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Genome-Scale characterization 
of predicted plastid-targeted 
proteomes in Higher plants
Ryan W. christian1,2, Seanna L. Hewitt1,2, Eric H. Roalson2,3 & Amit Dhingra  1,2 ✉

plastids are morphologically and functionally diverse organelles that are dependent on nuclear-
encoded, plastid-targeted proteins for all biochemical and regulatory functions. However, how plastid 
proteomes vary temporally, spatially, and taxonomically has been historically difficult to analyze at 
a genome-wide scale using experimental methods. A bioinformatics workflow was developed and 
evaluated using a combination of fast and user-friendly subcellular prediction programs to maximize 
performance and accuracy for chloroplast transit peptides and demonstrate this technique on the 
predicted proteomes of 15 sequenced plant genomes. Gene family grouping was then performed in 
parallel using modified approaches of reciprocal best BLAST hits (RBH) and UCLUST. A total of 628 
protein families were found to have conserved plastid targeting across angiosperm species using RBH, 
and 828 using UCLUST. However, thousands of clusters were also detected where only one species had 
predicted plastid targeting, most notably in Panicum virgatum which had 1,458 proteins with species-
unique targeting. An average of 45% overlap was found in plastid-targeted protein-coding gene families 
compared with Arabidopsis, but an additional 20% of proteins matched against the full Arabidopsis 
proteome, indicating a unique evolution of plastid targeting. Neofunctionalization through subcellular 
relocalization is known to impart novel biological functions but has not been described before on a 
genome-wide scale for the plastid proteome. Further work to correlate these predicted novel plastid-
targeted proteins to transcript abundance and high-throughput proteomics will uncover unique 
aspects of plastid biology and shed light on how the plastid proteome has evolved to influence plastid 
morphology and biochemistry.

Plastids represent biochemically and morphologically complex organelles and can change both form and function 
drastically in response to developmental and environmental cues. A vestigial but functional genome of 120–
160 kb harboring ~90 protein-coding genes is present in the plastids of photosynthetic higher plants1. However, 
the total chloroplast proteome conservatively contains 2,000–3,500 proteins as reported in Arabidopsis2–4, but as 
many as 4,875 plastid-targeted proteins are estimated in eSLDB5, and 5,136 by the Chloroplast 2010 project6–8. 
Less than 900 of 4,500 genes horizontally transferred from the ancestral cyanobacterium are predicted to be 
retargeted to the plastid in vivo9.

There seems to be a difference between the composition of plastid-targeted proteomes in dicots and mono-
cots. Only 21% of plastid-targeted rice proteins have a predicted homolog in the predicted Arabidopsis plastid 
proteome, and in reciprocal comparison the number is 38%2. A similar result was obtained in a comparison of 
six crop plants against Arabidopsis, in which an average of 51.0% of the predicted plastid proteome of each spe-
cies matched to the Arabidopsis predicted plastid proteome, while 67.5% matched against the full Arabidopsis 
proteome10. Thus, the plastid pan-proteome is extremely diverse and is composed of unique proteins at the 
species-level. Furthermore, as the number of conserved sequences across all the genomes analyzed closely mir-
rors the number of genes of cyanobacterial origin, the non-conserved plastid-targeted protein-coding genes most 
likely evolved from eukaryotic sequences. The variability in the predicted plastid proteome mirrors the observable 
diversity in plastid function and ultrastructure in different species or under different environmental and devel-
opmental conditions2,10–13. The diversity of plastid proteomes is evident even within the same plastid morpho-
type: the pigment-storing chromoplast alone has at least four described ultrastructural phenotypes across various 
species with unique sub-organellar membrane structures that can occur either singly or mixed within individual 
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plastids14. Morphological differences in plastid shape and ultrastructure are noted even in genetically similar cul-
tivars of the same species. Both chloroplasts and chromoplasts of developing apple peel differ significantly from 
tomato, which is used as a model reference for chromoplast differentiation in fruits15,16. Variation has also been 
documented between the apple cultivars and the epidermal and collenchymal plastids11.

The observed phenotypic diversity of plastids could be explained by three potential molecular factors: (1) 
Differences in the expression of genes controlling the rate and total amount of protein accumulation or import. 
This aspect could lead to unique phenotypes without necessarily changing the subset of plastid-targeted proteins. 
(2) Mutations within a shared group of plastid-targeted proteins could lead to neofunctionalization. (3) Finally, 
gain or loss of transit peptides causing subcellular mistargeting could alter the total pool of plastid-targeted 
proteins.

These factors are not mutually exclusive, and examples of each mechanism are known. Gene expression differ-
ences, possibly caused by epigenetic DNA methylation patterns, are responsible for differential protein accumu-
lation in mesophyll and bundle sheath cells of C4 plants, illustrating the first point17–20. In support of the second 
mechanism, point mutations in the active site of plastid-targeted limonene synthase change the abundance and 
distribution of different monoterpenoid end products in bacterial expression systems21, and transplastomic 
expression of a delta-9 desaturase gene causes changes in fatty acid concentrations and levels of unsaturation, 
cold tolerance, leaf senescence, and seed yield22 are additional examples. While it is challenging to address the 
neofunctionalization of plastid-targeted proteins via mutation without detailed reverse genetics experiments, the 
other mechanisms can be evaluated with high-throughput sequencing and bioinformatics.

High-throughput proteomics using mass spectrometry (MS) has been an important means of surveying 
organellar proteomes and comprises the majority of current plastid proteome evidence. However, these tech-
niques have historically been limited to the chloroplast morphotype and a restricted number of plant species. 
Excellent databases for high-throughput plastid proteomes based largely on mass spectrometry are accessible at 
AT_CHLORO23, PPDB24, SUBA425, and CROPPAL26. However, caution should be exercised in interpreting these 
datasets because MS is susceptible to high false positive errors due to contamination during plastid isolation, 
liberal mass tolerance, and errors in peptide mapping, among other problems27–29. While the use of reference 
genomes and transcriptomes can help overcome peptide mapping issues, other technical issues are more difficult 
to resolve. Use of fluorescent protein chimeras (e.g., GFP – green fluorescent protein), though lower-throughput, 
typically have higher biological accuracy. Using these, localization of low-abundance, as well as proteins from spe-
cies lacking robust plastid isolation methods, can be evaluated with higher efficiency. However, GFP techniques 
are not immune to experimental error either. Since the sequence of the mature protein partially influences locali-
zation (e.g.,30–32), GFP fused to the native protein may alter localization in some cases. Furthermore, dual-targeted 
mitochondrial/chloroplast proteins can be mislocalized in GFP assays33. Alternative transcripts or alternative 
protein products may also produce differential subcellular localization that are either not captured in GFP assays 
or give ambiguous results. Given these experimental limitations, a robust bioinformatics workflow could enable 
rapid and cost-effective assessment of plastid proteomes with somewhat comparable accuracy. Though wet lab 
validation is still necessary, these datasets could narrow the focus to smaller subsets of proteins of interest which 
could be more manageably targeted for wet lab validation depending on the biological question being asked.

The semi-conserved and sometimes ambiguous nature of chloroplast transit peptides makes in silico pre-
dictions challenging. Plastid transit peptides, as with other signal peptides, are well-known to be more variable 
than downstream protein sequence but more conserved than noncoding sequence. Yet, patterns of loose con-
servation at the amino acid level if not at the sequence level reveal multiple subgroups of transit peptides34–37. 
However, sequence- and annotation-based approaches have yielded results with significant accuracy. Protein 
sequence-based prediction uses the amino acid content or the presence of conserved motifs in the peptide to 
make predictions. Use of the amino acid content alone, such as in the tool PCLR, is enough to predict many 
plastid-targeted proteins38. More complex sequence-based identify conserved motifs, such as in iPSORT39 and 
WoLF-PSORT40, or sliding-window searching algorithm such as Localizer41, make predictions based on the 
sum of prediction vectors to determine transit peptide similarity. Finally, tools that use neural networks such 
as ChloroP42, TargetP43,44, Predotar45, PredSL46, and Protein Prowler47 use multiple layers of nodes to identify 
the best-scoring localization. In contrast, annotation-based methods such as CLPFD48 and EpiLoc49, or simple 
text-based methods based on GO annotations50, use homology to proteins with known localization to desig-
nate subcellular predictions. While these methods offer advantages over sequence-based methods for proteins 
with annotated homologs, they perform poorly for novel proteins51. Hybrid approaches including MultiLoc252, 
Sherloc253, Y-Loc54, and Plant-mPLoc55 combine sequence- and annotation-based methods in an attempt to 
overcome this limitation. Unfortunately, the homology component of hybrid approaches is weighted more heav-
ily, which can lead to the false prediction of proteins with transit peptide variation or for proteins with shared 
domains. Both high-throughput proteomics and bioinformatics approaches consistently indicate that the plas-
tid proteome content is highly dynamic and likely has significant variability across the plant kingdom. With 
newer methods, ever-growing genomic resources, and availability of better gene annotation methods, previously 
reported estimates of conserved and non-conserved sets of the plastid proteome warrant an update.

This study evaluated the hypothesis that bioinformatics methods could achieve similar accuracy to experi-
mental methods by comprehensively testing previously published subcellular prediction algorithms both alone 
and in combination. A specific combination of methods was found to be most efficient, which was then used to 
globally predict nuclear-encoded plastid-targeted proteins for fifteen higher plant species including eight eud-
icots, six monocots, and Amborella trichopoda, an early diverging species of the angiosperm clade. Two par-
allel approaches, Reciprocal-Best Blast Hit (RBH) and UCLUST56 were used to perform clustering, and the 
sub-cellular localization prediction for each cluster was analyzed to identify conserved, semi-conserved, and 
non-conserved plastid-targeted proteins. This approach also evaluated the hypothesis that a relative minority of 
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plastid-targeted protein-coding genes are conserved among all species. It was found that natural selection and 
environmental influence has shaped the development of species-specific plastid proteomes.

Results and Discussion
Identification of optimal subcellular prediction workflows. To test the hypothesis that a bioinformat-
ics workflow could reach parity with experimental methodology, the accuracy of six subcellular prediction algo-
rithms including TargetP43, WoLF PSORT40, PredSL46, Localizer41, Multiloc252, and PCLR38 was first evaluated 
using data from the original publications. Sensitivity, specificity, accuracy, and Matthew’s Correlation Coefficient 
(MCC) were evaluated for each program as it related to the prediction of plastid-targeted proteins (Table 1). 
Sensitivity, specificity, and MCC in TargetP were found to exactly match the values reported by Emanuelsson 
et al.43,44 and while minor differences were found for MultiLoc and PredSL, these discrepancies likely represent 
rounding errors. Unexpectedly, significant differences were found for PCLR and Localizer: in PCLR, sensitivity 
was found to be 52.1%, which was about 5% lower than what was reported38. In Localizer, calculated specificity 
was 78.9%, nearly 16% lower than the 95.7% reported41. In both cases, all other performance statistics were identi-
cal or nearly identical, so it is likely that the discrepancies in Localizer and PCLR represent either miscalculations 
or quality of the transcriptional data used for analysis in the original publications.

Next, cross-validation of subcellular prediction programs was performed against proteins with 
experimentally-determined subcellular localization retrieved from AT_CHLORO23, PPDB24,57, CropPAL and 
CropPAL226 and Suba425,58–60, resulting in 42,761 nonredundant sequences including 32,450 proteins validated 
by mass spectrometry (MS) and 3,722 validated by GFP. Most prediction algorithms were found to have lower 
performance against biological data reported in the original reports, as shown in Table 2 and Fig. 1. However, 
substantial differences were observed based on the method of experimental validation. On average among the 
six algorithms, sensitivity was 15.7% higher in the GFP-validated dataset while no significant change in spec-
ificity was found; this difference resulted in 10% higher overall accuracy and an increase of 0.159 in MCC for 
GFP-validated proteins. By further narrowing focus to a dataset of proteins validated by both methods, sensitivity 
increased by an additional 7.6%, and specificity increased 2.5%, on average. Due to the previously reported high 
false positive rates associated with shotgun proteomics of organellar proteomes27,28, program performance was 
expected to be much higher for GFP-validated proteins. While the dataset containing proteins experimentally 
validated by both GFP and mass spectrometry showed the highest apparent performance for the six subcellular 
prediction algorithms - and is likely closer to the biological accuracy of these programs - it contains roughly a 
third as many proteins as the GFP-validated dataset and is heavily biased by Arabidopsis sequences. Therefore, 
remaining comparisons focused on the GFP-validated dataset. Similarly, MCC was used as the primary measure 
of biological accuracy of in silico approaches to avoid problems due to drastically different dataset sizes.

Overall, the highest-performing program in terms of MCC was Localizer, followed by MultiLoc2-HR, TargetP, 
PCLR, PredSL, WoLF PSORT, and MultiLoc2-LR. Of these, PredSL and MultiLoc2-LR performed poorly with 
GFP-validated proteins compared to the original reports, while other programs decreased marginally or per-
formed similarly to the published MCC. Among the six programs that were evaluated, Localizer had the highest 
performance regardless of the experimental method used for validation, which is surprising since it is a simpler 
tool than annotation-based methods which have been at the forefront of subcellular prediction methods recently. 
Part of Localizer’s increased accuracy may be due to its unique capacity to predict dual-targeted mitochondrial/
chloroplast proteins. Over 200 dual-localized proteins have been described in Arabidopsis61 and over 500 are pre-
dicted to have ambiguous transit peptides62. Increased accuracy in the prediction of these sequences in Localizer 
could alone account for a portion of its higher performance. After Localizer, MultiLoc2 had the next-highest 
MCC and also had the highest specificity of any program, at 83% in GFP-validated proteins. MultiLoc is a hybrid 
method combining annotation and sequence analysis, so these findings support that the use of hybrid methods 
yields robust biological specificity. However, MultiLoc also had the worst sensitivity of any program, correctly 
predicting only 50% of bonafide plastid-targeted proteins validated by GFP or 31% of sequences validated by 

Algorithm Source Training Dataset(s)
# of Training 
Sequences Plastidial SE Plastidial SP

Plastidial 
MCC

Plastidial 
ACC

TargetP* 43,44 SWISS-PROT releases 36,37,38 940 0.85 0.69 0.72 N/A (0.921)

WolfPSORT 40 Uniprot version 45 2,113 0.7 0.7 N/A N/A

PredSL† 46 Various (Uniprot release 3.5) 1,002 0.9 0.91 0.88 (0.874) N/A

Localizer‡ 41 CropPAL (GFP only) 410 0.725 0.957 (0.798) 0.71 0.914 (0.916)

Multiloc2 (Low-Res)† 52 BaCelLo Independent Dataset 132 0.77 0.53 0.72 N/A (0.853)

Multiloc2 (High-Res)† 52 BaCelLo Independent Dataset 132 0.53 0.94 0.51 (0.539) N/A (0.735)

PCLR* 38 ChloroP, TargetP 847 0.87 (0.821) 0.30 (0.301) 0.372 0.720

Table 1. Self-Reported Performance of Six Algorithms on Prediction of Plastid-Targeted Proteins. Self-reported 
values for overall and plastidial sensitivity (SE), specificity (SP), Matthew’s Correlation Coefficient (MCC), and 
accuracy (ACC). Parentheses indicate values that were calculated to be different from the original paper using 
the same data. Programs marked with an asterisk (*) had a confusion matrix available, while those marked 
with a cross (†) did not, but confusion matrices were inferred by the available data; estimations were left as 
non-integer values, and therefore suffer from rounding errors in MCC and ACC calculations. Localizer, marked 
with a double cross (‡), was re-run with the original dataset provided in the publication’s supplementary 
information41.
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either GFP or mass spectrometry. TargetP, which has historically been the most popular subcellular prediction 
program for plants since its introduction, was found to perform at lower accuracy than earlier estimates: even 
when using the more conservative GFP-validated data, specificity was only 59% and sensitivity was 67%. Previous 
experiments using high-throughput shotgun proteomics have reported that the sensitivity of TargetP is as low as 
62%3,63–65. Use of strictly-curated data improves the apparent sensitivity up to 86%, but false positive rates are still 
problematic as a specificity of about 65% is observed66. The results presented here suggest that the biological accu-
racy of TargetP is somewhat closer to the initial estimates on non-curated data. PredSL, PCLR, and WoLF-PSORT 
were the lowest-ranked programs by MCC for prediction of plastid-targeted proteins, in that order, but typically 
had higher sensitivity than Localizer or MultiLoc2.

Differences in the amino acid composition of transit peptides are observable between rice and Arabidopsis, 
which have an overrepresentation of alanine and serine, respectively66. Therefore, differences in the prediction 
of monocot or eudicot sequences were assessed, and different programs displayed significant bias (Table 3). 

GFP GFP & Mass Spectrometry Difference

SE SP MCC ACC SE SP MCC ACC SE SP MCC ACC

TargetP 0.67 0.59 0.54 0.86 0.46 0.55 0.32 0.73 0.21 0.04 0.22 0.13

Wolf-PSORT 0.72 0.38 0.38 0.75 0.57 0.44 0.24 0.65 0.15 −0.05 0.14 0.09

PredSL 0.57 0.53 0.45 0.84 0.37 0.52 0.26 0.71 0.19 0.01 0.20 0.12

Localizer 0.68 0.71 0.63 0.90 0.46 0.58 0.34 0.74 0.22 0.14 0.29 0.16

Multiloc2 0.50 0.83 0.59 0.89 0.31 0.63 0.30 0.74 0.18 0.20 0.28 0.15

PCLR 0.74 0.46 0.47 0.80 0.54 0.48 0.28 0.69 0.20 −0.02 0.19 0.11

Table 2. Review of Algorithms using modern curated datasets (combined). For each program, SE, SP, MCC, 
and ACC are reported compared to in vivo experimental data using a conservative dataset of GFP-validated 
proteins, or a larger but more liberal dataset comprised of both GFP and MS data. Difference between observed 
performance statistics of different datasets is presented as GFP minus MS/GFP. MS data was found to have 
increased error especially for observed sensitivity, indicating that a large number of MS-validated proteins are 
likely artefactual. Furthermore, this suggests that the overall performance of subcellular prediction methods 
is likely more accurate than high-throughput proteomics reports suggest. Sensitivity can be inverted (1-SE) to 
yield the false negative rate, i.e. the fraction of proteins that were experimentally found to be plastid-targeted by 
the given experimental method but predicted to be non-plastidial. Likewise, specificity can be inverted (1-SP) 
to yield the false positive rate, i.e. the fraction of predicted experimentally determined to be non-plastidial that 
were found by the prediction algorithm to be plastidial.

Figure 1. Venn-Diagram of Combinatorial and Standalone Subcellular Prediction Algorithms. Performance 
measured by MCC on proteins with subcellular localization validated by GFP is represented as a heatmap with 
high values in green and low values in red. For each intersection, only the best accept threshold is represented. 
Numbers indicate workflow number followed by the calculated MCC.
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PCLR was the most drastically affected, with an MCC bias of +0.091 in monocots, representing a roughly 20% 
increase compared with eudicots. This finding is somewhat unsurprising because PCLR is the only program 
which uses sequence composition alone to make predictions and is, therefore, more susceptible to bias than 
motif- or annotation-based methods. TargetP was the only other tool that favored monocots, with an increase 
of 0.055 (+10.2%) in MCC. A marginal difference between monocot and eudicot prediction was observed when 
Localizer was used, which differed by only 0.008 in MCC, slightly favoring eudicots. Eudicot sequences were 
favored in the other prediction programs, with between 0.043 (+10%) higher MCC in WoLF POSRT and 0.066 
in PredSL (+14.9%). To the best of our knowledge, this is the first study to report this type of error or bias for in 
silico prediction methods. Some differences have also been described for the proposed subunits of the TIC trans-
locon in grasses, which could result in coevolution of the transit peptide sequence composition67–69. Choice of 
training and cross-validated datasets could significantly sway the predictions of sequence-based methods, while 
overrepresentation or prioritization of sequences for Arabidopsis and thereby eudicots could introduce bias to 
annotation-based methods. Although these species-specific differences are smaller than differences observed for 
sequences validated by mass spectrometry compared with GFP, they are still noteworthy and have consequences 
for whole-genome prediction. In contrast, WoLF-PSORT and Localizer were found to have insignificant if any 
bias, making them attractive both as standalone programs or in combinatorial approaches where they could mask 
biases of other programs.

Combinatorial workflow outperforms single programs. Use of multiple prediction algorithms in 
combination is a powerful strategy to combine the strengths and overcome the limitations of single programs. 
Combinatorial approaches have been used to improve the accuracy of predictions in whole-genome analyses 
(e.g.,2) or to curate mass spectrometry data (e.g.,70–73). Additionally, a combinatorial workflow using 22 prediction 
algorithms and four experimental techniques is used in the SUBAcon algorithm implemented for the SUBA4 
database of Arabidopsis proteins which reportedly yields up to 97.5% accuracy for chloroplast localization and 
90% for other compartments25,60. While SUBAcon does not strictly require experimental data to perform predic-
tions, available evidence weighs heavily on the final prediction and contributes to the reported accuracy. Even if 
experimental evidence were to be ignored, the use of 22 separate subcellular prediction algorithms is not feasible 
for individual researchers or application to enormous datasets. Therefore, a bioinformatics-based workflow that 
can work efficiently would be desirable.

Calculations were performed for each possible permutation of subcellular prediction algorithms and for all 
possible acceptable thresholds for each combination as applied to GFP-validated proteins. For example, for the 
combination of TargetP, PredSL, and Localizer, three thresholds were tested in which one, two, or all three pro-
grams needed to predict plastid localization to consider that protein as having a plastid transit peptide. To sim-
plify analyses, the poorly-performing WoLF PSORT was removed from consideration (results including WoLF 
PSORT and datasets including MS-validated proteins are available in Supplementary File 1). In total, 80 unique 
workflows including the five remaining standalone program workflows were evaluated against GFP-validated 
proteins, the results of which are graphically summarized in Fig. 1, and numerically ranked by MCC in Table 4. 
Unequivocally, the results demonstrate that combinations of programs tend to outperform single programs for 
GFP-validated data: among the 25 workflows with the highest MCC, 23 were combinatorial approaches, while 
the standalone Localizer ranked tenth and Multiloc2-HR 22nd. Localizer was not only the best-performing stan-
dalone program but was also overrepresented in combinatorial workflows: except the standalone Multiloc2-HR 
workflow, Localizer appeared in all 25 top-performing workflows. It is interesting to note that combinations that 
rank higher tend to combine programs with high sensitivity with counterparts that have lower sensitivity but 
higher specificity, thus correcting for each other’s deficiencies. Specifically, most of the combinations with the 
highest MCC and ACC tend to include Localizer most often, followed by MultiLoc2, TargetP, PCLR, and lastly 
PredSL. The ranking of Localizer is unsurprising given that its relatively balanced and high sensitivity and spec-
ificity are unparalleled by any of the other programs. However, MultiLoc2’s extremely high specificity makes it a 

Monocot: GFP Eudicot: GFP Monocot-Eudicot

SE SP MCC ACC SE SP MCC ACC SE SP MCC ACC

TargetP 0.62 0.71 0.59 0.87 0.68 0.56 0.53 0.86 −0.06 0.15 0.05 0.02

Wolf-PSORT 0.72 0.38 0.35 0.71 0.72 0.38 0.39 0.76 0.00 −0.01 −0.04 −0.05

PredSL 0.43 0.59 0.40 0.83 0.61 0.52 0.47 0.84 −0.17 0.06 −0.07 −0.02

Localizer 0.63 0.76 0.63 0.89 0.69 0.70 0.63 0.90 −0.06 0.06 −0.01 −0.01

Multiloc2 0.40 0.89 0.54 0.87 0.53 0.81 0.60 0.90 −0.12 0.08 −0.06 −0.03

PCLR 0.75 0.56 0.54 0.83 0.73 0.43 0.45 0.80 0.01 0.12 0.09 0.03

Table 3. Performance of prediction algorithms against GFP-validated proteins from monocots and eudicots. 
Performance of each prediction algorithm in monocots and eudicots and the difference between these datasets 
is presented; dataset sizes are roughly similar for monocot and eudicot sequences, but MCC is still preferable for 
comparison. 161 plastid-localized proteins and 640 non-plastid-targeted proteins are included for monocots, 
while eudicots include 489 plastid-targeted and 2,432 non-plastid-targeted proteins. Sensitivity can be inverted 
(1-SE) to yield the false negative rate, i.e. the fraction of proteins that were experimentally found to be plastid 
targeted by the given experimental method but predicted to be non-plastidial. Likewise, specificity can be 
inverted (1-SP) to yield the false positive rate, i.e. the fraction of predicted experimentally determined to be 
non-plastidial that were found by the prediction algorithm to be plastidial.
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valuable component of many workflows despite its low sensitivity. The best performing workflow used TargetP, 
Localizer, and Multiloc2 and required 2 of the three programs to predict plastid targeting to define a sequence as 
containing a plastid transit peptide; specificity of 78.5%, the sensitivity of 64.6%, and MCC of 0.659 was achieved 
with this approach. In comparison to TargetP alone, a nearly 20% increase in specificity was observed with no 
loss in sensitivity. However, as the annotation-based functions of MultiLoc2 make it difficult to run on extensive 
datasets, an alternative workflow using a “2 of 2” consensus approach for TargetP and Localizer was found which 
ranked 2nd and achieved a marginally higher specificity of 80.7%. Furthermore, comparing the accuracy of the 
best workflows to Table 2 and to prior evaluations of experimental methodology (e.g.,66) supported the hypothesis 
that bioinformatics methods could reach parity with mass spectrometry in characterizing the plastid proteome. 
Due to the increased simplicity and comparable performance of the TargetP/Localizer consensus approach, this 
workflow was selected for subsequent genome-scale prediction of plastid-targeted proteins.

predicted plastid proteome correlates with genome size. As a demonstration of the utility of the 
Localizer and TargetP workflow, subcellular prediction was performed for the whole proteomes of fifteen phy-
logenetically diverse species. Six monocot species, including Anthurium amnicola, Brachypodium distachyon, 
Oryza sativa, Panicum virgatum, Setaria italica, and Sorghum bicolor and eight eudicots, including Arabidopsis 
thaliana, Fragaria vesca, Glycine max, Malus × domestica, Populus trichocarpa, Prunus persica, Solanum lyco-
persicum, and Vitis vinifera were chosen. Additionally, Amborella trichopoda, a species which diverged from 
the rest of the angiosperms prior to the divergernce of monocots and eudicots, was also incorporated into the 
comparative analysis. Complete information including data version numbers, proteome sizes, and prediction of 
plastid-targeted proteins by Localizer and TargetP is summarized in Table 5. In Arabidopsis, 2,826 proteins were 
predicted to be plastid-targeted, representing 8.8% of all protein isoforms. This finding is in agreement with the 
conservative estimates of the Arabidopsis plastid proteome2,4,74. Similar percentages were calculated in other spe-
cies but varied from a low of 6.4% in tomato to a high of 9.3% in A. amnicola. As expected, the absolute number 
of predicted plastid-targeted protein-coding genes showed a high correlation with the genome size (R2 = 0.965) 
(Fig. 2). This result suggests that an increase in genome size and gene content yield a similar increase in the total 
number of plastid-targeted proteins. Over 10,000 of the Arabidopsis sequences have experimentally-determined 
localization, and comparing predictions for these sequences revealed an apparent sensitivity of 55.6%, specificity 
of 89.8%, accuracy of 83.6%, and MCC of 0.614. Sensitivity is somewhat low in this estimation due to the use of 
MS data, which includes many false positives, but the high specificity suggests good prediction accuracy. With 
the combination of the high correlation with experimentally-validated proteins and the lack of monocot/eudicot 

Rank Workflow Description SE SP MCC ACC

1 125 2/3 of (TargetP, Localizer, Multiloc2) 0.646 0.785 0.659 0.907

2 167 2/2 of (TargetP, Localizer) 0.611 0.807 0.650 0.907

3 80 3/4 of (TargetP, Localizer, Multiloc2, PCLR) 0.622 0.791 0.647 0.905

4 127 3/3 of (TargetP, Localizer, PCLR) 0.588 0.822 0.644 0.906

5 152 2/3 of (PredSL, Localizer, Multiloc2) 0.597 0.803 0.639 0.904

6 68 3/4 of (TargetP, PredSL, Localizer, Multiloc2) 0.575 0.827 0.639 0.905

7 161 2/3 of (Localizer, Multiloc2, PCLR) 0.660 0.732 0.635 0.898

8 189 2/2 of (Localizer, PCLR) 0.634 0.756 0.634 0.900

9 188 1/2 of (Localizer, Multiloc2) 0.697 0.696 0.632 0.894

10 4 1 of (Localizer) 0.675 0.714 0.632 0.896

11 19 4/5 of (TargetP, PredSL, Localizer, Multiloc2, PCLR) 0.563 0.828 0.632 0.903

12 100 3/4 of (PredSL, Localizer, Multiloc2, PCLR) 0.578 0.807 0.630 0.902

13 20 3/5 of (TargetP, PredSL, Localizer, Multiloc2, PCLR) 0.660 0.688 0.606 0.888

14 72 3/4 of (TargetP, PredSL, Localizer, PCLR) 0.648 0.697 0.606 0.889

15 69 2/4 of (TargetP, PredSL, Localizer, Multiloc2) 0.678 0.656 0.595 0.882

16 187 2/2 of (Localizer, Multiloc2) 0.474 0.870 0.594 0.896

17 116 2/3 of (TargetP, PredSL, Localizer) 0.663 0.664 0.592 0.883

18 181 2/2 of (PredSL, Localizer) 0.511 0.814 0.591 0.894

19 160 3/3 of (Localizer, Multiloc2, PCLR) 0.462 0.880 0.590 0.895

20 115 3/3 of (TargetP, PredSL, Localizer) 0.491 0.835 0.588 0.894

21 155 2/3 of (PredSL, Localizer, PCLR) 0.698 0.629 0.587 0.875

22 5 1 of (Multiloc2) 0.495 0.826 0.587 0.894

23 101 2/4 of (PredSL, Localizer, Multiloc2, PCLR) 0.706 0.621 0.585 0.873

24 124 3/3 of (TargetP, Localizer, Multiloc2) 0.452 0.883 0.585 0.894

25 79 4/4 of (TargetP, Localizer, Multiloc2, PCLR) 0.445 0.895 0.585 0.894

Table 4. Best combinatorial prediction approaches ranked by Matthew’s Correlation Coefficient (MCC). The 
sensitivity (SE), specificity (SP), Matthew’s Correlation Coefficient (MCC), and accuracy (ACC) are presented 
for each program. Almost all of the highest-performing programs utilized Localizer in their approach, followed 
by Multiloc2 and TargetP. Localizer and MultiLoc2 were also the only two programs which ranked highly as 
standalone algorithms, whereas the remaining workflows used two or more individual programs.
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bias imparted by Localizer, it is expected that similar levels of accuracy were achieved for the entire set of species 
analyzed in this study.

clustering of gene families. Although the plastid is highly dependent on proteins imported from the 
nucleus for normal viability and function, the size and diversity of the plastid proteome across the plant kingdom 
remain poorly understood. The hypothesis that the plastid proteome is diverse and each species has a unique set 
of plastid-targeted proteins was examined by grouping sequences into homologous protein groups using two 
parallel clustering methods (Fig. 3). Clustering method has a significant impact on the size and accuracy of the 
resulting clusters, and therefore on the number and relevance of predictions. Reciprocal best BLAST Hits (RBH) 
using ALL-vs.-All BLAST comparisons of whole proteomes are a standard proxy for orthology in comparative 
genomics, although they are susceptible to inclusion of weakly homologous paralogs. BLAST-based approaches 
combined with Markov clustering or similar methods to remove paralogs are used in commonly-cited methods 
such as InParanoid95, OrthoMCL96, and COG97,98. However, these methods can bias single-copy genes or highly 
conserved families which can be problematic for polyploid genomes where many-to-many gene relationships 
are common99,100. For instance, the popular OrthoMCL fails to detect many homologous proteins with con-
served expression patterns, and therefore with likely conserved functions, between rice and Arabidopsis101,102. 
In contrast, more straightforward RBH methods often outperform more complicated algorithms on eukaryotic 
genomes103.

A simplified RBH approach, allowing many-to-many relationships, was determined to be most appropriate 
for this analysis to avoid fracture of gene families with paralogs or co-orthologs. Initial homologous relationships 
were identified using pairwise BLAST-P comparisons of two species; only sequences which are mutually the best 
BLAST hits for each other were utilized. Similar methods have used 40% as an appropriate identity and coverage 
threshold for orthologous relationships10,104–106. Therefore 40% was used as the initial threshold of homology. 
Initial clustering generated many small clusters, so a supplemental method for expansion of clusters, using recip-
rocal better BLAST hits of each species = ’ proteome BLAST’ed against itself, was tested (Supplementary Figure 
2–1). A 90% threshold was determined to be optimal for clusters with fewer species decreasing significantly in 
number, while clusters containing a majority of species remained stable or increased. In contrast, application of 
between 60 and 80% expansion thresholds caused the liberal merging of clusters into extremely large clusters 
representing thousands of individual sequences. Additionally, GO term similarity was assessed within clusters 
at each population size based on the number of species in the cluster and was found to increase slightly for clus-
ters containing few species when using a 90% expansion threshold, while more massive clusters experienced no 
change or slight decreases.

An alternative approach called UCLUST was implemented to complement the RBH method with a faster and 
more efficient technique because its semi-global algorithm detects homology in a fraction of the time required 
for BLAST and becomes much more efficient on enormous datasets. Initial clusters were constructed at a 40% 
identity and 40% coverage threshold similar to the RBH approach. However, initial clustering produced smaller 
clusters and resulted in cluster fragmentation. Therefore, modifications were implemented to expand initial clus-
ters by randomly selecting sequences out of each initial cluster and iterating the UCLUST search at more strin-
gent conditions using the selected sequences as new centroids (Supplementary Figure 2–2). Cluster expansion 

Species Version Source Sequences
Chloroplast-
Targeted*

Percent Chloroplast-
Targeted

Amborella trichopoda 1.0 75 26,846 1,833 6.83%

Anthurium amnicola 1.0 76 27,959 1,324 4.74%

Arabidopsis thaliana TAIR10 77 35,386 2,826 7.99%

Brachypodium distachyon 3.1 78 52,972 4,240 8.00%

Fragaria vesca 1.1 79 32,831 2,051 6.25%

Glycine max Wm82 80 73,320 5,125 6.99%

Malus x domestica 1.0
(custom transcriptome)

81(Bai et al., 2014;82–84) 57,386
(74,249) 4,665 8.13%

(6.28%)

Oryza sativa 7.0 86 49,061 3,417 6.96%

Panicum virgatum 3.1 DOE-JGI** 133,775 10,262 7.67%

Populus trichocarpa 3.0 88 73,013 5,741 7.86%

Prunus persica 2.1 89 47,089 3,615 7.68%

Setaria viridis 2.2 90 43,001 3,461 8.05%

Solanum lycopersicum 2.1 91 47,205 1,875 3.97%

Sorghum bicolor 3.1 92 34,727 3,918 11.28%

Vitis vinifera 2.0 93,94 55,564 3,932 7.08%

Table 5. Targeting Prediction for Selected Species. Predicted protein sequences from fifteen species 
representing a mixture of model organisms and crop species as well as a mixture of monocots, eudicots, and 
the early diverging species Amborella trichopoda were downloaded from Phytozome (phytozome.jgi.doe.gov) 
or from the sources indicated in the table. For each species, the version, reference, and sequence count are 
provided from the original publications. *TargetP and Localizer were used to detect plastid-targeted sequences. 
**Indicates unpublished but publicly-available data downloaded from Phytozome for Panicum virgatum.
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significantly increased the number of clusters with many species, which largely came from the drastic reduction 
of the number of single-species clusters. As with RBH, a 90% expansion threshold was found to be optimal and 
increased the number of clusters sharing 14–15 species roughly 4-fold, while lower thresholds resulted in the 
frequent grouping of nonhomologous sequences. Comparison of GO similarity for clusters containing multiple 
species showed that similarity increased slightly or remained stable for nearly all cluster sizes in the 90% expan-
sion threshold compared to the initial, non-expanded UCLUST analysis. The number of iterations required to 
fully expand cluster space in UCLUST was also examined, and it was found that most clusters were completely 
expanded by ten iterations, while further iterations yielded diminishing returns (Supplementary Figure 2–3). A 
total of 100 iterations were performed to avoid problems with the randomization of centroid sequences.

Application of the optimal clustering methods to the proteomes of the species chosen generated 170,877 clus-
ters using RBH (Table 6) and 103,501 clusters using UCLUST (Table 7). Nearly all the additional clusters in 
RBH were from single-species clusters or singleton sequences (data not shown): 150,067 of the RBH clusters 
(87.82%) were single-species clusters of which 134,319 were singleton sequences, while UCLUST detected 74,059 
single-species clusters (71.55%) including 45,033 singletons. Some of these may be orphan genes, but they are 
more likely to be prediction and annotation errors or pseudogenes because the lack of homology implies lack 
of conserved function or extreme mutation rates that are more likely to occur in non-coding sequences. A total 
of 20,810 and 29,442 clusters in RBH and UCLUST approach, respectively, contained sequences from multiple 
species; although they represented a minority of clusters, they contained the majority of initial sequences. A 
bimodal distribution was observed in both methods in which two clusters, the first containing 14–15 of the spe-
cies and the second containing just 2–3 species, represented the majority of the clusters (Fig. 3A). Comparatively 
fewer clusters contained between 4–13 species. Of the conserved clusters containing all 15 species, RBH detected 
4,090 clusters, while UCLUST yielded 3,295. GO similarity between UCLUST and RBH was remarkably con-
sistent, but UCLUST had somewhat better scores for conserved clusters containing plastid-targeted sequences 
from all species and lower scores for semi-conserved or non-conserved clusters containing few species (Fig. 4B). 
Across both methods, GO similarity decreased with increasing cluster size. While the merging of nonhomologous 
sequences may be partially responsible for this decrease, the annotation methods and parameters are not identical 
for the species used in this study, which artificially decreases the apparent similarity score regardless of clustering 
specificity.

Figure 2. Illustration of RBH and UCLUST Sequence Clustering Methods. Initial (A) and expanded (B) RBH 
figures indicate clustering between species 1 (blue circles), 2 (green circles), and 3 (orange circles). Bidirectional 
best BLAST hits between sequences from different species are indicated with black lines; bidirectional better 
BLAST hits between sequences within the same species with red lines and fragments with dotted red lines. 
For UCLUST, the initial length-sorted (C) run is illustrated with yellow stars indicating centroids, small gray 
patterned circles indicating non-centroid sequences, large black circles indicating the match range for initial 
centroids, and black lines indicating sequence clustering for the initial run. For clarity, sequences are patterned 
to indicate belonging to each initial cluster, and red dotted lines indicate cluster fragmentation. Randomization 
of centroids (D) mitigates this artificially-induced problem; gray patterned stars indicate randomly-selected 
centroids, light blue circles indicate the match range for randomly-seeded centroids, and red lines indicate new 
matches found with red lines. Distances not drawn to scale.
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Identification of gene families with conserved plastid targeting. Genomes of endosymbiotic bac-
teria contain 1,500 proteins on average, and plastids are likely to contain similar numbers when accounting for 
both the plastid genome and core nuclear-encoded plastid-targeted protein-coding genes107. To determine the 
number of gene families with conserved plastid localization, clusters containing at least 13 species, of which all 
species contained at least one predicted plastid-targeted sequence or at least four non-plastid-targeted sequences 
were selected. These parameters were chosen to account for assembly and annotation errors and to correct for 
the 39% false negative prediction rate for bonafide plastid-targeted proteins which could eliminate many truly 
conserved clusters. There is a nearly 20% chance that at least one of four random sequences with non-plastid 
localization prediction is a false negative, but sequences that already share homology to predicted plastid-targeted 
sequences have a significantly higher likelihood of being false negatives. A workflow diagram representing cluster 
detection, filtering, processing, and categorization is represented in Fig. 4. Applying this workflow, 628 conserved 
protein clusters were found in RBH (Table 6, Fig. 5), while UCLUST detected 828 (Table 7, Fig. 6). Of these, 621 
clusters in RBH and 817 in UCLUST also contain sequences from A. trichopoda, and all have several monocot 
and eudicot sequences, strongly indicating that these clusters represent the fundamental core plastid-targeted 
protein-coding gene families. Previous estimates predicted that 857–1020 sequences were shared between rice 
and Arabidopsis, another report projected that between 289–737 proteins were shared among the chloroplast 
proteomes of seven plant species2,10. Identification of gene families with conserved chloroplast transit peptides is 
an essential output of this work, as in silico methods can quickly identify conserved plastid-targeted proteins that 
have failed to be detected by genetic screens due to embryo lethality, gene redundancy, or random chance. Several 
methods have validated these sequences as truly plastid-targeted and representative of conserved plastid-targeted 
protein-coding genes. First, Arabidopsis proteins with experimentally-validated localization were exam-
ined within the conserved clusters. A total of 84.2% (183 proteins) of predicted plastid-targeted Arabidopsis 
sequences in conserved RBH clusters were validated by GFP and 94.5% (1,054) were validated by MS. The same 
was true for 80.5% (154 proteins) and 92% (855 proteins) in conserved RBH and UCLUST clusters, respectively 
(Supplementary Files 3 and 4). While these methods have yielded good overall sensitivity, small errors at initial 
stages of clustering can compound in larger clusters and result in unrealistically high numbers of sequences. For 
RBH, an average of 113.9 sequences and median of 61 were present in conserved clusters while UCLUST pro-
duced an average of 125.9 sequences and median of 84. Most sequences in these clusters come from a small set of 
species: G. max, P. virgatum, P. trichocarpa, and V. vinifera each contributed an average of over 10 sequences each 
to clusters with shared plastid localization prediction, while M. × domestica contributed over 10 sequences on 
average in UCLUST (summarized in Supplementary Files 3 and 4). Significant gene duplication or inclusion of 

Figure 3. Overall Performance of RBH and UCLUST methods. (A) Cluster distribution in RBH and UCLUST. 
Both methods resulted in similar distributions of clusters, although RBH resulted in slightly more clusters with 
13–15 species and UCLUST resulted in more clusters from 2–12 species. The slight increase in clusters with five 
species is interesting, and may result from sequences with homology within the Poaceae family or within Rosids 
but with no significant homologs outside those groups. (B) GO annotation similarity in RBH and UCLUST 
clusters. Lower similarity scores in higher-order clusters are partially due to different annotation methods and 
thresholds used for different species. Annotation similarity was generally higher in RBH at smaller cluster sizes 
and higher in UCLUST for larger clusters. Similarity decreased with the increasing representation of species, 
which may be partially caused by different annotation methods used for different genome sequencing projects, 
or may alternatively be caused by decreased homology within large clusters.
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multiple gene isoforms especially in those species likely accounts for a portion of the larger cluster sizes, but more 
distant paralogous sequences which are less likely to share biological function are also likely to be common. Thus, 
the list of conserved clusters reported here is not meant to be definitive and final, but rather a general guide which 
will require phylogenetic and experimental validation. In cases where larger clusters contain multiple paralogs 
or non-homologous, phylogenetic methods could resolve homology relationship with higher efficiency than the 

Species
Total 
Clusters

Clustered with 
Arabidopsis 
Proteome

Plastid-
Targeted 
Clusters

Clustered with 
Arabidopsis 
Plastid Proteome

Unique 
Plastid-
targeted

Singleton 
and Single-
Species 
Clusters NPTPs

Amborella trichopoda 20533 60.97% 1673 44.47% 667 585 82

Anthurium amnicola 7497 81.43% 937 61.26% 187 135 52

Arabidopsis thaliana 15817 100.00% 1796 100.00% 375 301 74

Brachypodium distachyon 17933 67.23% 2380 41.81% 727 498 229

Fragaria vesca 18328 70.63% 1798 47.66% 566 426 140

Glycine max 26629 63.60% 2464 43.83% 905 714 191

Malus x domestica 30257 49.84% 3100 32.13% 1581 1253 328

Oryza sativa 18657 65.83% 2204 44.01% 643 459 184

Panicum virgatum 43875 37.39% 5234 20.27% 3194 2512 682

Populus trichocarpa 20348 71.99% 2167 50.21% 580 413 167

Prunus persica 14375 82.64% 1838 58.65% 296 184 112

Setaria italica 16618 73.25% 2310 43.29% 509 241 268

Solanum lycopersicum 16287 87.55% 1486 66.42% 202 131 71

Sorghum bicolor 16201 68.65% 2351 42.28% 636 386 250

Vitis vinifera 16711 79.83% 1785 56.47% 353 240 113

Table 6. RBH Clustering Results by Species. Clustering of gene families using 40% reciprocal Intergeneric 
best BLAST hits and 90% reciprocal Intergeneric better BLAST hits was performed, and clusters containing 
plastid-targeted sequences were identified for each species. The number of total proteomes and plastid-targeted 
clusters with at least one Arabidopsis sequence were identified, as well as the number of clusters containing a 
plastid-targeted sequence from only the selected species. The number of clusters overlapping with Arabidopsis 
for all clusters and plastid-targeted clusters was identified, as well as the number of clusters containing a plastid-
targeted sequence from only the selected species. NPTPs – Nascent Plastid Targeted Proteins.

Species
Total 
Clusters

Clustered with 
Arabidopsis 
Proteome

Plastid-
Targeted 
Clusters

Clustered with 
Arabidopsis 
Plastid proteome

Unique 
Plastid-
targeted

Singleton 
and Single-
Species 
Clusters NPTPs

Amborella trichopoda 19190 55.61% 1721 41.78% 736 541 195

Anthurium amnicola 7365 78.22% 909 58.53% 173 76 97

Arabidopsis thaliana 13065 100.00% 1783 100.00% 261 95 166

Brachypodium distachyon 16777 57.05% 2375 37.68% 623 225 398

Fragaria vesca 16821 65.75% 1828 46.01% 551 172 379

Glycine max 20157 70.78% 2320 49.31% 637 296 341

Malus x domestica 21427 56.25% 2846 35.45% 1197 469 728

Oryza sativa 18102 55.76% 2249 38.86% 564 235 329

Panicum virgatum 29207 34.12% 4725 20.00% 2506 1048 1458

Populus trichocarpa 15881 78.35% 1977 56.35% 335 95 240

Prunus persica 14753 79.49% 1921 57.16% 229 36 193

Setaria italica 17810 57.11% 2427 36.51% 480 98 382

Solanum lycopersicum 15675 81.13% 1574 62.26% 245 79 166

Sorghum bicolor 17395 54.56% 2410 36.14% 554 191 363

Vitis vinifera 16092 79.06% 1805 57.62% 299 102 197

Table 7. UCLUST Clustering Results by Species. Clustering of gene families was performed using an initial 
UCLUST iteration with 40% coverage and 40% identity followed by extraction of random sequences from 
each cluster to seed additional iterations performed at 90% coverage and identity. Clusters containing shared 
sequences were merged, followed by identification of clusters containing plastid-targeted sequences in each 
species. The number of clusters overlapping with Arabidopsis for all clusters and plastid-targeted clusters was 
identified, as well as the number of clusters containing a plastid-targeted sequence from only the selected 
species.
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currently used RBH and UCLUST methods. However, the biological accuracy of the predicted plastid-targeted 
sequences within these clusters is still high.

Next, enrichment of gene ontology (GO) annotations was performed in conserved clusters by finding GO 
terms shared in at least three individual sequences and for over 10% of sequences. Terms were compared to 
annotations extracted using the same criteria for all the clusters of the respective clustering method and GO term 
enrichment was performed using BLAST2GO108. Overall, 53 terms including 29 terms associated with biolog-
ical function, 23 associated with the cellular component, and one associated with the molecular process were 
found for RBH (Table 8). In UCLUST, a total of 33 terms were found, including 15 associated with the biological 
process, 17 with the cellular component, and one with the molecular process (Table 9). The most significantly 
enriched GO terms under the biological process ontology for both RBH and UCLUST methods were GO:0015979 
(photosynthesis) and GO:0008152 (metabolic process), while a majority of the remaining highly enriched terms 
were associated with homeostatic processes (GO:0042592), cellular component organization (GO:0016043), 
single-organism biosynthetic processes (GO:0016043), generation of precursor metabolites (GO:0006091), and 
lipid metabolism (GO:0006629). In the RBH method, additional terms associated with amide, peptide, and orga-
nonitrogen compound biosynthesis and metabolism (GO:0043604, GO:0043603, GO:0043043, GO:0006518, 

Figure 4. Workflow Diagram of Sequence Clustering Methods. For RBH (left panel), 1. initial cluster edges 
were generated by finding all reciprocal best-BLAST hits in all-vs.-all comparisons of proteomes from two 
separate species at a 40% identity, 40% coverage threshold, and 2. Secondary cluster edges were generated 
by finding all reciprocal better-BLAST hits in all-v-all comparisons of each proteome against itself at a 90% 
identity, 90% coverage threshold. For UCLUST (right panel), 1. An initial run was performed at 40% identity 
and 40% coverage threshold on a FASTA file containing sequences from every species in length-sorted order, 
and 2. Random sequences of at least 90% identity and 90% coverage were extracted from each cluster, this 
subset was length-sorted, and then the original length-sorted FASTA file was concatenated to the new seed 
sequences. This process was iterated 100 times, and a separate UCLUST run was performed for each iteration. 
Downstream processes for RBH and UCLUST were identical: 3. All clusters/pairs with a shared sequence were 
condensed into single clusters, 4. All sequences that failed to have at least 40% identity and 40% coverage based 
on BLAST-P analysis to any of the predicted plastid-targeted sequences in the cluster were trimmed out, 5A. all 
clusters with at least three species were extracted, and 5B. Clusters containing plastid-targeted sequences were 
sorted into “conserved,” “semi-conserved,” and “non-conserved” groups according to the number of species 
with predicted plastid targeting and the taxonomic grouping of those species. cTP – chloroplast transit peptide.
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GO:1901566, GO:1901564, GO:0044271, GO:0034641, GO:0006807), were enriched. UCLUST additionally 
had enriched GO terms associated with transport (GO:0006810), localization (GO:0051234, GO:0051179) and 
metabolism of carbohydrates (GO:0005975). Among cellular component ontologies, plastid (GO:0009536) 
was the most overrepresented term in both methods. Other highly overrepresented cellular component terms 
included organelle (GO:0043226), thylakoid (GO:0009579), chloroplast (GO:0009507), and associated terms. In 
RBH methods, significant enrichment of ribonucleoprotein complexes (GO:1990904, GO:0030529) was found. 
For the molecular process ontology, structural molecule activity (GO:0005198) was enriched in RBH and catalytic 
activity (GO:0003824) in UCLUST. These GO terms were further compared to the results of a previous study 
involving intergeneric analysis that described 737 conserved plastid-targeted proteins10. In this study, 42% of 
enriched terms found using UCLUST overlapped with the methods reported previously10. RBH methods were 
somewhat lower because more enriched terms were found, but still overlapped with the previously published 
dataset by 24%. These results are remarkably similar given that only GO terms from Arabidopsis had been exam-
ined previously and also different methods of GO enrichment had been used in those studies. The final and per-
haps the most important test of the biological significance of conserved plastid-targeted clusters is whether they 
contain proteins expected to be present in plastids of all higher plants. Gene names were retrieved from TAIR10 

Figure 5. RBH Visual Representation. For “unique” clusters, single-species and singleton clusters are not 
represented, leaving only clusters with non-targeted homologs present in other species. The relative size of 
these unique clusters is represented by the area of the respective geometric shape. Shared protein groups at the 
kingdom, clade, subclade, and family levels are not represented by figure size. Overall, 628 protein clusters were 
shared between all 15 species, 1,002 had plastid-targeting specific to either monocots or eudicots, and 2,943 had 
plastid-targeting specific to only a single species.

Figure 6. UCLUST Visual Representation. For “unique” clusters, single-species and singleton clusters are 
not represented, leaving only clusters with non-targeted homologs present in other species. The relative size 
of these unique clusters is represented by the area of the respective geometric shape. Shared protein groups at 
the kingdom, clade, subclade, and family levels are not represented by figure size. Overall, 828 protein clusters 
included plastid-targeted sequences from all 15 species, 1,983 had plastid-targeting specific to monocots or 
eudicots, and 5,632 had plastid-targeting specific to a single species.
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GO term Description Ontology P-value FDR

1 GO:0015979 photosynthesis BIOLOGICAL_PROCESS 1.73E-44 3.99E-47

2 GO:0008152 metabolic process BIOLOGICAL_PROCESS 6.40E-27 1.59E-29

3 GO:0006091 generation of precursor metabolites and energy BIOLOGICAL_PROCESS 1.43E-24 3.82E-27

4 GO:0009058 biosynthetic process BIOLOGICAL_PROCESS 3.73E-20 1.20E-22

5 GO:0044711 single-organism biosynthetic process BIOLOGICAL_PROCESS 3.00E-15 1.02E-17

6 GO:0016043 cellular component organization BIOLOGICAL_PROCESS 4.28E-12 1.64E-14

7 GO:0071840 cellular component organization or biogenesis BIOLOGICAL_PROCESS 6.51E-12 2.66E-14

8 GO:0044710 single-organism metabolic process BIOLOGICAL_PROCESS 1.05E-10 5.06E-13

9 GO:0006629 lipid metabolic process BIOLOGICAL_PROCESS 3.16E-10 1.57E-12

10 GO:0043604 amide biosynthetic process BIOLOGICAL_PROCESS 7.84E-09 4.05E-11

11 GO:0043603 cellular amide metabolic process BIOLOGICAL_PROCESS 9.01E-09 4.81E-11

12 GO:0019725 cellular homeostasis BIOLOGICAL_PROCESS 1.07E-08 5.93E-11

13 GO:0044699 single-organism process BIOLOGICAL_PROCESS 1.22E-08 7.39E-11

14 GO:0009987 cellular process BIOLOGICAL_PROCESS 1.22E-08 7.21E-11

15 GO:0065008 regulation of biological quality BIOLOGICAL_PROCESS 1.54E-08 9.56E-11

16 GO:0006412 translation BIOLOGICAL_PROCESS 1.67E-08 1.10E-10

17 GO:0042592 homeostatic process BIOLOGICAL_PROCESS 1.67E-08 1.08E-10

18 GO:0043043 peptide biosynthetic process BIOLOGICAL_PROCESS 1.73E-08 1.17E-10

19 GO:0006518 peptide metabolic process BIOLOGICAL_PROCESS 1.80E-08 1.25E-10

20 GO:1901566 organonitrogen compound biosynthetic process BIOLOGICAL_PROCESS 2.95E-08 2.10E-10

21 GO:1901564 organonitrogen compound metabolic process BIOLOGICAL_PROCESS 1.04E-07 7.58E-10

22 GO:0034641 cellular nitrogen compound metabolic process BIOLOGICAL_PROCESS 1.61E-05 1.52E-07

23 GO:0044271 cellular nitrogen compound biosynthetic process BIOLOGICAL_PROCESS 1.93E-05 1.85E-07

24 GO:0006807 nitrogen compound metabolic process BIOLOGICAL_PROCESS 2.26E-05 2.21E-07

25 GO:0044249 cellular biosynthetic process BIOLOGICAL_PROCESS 2.52E-05 2.51E-07

26 GO:1901576 organic substance biosynthetic process BIOLOGICAL_PROCESS 4.41E-05 4.55E-07

27 GO:0034645 cellular macromolecule biosynthetic process BIOLOGICAL_PROCESS 4.47E-05 4.69E-07

28 GO:0009059 macromolecule biosynthetic process BIOLOGICAL_PROCESS 4.74E-05 5.06E-07

29 GO:0010467 gene expression BIOLOGICAL_PROCESS 2.96E-04 3.31E-06

30 GO:0009536 plastid CELLULAR_COMPONENT 1.35E-279 2.41E-283

31 GO:0005622 intracellular CELLULAR_COMPONENT 1.07E-222 3.82E-226

32 GO:0044424 intracellular part CELLULAR_COMPONENT 1.22E-222 6.49E-226

33 GO:0044464 cell part CELLULAR_COMPONENT 6.98E-222 6.21E-225

34 GO:0005623 cell CELLULAR_COMPONENT 6.98E-222 5.62E-225

35 GO:0005737 cytoplasm CELLULAR_COMPONENT 2.03E-218 2.16E-221

36 GO:0044444 cytoplasmic part CELLULAR_COMPONENT 1.38E-217 1.72E-220

37 GO:0043229 intracellular organelle CELLULAR_COMPONENT 1.94E-193 2.76E-196

38 GO:0043226 organelle CELLULAR_COMPONENT 1.97E-193 3.16E-196

39 GO:0043231 intracellular membrane-bounded organelle CELLULAR_COMPONENT 1.16E-179 2.06E-182

40 GO:0043227 membrane-bounded organelle CELLULAR_COMPONENT 5.74E-179 1.12E-181

41 GO:0009579 thylakoid CELLULAR_COMPONENT 2.71E-68 5.78E-71

42 GO:0016020 membrane CELLULAR_COMPONENT 1.08E-20 3.06E-23

43 GO:0005739 mitochondrion CELLULAR_COMPONENT 2.48E-12 8.82E-15

44 GO:0005840 ribosome CELLULAR_COMPONENT 1.48E-11 6.31E-14

45 GO:1990904 ribonucleoprotein complex CELLULAR_COMPONENT 3.36E-11 1.55E-13

46 GO:0030529 intracellular ribonucleoprotein complex CELLULAR_COMPONENT 3.36E-11 1.55E-13

47 GO:0032991 macromolecular complex CELLULAR_COMPONENT 1.22E-08 7.29E-11

48 GO:0009507 chloroplast CELLULAR_COMPONENT 2.01E-07 1.61E-09

49 GO:0043228 non-membrane-bounded organelle CELLULAR_COMPONENT 3.31E-06 3.06E-08

50 GO:0043232 intracellular non-membrane-bounded organelle CELLULAR_COMPONENT 3.31E-06 3.06E-08

51 GO:0044434 chloroplast part CELLULAR_COMPONENT 3.09E-04 3.52E-06

52 GO:0044435 plastid part CELLULAR_COMPONENT 3.34E-04 3.86E-06

53 GO:0005198 structural molecule activity MOLECULAR_FUNCTION 3.04E-05 3.08E-07

Table 8. Enriched GO terms for Conserved Plastid-Targeted RBH Clusters. Clusters containing at least 13 
species with predicted or likely plastid-targeted sequences were mined for common GO terms and compared 
against terms extracted for the total set of RBH-derived clusters using BLAST2GO. All terms enriched above 
p = 1.0E−5 in core plastid-targeted clusters are represented.
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for all Arabidopsis sequences in conserved clusters, and many of the most prominent plastid proteins were con-
firmed to be present in clusters for both RBH and UCLUST methods. The following is not intended to be an 
exhaustive list but merely a representative of the types of proteins detected in conserved plastid-targeted clusters; 
a complete list of annotations and gene names in RBH and UCLUST clusters are available in Supplementary Files 
3 and 4. Among genes involved in primary photosynthesis, HCEF, LhcA1, LhcA2, LhcB1, LhcB2, LhcB3, Lhcb4, 
LPA1, LPA3, PPDK, and RbcS were detected in both methods, while LPA66 was found in RBH only. Photosystem 
subunits Psa-E, Psa-F, Psa-G, Psa-H, Psa-K, Psa-N, PsbP, Psa-O, PsbQ, PsbR, PsbS, PsbW, and PsbY were also 
found in both methods, while PsbT-N and PsbX were found only in RBH and PsbO was found only in UCLUST. 
Among ribosomal proteins, Rps1, Rps9, Rpl4, Rpl11, and Rpl12 were detected by both techniques, while Rpl9 and 
Rpl15 were only found using RBH and Rpl10 was found only with UCLUST. Proteins involved in translocation 
and chaperone functions found by both methods included ClpB, ClpC, ClpD, ClpP, ClpR, FtsH, Hsp60, Hsp70, 
Hsp88, Hsp90, Hsp98, Cpn10, Cpn20, Cpn60, Vipp1, Alb3, Alb4, TatC, Tic20, Tic21, Tic40, Tic55, Tic110, Toc75, 
and Plsp1. The Sec translocase subunits SecA, Scy1, and Scy2 were uniquely found in RBH, while organellar oli-
gopeptidase OOP was also found in UCLUST. Finally, genes associated with primary plastid metabolism (SBPase, 
TPT, FRUCT5, G6PD2, and G6PD), heme biosynthesis (GUN2, GUN5, HEMA, HEMB, HEMC, HY2, PORA, 
PORB, and PORC), and fatty acid synthesis (ACC2, FAB2, FAD7, FAD8, FATA, FATB, lipoxygenase) were found 
in core clusters.

Taken together, the good correlation of protein clusters with experimentally-validated sequences, the enrich-
ment of expected annotation terms, and the presence of expected highly-abundant proteins or proteins critical 

GO term Description Ontology P-value FDR

1 GO:0008152 metabolic process BIOLOGICAL_PROCESS 3.36E-32 9.19E-35

2 GO:0015979 photosynthesis BIOLOGICAL_PROCESS 1.24E-29 3.62E-32

3 GO:0044710 single-organism metabolic process BIOLOGICAL_PROCESS 1.38E-21 4.57E-24

4 GO:0044711 single-organism biosynthetic process BIOLOGICAL_PROCESS 5.52E-16 2.15E-18

5 GO:0044699 single-organism process BIOLOGICAL_PROCESS 2.89E-15 1.18E-17

6 GO:0006091 generation of precursor metabolites and 
energy BIOLOGICAL_PROCESS 1.15E-13 4.93E-16

7 GO:0005975 carbohydrate metabolic process BIOLOGICAL_PROCESS 1.20E-10 5.84E-13

8 GO:0006629 lipid metabolic process BIOLOGICAL_PROCESS 1.33E-06 7.01E-09

9 GO:0051234 establishment of localization BIOLOGICAL_PROCESS 1.85E-04 1.23E-06

10 GO:0006810 transport BIOLOGICAL_PROCESS 1.85E-04 1.20E-06

11 GO:0051179 localization BIOLOGICAL_PROCESS 2.65E-04 1.81E-06

12 GO:0016043 cellular component organization BIOLOGICAL_PROCESS 2.98E-04 2.10E-06

13 GO:0044723 single-organism carbohydrate metabolic 
process BIOLOGICAL_PROCESS 3.01E-04 2.23E-06

14 GO:0071840 cellular component organization or 
biogenesis BIOLOGICAL_PROCESS 4.29E-04 3.26E-06

15 GO:0042592 homeostatic process BIOLOGICAL_PROCESS 8.59E-04 6.87E-06

16 GO:0009536 plastid CELLULAR_COMPONENT 1.01E-165 1.97E-169

17 GO:0044464 cell part CELLULAR_COMPONENT 1.54E-140 6.02E-144

18 GO:0005623 cell CELLULAR_COMPONENT 1.52E-139 8.87E-143

19 GO:0044444 cytoplasmic part CELLULAR_COMPONENT 8.76E-120 6.83E-123

20 GO:0005737 cytoplasm CELLULAR_COMPONENT 3.57E-119 3.49E-122

21 GO:0044424 intracellular part CELLULAR_COMPONENT 2.06E-110 2.41E-113

22 GO:0005622 intracellular CELLULAR_COMPONENT 1.27E-104 1.73E-107

23 GO:0043229 intracellular organelle CELLULAR_COMPONENT 6.39E-93 1.05E-95

24 GO:0043226 organelle CELLULAR_COMPONENT 6.39E-93 1.12E-95

25 GO:0043231 intracellular membrane-bounded organelle CELLULAR_COMPONENT 6.87E-82 1.34E-84

26 GO:0043227 membrane-bounded organelle CELLULAR_COMPONENT 1.90E-81 4.07E-84

27 GO:0009579 thylakoid CELLULAR_COMPONENT 4.05E-39 9.47E-42

28 GO:0016020 membrane CELLULAR_COMPONENT 4.66E-36 1.18E-38

29 GO:0071944 cell periphery CELLULAR_COMPONENT 7.58E-11 3.55E-13

30 GO:0005886 plasma membrane CELLULAR_COMPONENT 1.32E-07 6.69E-10

31 GO:0009507 chloroplast CELLULAR_COMPONENT 3.01E-04 2.18E-06

32 GO:0005840 ribosome CELLULAR_COMPONENT 5.00E-04 3.90E-06

33 GO:0003824 catalytic activity MOLECULAR_FUNCTION 9.90E-19 3.67E-21

Table 9. Enriched GO terms for Conserved Plastid-Targeted UCLUST Clusters. Clusters containing at least 13 
species with predicted or likely plastid-targeted sequences were mined for common GO terms and compared 
against terms extracted for the total set of UCLUST -derived clusters using BLAST2GO. All terms enriched 
above p = 1.0E−5 in core plastid-targeted clusters are represented.
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to chloroplast biology suggest that both the RBH and UCLUST methods achieved good accuracy and sensitivity 
for genes with conserved chloroplast targeting which are likely critical in all photosynthetic plants for minimal 
chloroplast function. It is noteworthy that 194 clusters in RBH and 333 core clusters in UCLUST contain at least 
one Arabidopsis sequence but have no associated gene synonyms available (Supplementary Files 3 and 4). As 
the sensitivity for conserved plastid-targeted proteins was found to be very high overall, many of these 194–333 
clusters with missing annotation information are likely biologically accurate, in which case they are excellent 
candidates for understanding hitherto uncharacterized aspects of chloroplast biology.

Analysis of semi-conserved and non-conserved plastid-targeted proteins. Semi-conserved 
plastid-targeted protein-coding gene families in which predicted plastid-targeting was found for two or more 
sequences only in monocots, only in eudicots, or uniquely in A. trichopoda were identified beginning with the 
most diverse clades. In each case, all clusters with predicted plastid-targeted sequences or at least four predicted 
non-plastid-targeted sequences from the outgroup species were removed. A total of 572 gene families with 
plastid-targeted sequence specific to monocots and 430 to eudicots were found using RBH methods (Table 6, 
Fig. 5), while UCLUST detected 1,054 and 885, respectively (Table 7, Fig. 6). Additionally, 82 clusters with 
Amborella-specific plastid targeting were found using RBH, and 195 were found with UCLUST. These findings 
indicate that gene families with semi-conserved plastid-targeting outnumber core clusters by 73% in RBH and 
more than 150% in UCLUST. Narrowing focus to the subclade and family level revealed that semi-conserved clus-
ters are still abundant, indicating that significant plastid proteome variation is present across all taxonomic levels. 
It is plausible that some of the clusters with plastid-targeting specific to either monocots or eudicots have func-
tionally related clusters in the reciprocal group but lack sufficient homology to cluster together. Such an occur-
rence seems unlikely in most cases because the clustering methods used here were relatively liberal, but isolated 
cases may still occur. In some cases, non-orthologous or chimeric genes could also functionally replace an oth-
erwise conserved gene and lead to loss of orthologous sequences in particular species or taxonomic groups109,110.

Finally, clusters with predicted plastid targeting only present in a single species were identified in RBH 
(Table 6, Fig. 5) and UCLUST (Table 7, Fig. 6). Singletons and clusters containing only a single species were 
discarded as these likely represent gene prediction errors. For example, predicted proteins in Malus which do 
not share homology with proteins in other species are typically poorly-supported by transcriptomics evidence: 
examination of over 300 such sequences revealed only one that had full coverage and was not a smaller fragment 
of a larger protein (data not shown). Since the chloroplast transit peptide is presumed to have arisen recently 
in each cluster, the term “nascent plastid-targeted proteins” (NPTPs) was coined to represent such proteins. 
Unsurprisingly, species with large and complex genomes possessed a more significant number of NPTPs: A. 
amnicola had the least, at just 52 in RBH and 97 in UCLUST, while P. virgatum had the most, with 682 NPTPs 
found in RBH and 1,458 in UCLUST. The predicted proteome of A. amnicola is based on transcriptomics data 
rather than genome-wide prediction, while P. virgatum has the largest genome and most extensive predicted pro-
teome of the species in this analysis, so these trends are consistent with expectations.

Additionally, up to 728 proteins were uniquely targeted to the plastid in M. × domestica, and between 300–400 
proteins had species-specific plastid transit peptides in B. distachyon, F. vesca, G. max, S. italica, and S. bicolor. 
Arabidopsis had some of the lowest estimates of NPTPs, with only 74 found in RBH and 166 in UCLUST. 
Species-unique plastid-targeted proteins had a moderately linear correlation with the total number of sequences 
in each species R2 = 0.73 in RBH and 0.72 in UCLUST, Fig. 7A), but the removal of the outlier P. virgatum resulted 
in nonlinear correlation (Fig. 7B). Consequently, extreme increases in genome size and complexity are hypoth-
esized to create more opportunities for the evolution of novel transit peptides and diversification of the plastid 
proteome, but differences are subtler when the genomes being compared are closer in size. Previous literature 
(e.g.111–113) has suggested that gene duplication is a prerequisite or at least greatly encourages neofunctionaliza-
tion via novel subcellular targeting, and the generally linear correlation with proteome size suggests that this may 
indeed be the case. However, based on the data, the evolution of the plastid proteome is more likely to be driven 
by environmental adaptation and selection pressure114.

While transit peptide structure and sequence were expected to be conserved within each thus-identified clus-
ter, searching for shared homology between transit peptides of different clusters was not performed. Without 
experimental data to support such identification, the motifs thus identified would be unreliable predictions, and it 
would be hard to state if the observed convergent evolution detected in novel transit peptides has any cause-effect 
relationship.

As with the conserved plastid-targeted clusters, the accuracy of targeting prediction in NPTPs was 
cross-validated against experimentally-validated proteins from Arabidopsis. For the RBH clusters, 75% (4 pro-
teins) were validated to be true plastid proteins via GFP, and 53.8% (17 proteins) validated by MS. For UCLUST, 
29.4% (17 proteins) were validated by GFP, and 41.4% validated by MS. Specificity was also very high: only 
6.3% of 300 predicted non-plastid-targeted proteins in RBH-generated NPTP clusters were found to actually be 
plastid-targeted by GFP, while the rate in MS-validated proteins was 13.4% (967 proteins). UCLUST generated 
similar results, with false negative error rates of 3% (493 proteins) in GFP-validated data and 12.5% (1,369 pro-
teins) for MS-validated data. The few false negatives in predicted NPTPs may be representative of ambiguous/
intermediate sequences in clusters which are already predicted to be uniquely chloroplast-targeted in Arabidopsis 
and therefore represent missing links. More pertinently, the GFP estimates are likely more accurate due to the 
experimental specificity errors inherent in mass spectrometry, and the 3–6% error rates are within an acceptable 
range.

Overall, these data affirm that evolution of the plastid proteome is highly dynamic at the species-level. 
Compared to previous reports, somewhat reduced species-unique plastid-targeted proteins are reported here 
(e.g.,2,10) due in part to the removal of singletons and single-species clusters. Homology to sequences in other 
species dramatically decreases the probability of pseudogenes and gene prediction errors. Remarkably, the 
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monocot species had an average of 50–60% more species-unique plastid-targeted protein clusters than eudicot 
or Amborella counterparts. Even after removal of the outliers P. virgatum and A. amnicola, monocots still had 
40% more plastid-targeted clusters than eudicots according to RBH methods, and over 80% more clusters using 
UCLUST. The reasons for this could be two-fold. First, the monocot species in this analysis have larger proteomes 
on average, increasing the overall likelihood for both de novo evolution of NPTPs and for retention of orphaned 
singleton/species-specific proteins. Secondly, monocots, and especially grasses, have been described to have many 
presence/absence variants (PAV’s) and copy number variants (CV’s) in their genomes. Pan-genome sequencing of 
B. distachyon revealed over 7,000 pan-genes that are not present in the reference genome, and an average of 9 Mb 
of sequence in each accession does not align to the reference genome115. Similar rates of PAV’s have been reported 
for cereal crops: only half of the pan-genome diversity of maize is present in the reference genome116, over 21,000 
predicted wheat genes are not represented in the reference genome117, and 8,000 predicted rice genes are not 
represented in the Nipponbare reference genome118. In contrast, pan-genomes of Arabidopsis119 and tomato120,121 
describe variation primarily at the SNP and small insertion/deletion levels, although one report described that 
14.9 Mb of the Columbia-0 genome was absent in one or more other accessions122. In Brassica oleracea, less than 
20% of genes were affected by presence/absence variation123. Somewhat higher variation is observed in legumes: 
302 soybean lines including varieties, landraces, and wild accessions revealed 1,614 copy number variants and 
6,388 segmental deletions, and 51.4% of gene families were dispensable124 while in Medicago truncatula, 67% of 
annotated genes may be dispensable125. It bears consideration that the pangenomes of the grasses are primarily 
within cultivated accessions and have already passed through a domestication filter which already significantly 
reduces genomic diversity, whereas the pangenomes of most of the eudicots include wild and landrace accessions. 
These trends suggest that PAV’s and CV’s are significant drivers of plastid proteome evolution, either by retention 
of orphaned genes or by de novo evolution of transit peptides in duplicated genes. Despite the smaller number of 
species-unique clusters, conserved plastid-targeted proteins are still outnumbered up to 25-fold by species-unique 
or semi-conserved proteins. If even a fraction of these sequences is accurate and expressed in vivo, each could 
impart novel biological functions because escape from the evolutionarily established biochemical and regulatory 
environment could impart a different function in a new subcellular environment without changing the functional 
sequence of the protein. Thus, each of these is an excellent candidate for further characterization to determine 

Figure 7. Correlation of Total Proteome Size with Nascent Plastid-Targeted Proteins (NPTPs). (A) Clusters 
containing at least three species and with predicted plastid-targeted proteins in only one species were compared 
to the total proteome size for both RBH and UCLUST clustering methods. Although the correlation was 
moderately linear when P. virgatum was included, its extremely large proteome skewed results. (B) Correlation 
after removal of P. virgatum. Weakly linear correlation indicates that the evolution of novel transit peptides is a 
random process.
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if unique phenotypes are created by relocalization to the plastid. Conversely, species-specific plastid-targeted 
protein-coding genes in model systems could yield misleading interpretations because the same phenotypes for 
those genes would not be observed in species where homologs do not have plastid-specific localization. Such a 
situation is potentially problematic for the unique plastid-targeted proteins detected for Arabidopsis, B. distach-
yon, and rice because it is likely that some of these genes already have a described gene function that is being 
inaccurately ascribed to plants as a whole. Indeed, out of 113 Arabidopsis proteins with predicted species-specific 
plastid-targeting, 18 have a described phenotype, and 100 are cited in previous research reports (summarized in 
Supplementary File 5). In cases where the predicted localization divergence is validated, the mutant phenotypes 
for those sequences will have to be revised.

conclusions
The evaluations conducted in this study support the hypothesis that a combination of subcellular localization 
prediction programs can accurately predict chloroplast transit peptides at a whole-genome scale in higher plants 
and can perform equally well for both monocots and eudicots. The best-performing method was then applied 
to predict chloroplast proteins globally for a diverse range of angiosperm species and developed both a slow 
and accurate reciprocal best-BLAST hit method and a fast-liberal UCLUST method to cluster gene families. 
Though results were not identical, UCLUST yielded comparable results while performing more efficiently. With 
the addition of more species, UCLUST could be a useful tool to overcome the inefficiency of BLAST-based meth-
ods. The consensus of both methods determined that the hypothesis of extreme plastid proteome variability was 
supported across the taxonomic space. Roughly 700 genes were shared between the chloroplast proteomes in 
all plant species, but these were vastly outnumbered by proteins with variable plastid targeting prediction. Most 
of these species- or clade-specific proteins have no known function for the plastid and are excellent candidates 
for further studies. Additionally, roughly a third of conserved plastid-targeted proteins have no known function 
and could be targeted for reverse genetics experiments in the future. Biological verification of these sequences 
remains a significant challenge. Even if good prediction accuracy was achieved, these sequences may be poorly 
expressed, expressed only in particular conditions, or are nonfunctional. Incorporation of transcriptomics would 
provide significant evidence that these genes are at least expressed, and patterns of gene expression along with 
co-expression information may also reveal additional information about their function. Experimental validation 
using mass spectrometry could also be used, but many proteins may have abundances below detection limits, 
and technical challenges also remain for the isolation of non-green plastids where they may be more abundant. 
The decreasing costs of gene synthesis make high-throughput fluorescence protein assays an attractive alterna-
tive. In addition to increased sensitivity and specificity compared with mass spectrometry, fluorescent protein 
assays could also be used to simultaneously validate whether the localization of species-unique proteins are truly 
different from their nearest predicted non-plastid-targeted homologs, and likewise may be able to provide better 
spatial resolution. Outer membrane proteins, lacking a classical transit peptide, are only currently predictable 
based on homology to the mature protein, and thus cannot be predicted de novo. Furthermore, prediction of 
localization within sub-compartments of the chloroplast remains a challenge. TargetP and other programs offer 
sub-compartment predictions, but their accuracy remains questionable, making improvement of experimental 
methods a necessity. The methods and results reported in this study will enable rapid, accurate and cost-effective 
identification of plastid-targeted proteomes in new plant species as their genomic information becomes available. 
These research findings are expected to provide a foundation for further research into unique plastid biology 
and to understand better how diversification of the organellar proteomes contributes to important agronomic, 
biochemical, culinary, or even aesthetic traits.

Methods
cross-validation of in silico techniques. Test datasets for cross-comparison of subcellular prediction 
algorithms were retrieved from PPDB (2012 update; current as of this writing), AT_CHLORO (January 2015 
update; current as of this writing)23, Suba4 (30 June 2017 update; current as of this writing)24, CropPAL version 
58839ba26, and CropPAL2 version 7486696726. Headers which could not be referenced to the most up-to-date 
reference proteomes were discarded. For AT_CHLORO, Suba4, and PPDB databases, all genes located on the 
chloroplast and mitochondrial genomes were removed, and redundant headers were merged. Subsets of data 
including sequences confirmed by mass spectrometry, GFP fusion, either GFP or mass spectrometry, or both 
were extracted from each database by filtering for the keywords “Chloroplast” or “Plastid.” All ambiguous results 
containing experimental evidence for both plastids and at least one other subcellular fraction were removed.

Experimentally validated protein sequences were analyzed with TargetP v.1.143,44, WoLF PSORT Command 
Line Version 0.240, PredSL Web Server46, Localizer v.1.0.241, MultiLoc2 version 2-26-10-200952, and PCLR update 
2011-11-24 release 0.938. Additionally, NLStradamus v.1.8126 was used as part of the Localizer algorithm, while 
Python v.2.7.5, LIBSVM v.2.8, BLAST v.2.2.30, and Interproscan v.5.25-64.0 were used as part of MultiLoc2. 
Results for each workflow were converted into binary classification and evaluated for Sensitivity (SE), Specificity 
(SP), Matthew’s Correlation Coefficient (MCC), and accuracy (ACC) as related to plastid localization prediction 
based on the number of true positives, false positives, true negatives, and false negatives compared to the anno-
tations in the corresponding experimental dataset (see equations below). Combinatorial approaches were per-
formed for each possible combination of programs from two up to all six programs, and different thresholds were 
evaluated based on the number of programs in agreement for plastid localization. Complete records of individual 
and combinatorial workflows for each experimental dataset are available in Supplementary File 1. The heatmap in 
Fig. 1 was generated using conditional formatting in Microsoft Excel.
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Overall Accuracy (ACC) :

where tp is the number of sequences correctly identified as plastid-targeted, tn is the number of sequences 
correctly predicted to be non-plastid-targeted, fp is the number of non-plastid-targeted sequences incor-
rectly predicted as plastid-targeted, and fn is the number of plastid-targeted sequences that were predicted as 
non-plastid-targeted. Note that these categorizations are based on the accuracy of the database annotation and 
any filtering that was applied to data subsets, and they may not reflect biological accuracy.

Whole proteome analysis. Predicted proteomes for Amborella trichopoda, Arabidopsis thaliana, 
Brachypodium distachyon, Fragaria vesca, Glycine max, Malus × domestica, Oryza sativa, Panicum virgatum, 
Populus trichocarpa, Prunus persica, Setaria italica, Solanum lycopersicum, and Sorghum bicolor were downloaded 
from Phytozome87. The proteome of Anthurium amnicola was obtained by personal correspondence with Dr. 
Jon Suzuki, USDA-ARS, Hilo, Hawaii, in advance of the publication76. For Vitis vinifera, an expanded proteome 
version was obtained from94. For Malus × domestica, modifications to the predicted proteome were made because 
over 15,000 sequences, representing over 20% of the predicted proteome, were determined to have no signifi-
cant matches to proteins from other species (See Supplementary File 5). The predicted proteome was expanded 
using apple transcriptome data that were downloaded from the NCBI SRA database under the project numbers 
PRJEB2506, PRJEB4314, PRJEB6212, and PRJNA231737, representing a mixture of leaf, apical meristem, fruit, 
and root tissues at different time points and under varying conditions82–85,127. These sources are described fur-
ther in Supplementary File 2. Sequence files were processed in CLC Genomics Workbench version 8 (Qiagen 
Bioinformatics, Hilden, Germany); paired Illumina read files and 454 sequencing files were indicated during 
import. Graphical QC reports were generated to obtain nucleotide contribution (GC content) and quality dis-
tribution (quality scores) by base position. Reads were processed to remove ambiguous nucleotides and base 
quality scores lower than 0.001. Illumina reads were additionally trimmed at the 5’ end until the GC content 
stabilized within 0.5% of the average, and reads with fewer than 34 bases remaining were discarded. All paired 
read files were subsequently merged using default settings. All processed read files were assembled de novo with 
default settings. Assembled contigs of >300 bp were kept and used to predict open reading frames (ORF’s). 
Non-overlapping ORF’s with at least 5x average base coverage and >300 bp were extracted and translated into 
protein sequences. Finally, extracted protein sequences were compared against the existing Malus × domestica 
v.1.0 predicted gene set81 downloaded from Rosaceae.org. All hits with greater than 98% ID and coverage (as 
per85) were tagged as potential duplications or alleles of the original headers but were kept in the peptide dataset 
in case minor mutations caused differential localization prediction. All sequences generated from this transcrip-
tome assembly are available in Supplementary File 6. In total, 36,477 sequences were obtained, of which 26,881 
sequences were determined to be unique in comparison with the apple genome 81. Addition of the unique genes 
from the de novo transcriptome created a final dataset of 64,680 unique proteins. Redundant sequences from the 
resulting transcriptome were retained in case minor differences resulted in differential targeting.

The predicted proteomes of all species were filtered to remove any sequences less than 100 residues and 
which did not begin with methionine. Post-analysis filtering was accomplished by removing singleton sequences 
that failed to find matches with both the USEARCH method and BLAST (indicated for each sequence in 
Supplementary File 5). Remaining sequences were analyzed with TargetP v.1.143,44 and Localizer v.1.0.241. All 
sequences predicted by both methods to have a chloroplast transit peptide were classified as plastid-targeted, 
and all sequences with either “1 or 2” or “0 of 2” chloroplast transit peptide predictions were classified as 
non-plastid-targeted.

clustering of gene families. Reciprocal Best-BLAST hit clustering was performed as follows: Pairwise 
BLAST-P (v.2.3.0+ command line executable;128,129) was performed for each species’ predicted proteome set 
against that of every other species in both forward and reverse directions. These results were filtered for hits in 
which identity and coverage parameters exceeded 40%. Of these, only hits in which two sequences from different 
genomes were the respective best hit were kept. Next, better-BLAST hits within each species were performed by 
conducting pairwise BLAST-P of the predicted proteome against itself. Hits exceeding 90% coverage and iden-
tity and which was reciprocal within the first 10 hits were collected. Cluster merging was performed by iterating 
through each possible header and collapsing all pairwise hits containing that header.

Clustering using the UCLUST algorithm proceeded as follows: An initial run on a length-sorted FASTA file 
containing all sequences was performed using ‘Cluster_Fast’ function of UCLUST (v.9.2.64_win32;56) with 40% 
identity and 40% query coverage. Next, random seeds were constructed by extracting a single random sequence 
from each cluster, sorting the resulting sequences by length, and appending them to a length-sorted FASTA of the 
full sequence list used in the initial “Cluster_Fast” analysis. 100 randomly-seeded FASTA files were then analyzed 
with “Cluster_Fast” set to 90% sequence identity. Target and query coverage were additionally set to 0.4 to avoid 
problems with small query sequences acting as centroids for much larger sequences as a result of USEARCH being 
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performed in sequential rather than length-sorted order. Cluster merging was performed by iteratively searching 
through each possible sequence header and collapsing all clusters containing that header. Custom scripts were 
developed for automating program workflows, referencing and translating sequences or headers, performing 
seed randomization for the modified UCLUST technique, performing cluster expansion, calculating statistics on 
clustering outputs, and referencing headers to respective clusters for both workflows. Sequence members within 
merged clusters from RBH and UCLUST methods were referenced to the predicted plastid targeting phenotype, 
and all clusters containing plastid-targeted members were extracted. Conserved plastid-targeted protein-coding 
gene families were defined as clusters containing at least 13 species and in which all had either predicted plastid 
transit peptides or at least three additional sequences. Semi-conserved plastid-targeted gene families were defined 
as clusters containing plastid-targeted sequences from at least 2 species within each family or clade and no pre-
dicted plastid-targeted sequences from species outside that clade. Non-conserved plastid-targeted protein-coding 
gene families were defined as all clusters containing a minimum of three species in which only one species had a 
plastid-targeted sequence.

Gene ontology enrichment. Annotations for NPTPs were retrieved from Phytozome87 for each of the spe-
cies used in the analysis except Anthurium amnicola and Vitis vinifera, which were retrieved from76 and94, respec-
tively. Non-redundant predicted proteins produced by the de novo transcriptome assembly of Malus × domestica 
were annotated using BLASTP against the NR Protein database at NCBI with BLAST2GO v.4.1.9 default param-
eters108 (BioBam Bioinformatics, Valencia, Spain). GO terms were converted into GOslim annotations using 
BLAST2GO, and for each cluster, all terms shared by at least three species and present in over 10% of a cluster’s 
sequences were extracted to develop query datasets. In parallel, the same methods were used to extract GO terms 
from the total list of clusters to serve as reference datasets. Enrichment of GO terms in the shared plastid-targeted 
clusters was performed using BLAST2GO, with Fisher’s Exact Test was used to calculate significance using a false 
discovery rate (FDR) of less than 0.05 as a minimum significance threshold108. Graphical analyses of enriched GO 
terms were produced in BLAST2GO.

Gene and phenotype identification. Full gene annotations include described gene names were down-
loaded for the TAIR10 Arabidopsis genome from Phytozome87. Gene names were referenced from the annotation 
file for Arabidopsis sequences present in conserved plastid-targeted protein clusters. Phenotype information for 
species-unique plastid-targeted proteins was referenced on NCBI130.

Data availability
The datasets supporting the conclusions of this article are included within the article and its Supplementary files. 
Perl scripts used in the organization of data and execution of protein clustering are available at Sourceforge under 
the Project Name “Plastid Variation” and the homepage https://sourceforge.net/p/plastid-variation. Operating 
System(s): Platform Independent. Programming Language: Perl Other Requirements: TargetP v.1.1, Localizer 
v.1.0.2, BLAST v.2.3.9+ command line executable, UCLUST v.9.2.64_win32, RAxML v.8.2.31, MUSCLE v.3.8.31, 
MAFFT v. 7.407, Phyutility v2.2.6, FastTree 2.1.10. License: open source Restrictions for use by non-academics: 
no restrictions.
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