038/s41598-020-64721-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Model validation. Carbon-Nitrogen-Sulfur utilization phenotypes. In case of carbon sources, we used both 
qualitative and quantitative studies to determine the metabolic capabilities of Z. mobilis. The Biolog analysis 
was used to qualitatively study the utilization of several different carbon sources. Additionally, consumption of 
glucose, fructose and sucrose by Z. mobilis are further analyzed quantitatively. In each case, growth rate, together 
with ethanol and/or levan production were measured in aerobic and anaerobic conditions.

A high-throughput 96-well Biolog phenotypic test was performed to profile carbon usage of Z. mobilis ZM4. 
Among the carbon sources available on the Biolog MicroPlate™, we observed carbon source utilization only in 
two cases, namely fructose and glucose. Although sucrose utilization has been reported in Z. mobilis, our Biolog 
phenotypic result was negative, which is consistent with the previously reported Z. mobilis growth results27. 
Since Z. mobilis is known to be able to utilize sucrose for growth and levan production31, we carefully studied 
sucrose-dependent growth. We used broth culture and plates supplied by sucrose as carbon source. In both of the 
solid and liquid cultures, the growth of Z. mobilis was observed.

In order to computationally simulate the carbon source utilization capabilities and comparing the results 
obtained with previous Z. mobilis GEMs, we used FBA. As it is presented in Fig. 4, the exact accordance between 
modeling and experimental data were seen in all three models for the three carbon sources as mentioned above. 
In ZmoMBEL60 model, no transport reaction was included in the model for other carbon sources. Consequently, 
we added transport reactions in these cases. In ZmoMBEL60 model, lactose and gluconic acid were incorrectly 
predicted to be utilized by Z. mobilis. In iZM363 model, sorbitol, gluconic acid, glycerol, inosine, uridine, thy-
midine and phenylalanine were incorrectly predicted to be consumed by Z. mobilis. Also, iHN446 mistakenly 
predicts the gluconic acid utilization as the carbon source. Therefore, a comparison of modeling results with 
experimental data confirms the precision of our model.

In case of nitrogen and sulfur sources, we used the previously-published data by Bochner et al. for model vali-
dation27. Simulations suggest that iHN446 is able to successfully predict l-asparagine, l-aspartic acid, l-glutamine 
and ammonia consumption as the nitrogen source. ZmoMBEL60 model was able to predict the consumption of 
ammonia as the nitrogen source. Although, since yeast extract (including amino acids) is not included in the in 
silico growth medium, simulation on different amino acids as nitrogen source was not possible. In this case, we 
included transport reactions of nitrogen sources to model. Simulation proposed that ZmoMBEL60 is able to pre-
dict l-asparagine and l-aspartic acid, correctly. In contrast, l-glutamine was mistakenly consumed by Z. mobilis. 
In addition, in iZM363 model, isoleucine and glycine should be added to the growth medium to enable biomass 
synthesis. Therefore, these amino acids are essential and are consumed, and hence, they can provide the required 
nitrogen for Z. mobilis. Consequently, it is not possible to simulate the necessity of any nitrogen sources.

Sulfate, l-cysteine and l-methionine utilization were correctly predicted to be used by iHN446 as the sul-
fur source. ZmoMBEL60 model, in contrast, could only predict the sulfate consumption. In iZM363 model, 
S-adenosyl-l-methionine supplementation was necessary for growth, and therefore, one could not simulate the 
usage of sulfur sources. Taken together, simulation results of the iHN446 model showed an improved consistency 
with the experimental results, compared to the two previously-published GEMs (Fig. 4).

Batch fermentation characteristics. The growth patterns of Z. mobilis in the two different growth media 
(see Materials and Methods) were determined experimentally. Then, these data were compared with in silico 
simulation results obtained by FBA using the biomass production rate as the objective function. In RM and 
modified RM media, we found the model predictions to be in agreement with the experimental data in all con-
ditions. By performing FBA in the conditions of culture media, the growth rate was determined as 0.136 h−1 and 
0.5 h−1, respectively, which is comparable to the experimentally measured growth rate (0.154 ± 0.03 in RM and 
0.39 ± 0.04 in modified RM). The ethanol content was 6.28 ± 0.8 g/L and 7.38 ± 0.51 in RM medium in aero-
bic and anaerobic conditions, respectively. Additionally, in the modified RM medium, ethanol quantities were 
7.23 ± 0.36 g/L in aerobic and 8.6 ± 0.48 g/L in anaerobic fermentation. Furthermore, we ran FVA and analyzed 
the maximum and minimum flux rates of reactions in which ammonium is involved. As expected, in modified 
RM with ammonium supplementation, these reaction fluxes changed to zero or decreased significantly. It should 
be noticed that there are 20 reactions in the iHN446 model that produce or consume ammonium. So, our model 
could reveal the effect of ammonium addition. Based on FVA results under two different culture media, evalu-
ation of fluxes of amino acid production metabolism revealed that in modified RM amino acid metabolism is 
considerably less active. These observations confirmed that the addition of ammonium to medium reduces the 
dependence of Z. mobilis to amino acids because ammonium could go through different pathways. In conclusion, 
the addition of ammonium and flux changes agrees with the reported experimental results32.

Figure 4. Results of in silico simulations and experimental experiments based on growth on different carbon, 
nitrogen and sulfur sources (Growth/True (Green☑), Growth/False (Green☒), No-Growth/True (Red☑), No-
Growth/False (Red☒), Non-tested (?).
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In the simulation with sucrose as the carbon source, the predicted results confirmed our experimental out-
comes. The calculated in silico and experimental growth rate were 0.136 h−1 and 0.168 ± 0.03 h−1, respectively. 
Measurement of levan production showed 0.6 ± 0.07 g/L of product formation under the experimental condition. 
Furthermore, we used FVA to assess the range of levansucrase flux. FVA results confirmed that this pathway was 
functional, as the maximum and the minimum fluxes of the reaction were 5 mmol gDW−1.h−1. Moreover, path-
ways of sucrose and fructose metabolisms were active when sucrose was added as a carbon source to the medium. 
Minimum and maximum flux of d-sorbitol dehydrogenase were −15.25 and 20 mmol gDW−1.h−1, respectively 
as fructose is needed for sorbitol production. Also, glucose-fructose oxidoreductase, which is responsible for 
sorbitol production, showed the minimum and the maximum fluxes of 0 and 20 mmol gDW−1.h−1, respectively. 
According to experimental evidence, sorbitol and levan are the products of sucrose utilization33. Therefore, our 
model could show that these pathways are practical in the presence of sucrose and fructose as carbon sources.

Model evaluation based on genetic engineering data. Xylose utilization. Glucose and xylose are the 
main derivatives of lignocellulosic biomass digestion. Therefore, the conversion of these carbon sources to ethanol 
is economically important. Z. mobilis lacks a complete pentose utilization pathway. Therefore, many efforts have 
been taken to introduce the necessary genes to the metabolism of this microorganism1. As shown in Table 2, xylose 
isomerase, xylulokinase, transketolase and transaldolase activity is necessary to provide Entner-Doudoroff pathway 
the intermediates required for converting xylose to ethanol34. We simulated the growth of Z. mobilis on minimal 
medium, and additionally, permitted xylose to go into the system by setting the lower bound of its exchange reaction 
to −10 mmol gDW−1 h−1. Investigation of the modeling predictions for growth rate in this case by running FBA 
showed 0.136 mmol gDW−1.h−1. The in silico ethanol production simulations were done using FBA. In the case 
of glucose and xylose consumption, 29.42 and 21.92 mmol gDW−1.h−1 ethanol was produced, respectively. In the 
mixed culture of glucose and xylose, 49.42 mmol gDW−1.h−1 ethanol production was obtained. The results showed 
that ethanol production would be improved in mixed culture as more carbon sources are available for the microor-
ganism. Based on growth and ethanol production, the modeling outcome is compatible with experimental results.

Arabinose utilization. Along with the previous attempts for expanding substrate usage ability in Z. 
mobilis, arabinose utilization genes were inserted into this bacterium. Similar to the case of xylose, ara-
binose is another five-carbon sugar that is found in lignocellulosic biomass. Arabinose isomerase, 
ribulose-5-phosphate-4-epimerase, ribulokinase and transaldolase were added to the model35. The lower bound 
was set to −10 mmol gDW−1 h−1 in arabinose exchange reaction. By performing FBA, the model predicted 
0.136 mmol gDW−1 h−1 for the growth rate and 24.42 mmol gDW−1 h−1 ethanol production. Therefore, the sim-
ulations reflected the experimental observations adequately.

Alanine production. Alanine dehydrogenase gene has been previously employed to demonstrate successive 
improvements in broadening the product formation in Z. mobilis36. By engineering this pathway, flux from etha-
nol production is redirected to alanine production. In order to analyze the splitting of carbon sources to these two 
end products, we used FBA. Our modeling observation is compatible with experimental results and showed less 
ethanol, 28.45 mmol gDW−1 h−1 (compared to 29.42) when alanine is produced.

β- carotene production. β-carotene is popular mainly because of its vast applications in the production of pharma-
ceuticals and as a food additive. Biosynthesis of β-carotene is achieved by heterologous expression of β-carotene syn-
thesizing genes in an appropriate host like Z. mobilis37. As presented in Table 2, geranylgeranyl diphosphate synthase, 
phytoene desaturase, phytoene synthase and lycopene cyclase were added into the metabolic model. The model was 
then evaluated to examine the activity of the aforementioned pathway. For simulation tests, the upper bounds and 
lower bounds of the corresponding reactions were set to +1000 mmol gDCW−1 h−1 and −1000 mmol gDCW−1 h−1, 
respectively. The β-carotene production reaction flux was predicted to be 1.016 mmol gDW-1.h-1. Therefore, our results 
of FBA demonstrated that the aforementioned pathway is active when β-carotene synthesizing genes were provided.

Expanding carbon sources

Engineering purpose Heterologous Enzymes Reference

Xylose utilization xylose isomerase, xylulokinase, transaldolase Zhang and Eddy, 1995

Arabinose utilization ribulokinase, arabinose isomerase, ribulose-5-
phosphate-4-epimerase, transaldolase Deanda et al., 1996

Expanding products

Alanine production Alanine dehydrogenase Uhlenbusch et al., 1991

β-carotene production geranylgeranyl diphosphate synthase, phytoene 
synthase, phytoene desaturase, lycopene cyclase Misawa et al., 1991

2,3-butanediol production butanediol dehydrogenase Yang et al., 2016b

Knock-out of genes

Omitting sorbitol production by 
gfo knock-out Glucose-fructose oxidoreductase (gfo) Wang et al., 2013

succinic acid overproduction pyruvate decarboxylase (pdc) and lactate 
dehydrogenase (ldh) Rogers et al., 2007

Table 2. Results of the comprehensive literature search for genetic manipulation of Z. mobilis.
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2,3-butanediol production. Microbial production of 2,3-butanediol, which is often produced petrochemi-
cally, has gained scientists’ attention in recent years. Production of this important chemical may be achieved by 
introducing related genes to Z. mobilis38. Here we added butanediol dehydrogenase gene to Z. mobilis metabolic 
network to model the engineered strain. In order to study the modeling predictions in this condition, we kept 
the glucose and/or xylose uptake rate at −10 mmol gDW−1 h−1 and allowed butanediol dehydrogenase activity 
by adding the constraint −1000 mmol gDCW−1 h−1 and 1000 mmol gDCW−1 h−1 to see how it would affect 
the butanediol production. By using FBA, in the case of glucose or xylose consumption, 14.71 and 10.96 mmol 
gDCW−1 h−1 was produced, respectively. As butanediol production was 24.71 mmol gDCW−1 h−1, the model 
could reflect the experimental observations of butanediol production in the mixed culture, successfully,

gfo gene knockout. The glucose-fructose oxidoreductase is encoded by gfo gene. In a previous study, a gfo knock-
out in Z. mobilis was constructed and the metabolic features of this bacterium were studied33. Here, we report the 
consequences of the experimental and in silico simulation of these evaluates. In experimental results, the inacti-
vation of gfo had different results on the growth of Z. mobilis at high or low concentration of glucose, fructose or 
sucrose. However, as shown in the simulation results, the model could not predict the experimental observations 
correctly. These observations proposed that these effects may be related to regulation mechanisms in Z. mobilis. 
So, more research is needed in differences in transcription profile in these conditions.

pdc and ldh gene knockout. Succinic acid can be used in numerous applications like surfactants, detergents and 
solvents or food and pharmaceutical products. pdc and ldh are genes that participate in lactate and ethanol pro-
duction. By omitting these two genes, fluxes are redirected to succinic acid production and resulted in improved 
concentrations of succinic acid39. By running FVA, when ethanol and lactate were produced, minimum and 
maximum fluxes of succinic acid production were 0 and 0.33 mmol gDCW−1 h−1, respectively. Here we knocked 
out the above two genes in silico, so maximum succinic acid production changed to 5.33 mmol gDCW−1 h−1. 
Consequently, more succinic acid production in knock-out condition was confirmed.

Model evaluation based on gene essentiality analysis. A recently-published article reports that, floc 
formation in a defined minimal medium under the aerobic condition is essential for Z. mobilis ZM4 survival. In 
this case, a gene cluster of cellulose synthase was found to be vital for microorganism40. It should be noticed that, 
cells within flocs are linked together by a cellulosic extracellular matrix. So, we added a new cellulose-containing 
biomass reaction to be used for modeling in minimal medium. By simulating this minimal medium in aerobic 
condition, our model could reflect the essentiality of cellulose synthase, successfully.

Model evaluation based on transcriptomic data. Evaluation based on Reporter Metabolite Algorithm.  
As a qualitative validation of predicted flux distributions by a GEM, one can take advantage of transcriptomic 
data. For Z. mobilis ZM4, the maximum specific growth rates are comparable under aerobic and anaerobic con-
ditions, while genes related to ethanol (and other byproducts) formation may be differentially regulated, which 
results in differences in the transcriptomic profiles26. For validating gene activity of different pathways under 
aerobic vs. anaerobic conditions, in the first step, the “reporter metabolite algorithm” was used41. In this method, 
by integrating transcriptome data with a GEM, key metabolites that are linked to the most significant transcrip-
tional changes are identified. Glucose 6-phosphate, glycerate, glucose, 2-Phosphoglycerate, l-Phenylalanine, 

Figure 5. Confirmed metabolites in different pathways of Z. mobilis based on reporter metabolite algorithm 
results that are linked to the transcriptional changes during aerobic and anaerobic fermentation. Cell membrane 
image was obtained from (https://smart.servier.com/) CC BY 3.0.
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l-Threonine and lactate were found different in the metabolomic profile of Z. mobilis during aerobic and anaero-
bic fermentation based on reporter metabolite algorithm results (Fig. 5). These findings confirmed the physiolog-
ical status of Z. mobilis that was investigated by GC-MS analysis26.

As it was indicated in previous research, metabolism of sulfur compounds is impacted under these two con-
ditions26. Thiosulfate, sulfo-l-cysteine, l-Selenocysteine, 3-Sulfino-l-alanine are sulfur-containing metabolites for 
which a statistically significant difference in response to environmental aeration condition was observed. Although 
4-hydroxybutanoate that is differentially produced between the above conditions is not present in our metabolic net-
work, 2-Hydroxy-2-methyl-3-oxobutanoate, 2-Aceto-2-hydroxybutanoate and 2,3-Dihydroxy-3-methylbutanoate 
that are butanoate-derivatives are shown to be related to aerated fermentation. Overall, using an updated GEM, we 
elucidated how changes in metabolic state occur during anaerobic vs. aerobic shift conditions.

Evaluation based on uniform random sampling of flux space. We compared flux changes between aerobic and 
anaerobic conditions by using a random sampling of the metabolic flux space42. By comparing the distribution 
of that flux value under aerobic vs. anaerobic conditions, each results with P-values lower than 0.05 considered 
statistically significant. Also, previously published transcript data in response to anaerobiosis introduced up or 
down-regulated genes. Then, the list of significantly increased (or decreased) reaction fluxes were compared with 
the list of up- (or down-) regulated genes based on the transcriptomic data. Comparison of transcriptomes with 
flux data showed, while some of these changes were consistent with previous transcriptome studies, most of them 
are not metabolic genes. These observations are the evidence of the role of transcriptionally controlled mecha-
nisms and showed new insights into the physiology of anaerobically growing Z. mobilis ZM4.

Our results demonstrated that pathways most significantly impacted by aeration shift were glycolysis, amino 
acid, purine and pyrimidine metabolism. Between reactions pyruvate decarboxylase and alcohol dehydro-
genase had significantly lower flux in aerobic condition. This finding is in accordance with experimental evi-
dence. We also evaluate our results with up or down-regulated genes that were obtained from transcriptomic 
data. Additionally, we assessed the accordance between results achieved from reporter metabolite algorithm with 
sampling results. In the case of up-regulated genes, 36% of the sampling positive results were confirmed by the 
transcriptomic data, while the down-regulated genes were 73% consistent with sampling results. While our results 
showed an acceptable level of correctness (accuracy = 0.67, F1 score = 0.77), but there is still room for improve-
ment. (Table 3).

Down-regulated metabolic genes/consistent Up-regulated metabolic genes/consistent

ZMO0105 3-isopropylmalate dehydratase large subunit ZMO0311 Pyrroline-5-carboxylate reductase

ZMO0585 Tryptophan synthase beta chain ZMO1617 Carbamoyl-phosphate synthase large chain

ZMO0804 N-acetyl-gamma-glutamyl-phosphate reductase ZMO1460 Thiosulfate sulfurtransferase

ZMO1139 Acetolactate synthase large subunit ZMO1286 Sorbitol dehydrogenase small subunit

ZMO1141 Ketol-acid reductoisomerase

ZMO1407 Aspartate-semialdehyde dehydrogenase

ZMO1891 Threonine synthase

ZMO1321 Inosine-5-monophosphate dehydrogenase

ZMO0475 Riboflavin synthase alpha chain

ZMO1571 Cytochrome bd-type quinol oxidase subunit 1

ZMO1572 Cytochrome bd-type quinol oxidase subunit 2

ZMO1113 NADH dehydrogenase

ZMO0152 Pyruvate kinase

ZMO0369 Glucokinase

ZMO1240 Phosphoglycerate mutase

ZMO1596 Alcohol dehydrogenase II

ZMO1608 Enolase

ZMO1649 Gluconolactonase

ZMO1719 Fructokinase

Down-regulated metabolic genes/inconsistent Up-regulated metabolic genes/inconsistent

ZMO0172 Thiamine biosynthesis protein ZMO1853 Dihydrodipicolinate synthase

ZMO0889 Aldose 1-epimerase precursor ZMO1792 Dihydroxy-acid dehydratase

ZMO0239 ATP synthase alpha subunit ZMO1887 Isochorismatase

ZMO0241 ATP synthase beta subunit ZMO1879 Delta-aminolevulinic acid dehydratase

ZMO0367 Glucose-6-phosphate dehydrogenase ZMO1489 3-deoxy-D-manno-octulosonate cytidylyltransferase

ZMO0465 Triosephosphate isomerase ZMO1496 Phosphoenolpyruvate carboxylase

ZMO1478 6-phosphogluconolactonase ZMO1347 Threonine aldolase

Table 3. Comparison of transcriptomic experimental observations and computational random sampling results 
of up or down-regulated metabolic genes in aerobic vs. anaerobic condition.
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conclusion
In this work, an upgraded high-quality metabolic model of Z. mobilis ZM4, iHN446, is presented. The model is 
more comprehensive in scope than previous models and updated based on the latest gene annotations, databases 
and literature. The model validation was achieved by comparing model predictions to experimentally gained 
results or from the literature. iHN446 showed desirable simulated performance when predicting specific growth 
rate on the carbon sources and the effects of gene deletion or gene insertion on cell growth and/or product 
formation. We also investigated the predictive power of the model based on transcription data in aerobic and 
anaerobic conditions by comparing changes in the flux of each reaction vs. transcription data. This advanced and 
comprehensive genome-scale metabolic model, make a potential platform for a better understanding of Z. mobilis 
metabolic features at a systems-level and is a valuable tool to develop engineered Z. mobilis strains for several 
biotechnological applications. Finally, this model can be a framework for the integration of transcriptomic data to 
provide more accurate metabolic engineering predictions.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information Files).
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