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Evaluating Nodes of Latent 
Mediators in Heterogeneous 
Communities
Hiroko Yamano1 ✉, Kimitaka Asatani2 & Ichiro Sakata1,2

Conventionally, the importance of nodes in a network has been debated from the viewpoint of the 
amount of information received by the nodes and its neighbors. While node evaluation based on 
the adjacency relationship mainly uses local proximity information, the community structure that 
characterizes the network has hardly been considered. In this study, we propose a new node index 
that contributes to the understanding of the inter-community structure of a network by combining the 
measures of link distribution and community relevance. The visualization of node rankings and rank 
correlations with respect to the attack tolerance of networks demonstrated that the proposed index 
shows the highest performance in comparison with five previously proposed indexes, suggesting a new 
way to detect latent mediators in heterogeneous networks.

Knowledge heterogeneity has been investigated based on the observation of the benefits of integrating distant 
knowledge in the heterogeneity of firm collaborations1–3 or organizational turnover under environment turbu-
lence4,5. Many researchers have demonstrated the effectiveness of incorporating knowledge from rare links with 
widely accepted concepts such as shortcuts in small world6, bridges between cliques as weak ties7, and bridges over 
structural holes8. However, contrary to the prevailing conceptual works and case studies, there are fewer studies 
on the measurement of rarity of the links in a network.

The driving hypothesis of the present study is that the importance of a node is estimated from the hetero-
geneity of the links it brings. We already know that hubs, which are nodes with many links, are important9, but 
there is comparatively less evidence for the composition or values of the links that make a node important. Most 
conventional network indexes tend to be affected by the link density of adjacent nodes, such as betweenness 
centrality, which counts the number of shortest paths via a node10; Katz centrality, which takes into account the 
total number of paths between a pair of nodes11; and PageRank, which considers the number of backlinks with 
their respective importance12. These indexes are effective to extract apparently significant nodes that have many 
important links and a great influence on networks9. However, another method is required to find rare nodes that 
have a few important links.

In the small world network, the shortcuts made with a certain rate of rewiring enables its properties between 
complete and random graphs: the short average shortest path length and the large average cluster coefficient, 
which occur simultaneously6. The shortcut can be considered to correspond to weak ties. Weak ties were pro-
posed based on the observation that people tended to get useful career information more from individuals outside 
their community, with whom they have rare contact opportunities, than from people within their community, 
whom they meet often7. The measure of weakness here is the contact frequency, which corresponds to the weight 
of links in the network, whereas the measure to grasp structural holes uses network topology, known as Burt’s 
constraint, which represents the absence of a structural hole13. Burt’s constraint counts the node degree and the 
number of common neighbors of every node pair in the network, reflecting local information up to one or two 
paths from the target node. It was designed to evaluate nodes connecting communities by assuming their poten-
tial to provide rare information and to bring about innovation. However, as with the conventional node indexes 
previously described, this index does not incorporate the characteristics of communities holding nodes beyond 
three paths away from the target node (for details and the definition, see Methods).

Under the explosion of available network data, researchers have investigated the roles of nodes, offering meth-
ods to reduce data complexity and extract meaningful information related to structural dimensions of the net-
work14–17. Blockmodel is one such abstraction technique that helps understand the roles of nodes in networks. 
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Assuming that two nodes are structurally equivalent if they are connected to the same nodes, it collapses nodes 
into blocks based on a given partitioning of the node set14. Although blocks represent the overall structure of 
the network, the model is not enough to clarify how nodes function in heterogeneous communities. Revealing 
the cases that blockmodel fails to capture the roles of nodes, Guimera et al. proposed another way to extract the 
roles of nodes by incorporating the modular structure and the patterns of link distribution of the networks15. 
He proposed two node indexes: the within-cluster degree Z and participation coefficient P15 (see Eqs. (1) (6) in 
Methods), which clarify the role of each node from the perspectives of how “well connected” and “well distrib-
uted” a node is; these perspectives define how a node is positioned in its own cluster (hubs) and between clusters 
(connectors). Several studies have demonstrated the discriminating power of the indexes, such as the connector 
firms bridging different regional clusters18, emerging research fronts in citation networks19, and the role-to-role 
connectivity20. However, by definition, the participation coefficient P only evaluates the link distribution to com-
munities, which does not distinguish the distances between communities. In other words, it is insensible for rare 
links from the nodes belonging to distant communities, and numerous studies have revealed their qualitative 
importance and structural values in the network1–3,6,7,13.

Within-community degree and its participation coefficient might be too strong a requirement for the analyses 
of large complex networks. Recent studies have revealed that more detailed community structure contributes to 
the prediction of missing links21–24, in addition to node similarities based on the number of common neighbors in 
general25–27. The first successful concept is based on the hypothesis that node pairs in the same community have 
higher similarity and, therefore, higher link probability than those in different communities21. In contrast to the 
primary method that only considers direct links within a community, Ding et al. used the relationship between 
communities, called community relevance, for link prediction24. By using community relevance, which measures 
the probability of two communities sharing common neighbors, he achieved better prediction accuracy com-
pared to the existing approaches based on local node similarities.

In this paper, we propose an analyzing schema to comprehend the inter-community structure by combining 
existing theories of nodal importance and community relevance. We demonstrate that the proposed index shows 
better performance compared to the participation coefficient P (P) in detecting nodes that connect distant com-
munities. We validate the performance of the proposed index with the visualization of node rankings in networks 
with varied communities, changes in the network diameter after the removal of top-ranked nodes, and rank 
correlations with standard ranking, which identifies nodes that would make the average shortest path longer if 
they are removed. Our approach sheds new light on node values by offering a way to detect latent mediators in 
heterogeneous communities with different number and density of nodes and links, that is consistent with theories 
and numerous empirical studies in social and industrial networks6–8,13,28.

Results
Node evaluation by connectivity and heterogeneity.  The roles of nodes have been estimated by their 
positions in the network, as characterized by the structure of its clusters. The positions, which are related to the 
connectivity of the nodes, are measured with the index P15, which quantifies how “well distributed” the links of 
node i are among different clusters, given by
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where Kis is the number of links from node i to other nodes in community s and ki is the total degree of node i (the 
number of links connected to node i). Pi is close to 1 if its links are uniformly distributed among all the commu-
nities and is 0 if all its links are within its own community. However, there may be cases where it provides a poor 
representation of the node values in the network, e.g., when the network contains heterogeneous local structures 
of communities. In such a heterogeneous network, the relevance between communities is significant for assessing 
the roles of the nodes in addition to their belongings, considering the novelty of information they mediate. For 
example, consider a class reunion, in which we enjoy talking with old friends not only because we spent time 
together in our younger days but also because they belong to distant communities that are apart from the ones we 
belong to. Pi cannot count such distances because it evenly surveys communities and only measures if a node has 
within or outer community links. To overcome this limitation, we used an experimentally verified community 
relevance index called the community relevance Jaccard coefficient (CRJC)24 as the weight of Pi. The weighting 
scheme we use is the negative log average of CRJC; the probability of the two communities that have common 
neighbors evaluates the rarity of the links connecting distant communities. We named this new index as weighted 
P (PW), which is defined as follows:
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where Pi is the index P defined by Eq. (1) and CRJC is the community relevance defined by Eq. (7). Γ i( )IC is the set 
of neighbors of node i that do not belong to the cluster of node i. L represents the number of the nodes in Γ i( )IC. 
Delta has an infinitesimal value of 0.000001 to prevent zero division error. PWi increases as nodes become con-
nected to more communities with low community relevance. PWi  counts the novelty of information regarding 
linkage probability concerning the distances among communities, while Pi quantifies the overall connectivity of a 
node to multiple communities.
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Figure 2 shows an outline of the calculation procedure with example numbers in matrices and the correspond-
ing network images. Every matrix obtained in the calculation process has its elements arranged in the order of the 
nodes in the graph. The procedure of obtaining each matrix is briefly described in the following.

Adjacent community matrix.  We acquired the community IDs of all nodes in the network using the conven-
tional clustering algorithm of the Louvain method29. Subsequently, by updating the adjacency matrix of the net-
work, we created a matrix containing the community IDs of adjacent nodes at the position where links existed.

Adjacent inter-community relevance matrix.  As we focused on the links between communities, we replaced all 
elements that correspond to within-community links in the adjacent community matrix with 0. Subsequently, we 
updated the remaining non-zero community IDs with the degrees of community relevance. The weight of a node 
is obtained by computing the negative logarithm of the average of values represented in the corresponding row of 
the adjacent inter-community relevance matrix.

Finding connectors of ego networks.  Our first focus was to determine if the new index could distin-
guish differences in community structures. We use Facebook social data from Stanford Large Network Dataset 
Collection (SNAP)30, which contains ego networks of 10 anonymized users that consist of the users’ friends lists31. 
To evaluate the discrimination capacity of the proposed index, we combined the ego networks and compared the 
rankings of the nodes by the indexes P and PW. As most of the Facebook users had relatively few common friends, 
the combined network had few links among the constituent ego networks, which were clustered by the egos. We 
found some common patterns of PW that occurred in many of the networks, such as a tendency to identify rare 
friends who connect the ego users or groups in the networks.

Figure 1 shows the distributions of the variables for each of the 10 users with two combined networks of all 
users and three users. In every network, PW had a wider range of the values than P, suggesting that it has a higher 
capacity to discriminate nodes. The surrounding networks show details for the combined ego users and their 
common friends with the rankings of the top 20 nodes by P and PW, respectively. All the networks consist of 
clusters with varied distances, and the common friends lie between the clusters (for visualization of the users and 
the clusters in the networks, see Supplementary Figs. S1 and S2). Closer inspection of the four networks reveals 
that the nodes associated with higher PW values showed better performance in detecting common friends than 
those associated with higher P values, which are accumulated in one part of the network. The values of the top 
20 nodes can be found in Supplementary Table S1. We also found that PW tended to detect dispersed common 
friends, rather than those who were accumulated between close communities.

Figure 1.  Comparison of the discriminating capacity of P and PW. The bar plot represents the ranges of P and 
PW for each of 10 Facebook users (G0–G9) and two combined networks of all 10 users and three users (G0, G2, 
and G6). The mean values of P and PW are represented by grey and green dots, respectively, with bars of these 
colors representing the range from the minimum to maximum values of the corresponding index (for detailed 
distributions of P and PW, see Supplementary Fig. S3). The numbers of nodes, edges, and common friends in 
each combined network are described in the figure. The star-shaped blown nodes in the networks represent 
common friends between ego users. Top 20 nodes are marked with orange gradation values with labels of the 
node ranking in each network and the other nodes are colored in green gradations. The thickness of orange and 
green represents the corresponding values of the nodes in each network.
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Community relevance.  To determine the relations between the proposed index and network struc-
tures in detail, we prepared two benchmark networks called the relaxed caveman (RC) network6 and 
Lancichinetti-Fortunato-Radicchi (LFR) network32 as well as one real network of inter-firm transactions in 
Tohoku region (see data in Methods). The degrees of community relevance (CRJC, see Eq. (7) in Methods) of 
the three networks are listed in Tables 1, 2 and 3. The distributions of the values of community relevance of these 
networks were characterized by the following three types.

•	 Similar difference of relevance: The RC network showed the highest relevance between community 1 and 
2 and the lowest relevance between community 1 and 3. The differences between the values of community 
relevance were at almost the same level of approximately 0.2 (Table 1).

•	 Low relevance except for one community pair: The LFR network showed the highest relevance between 
communities 2 and 3 and low relevance between the other communities. Because communities 1 and 4, 1 and 
5, as well as communities 4 and 5 in LFR network had no common neighbors, their degrees of community 
relevance were 0 (Table 2).

•	 High relevance except for pairs with one community: In the Tohoku network, community 1 had low rele-
vance with all the other communities, which were strongly related. (Table 3).

Pairs Relevance

(1, 2) 0.550

(1, 3) 0.182

(2, 3) 0.350

Table 1.  Relevance of community pairs in the RC network. Pairs represent the community pairs in the network 
and are indicated by their IDs.

Pairs Relevance

(1, 2) 0.107

(1, 3) 0.046

(1, 4) 0.0

(1, 5) 0.0

(2, 3) 0.471

(2, 4) 0.225

(2, 5) 0.081

(3, 4) 0.153

(3, 5) 0.032

(4, 5) 0.0

Table 2.  Relevance of community pairs in the LFR network. Pairs represent the community pairs in the 
network and are indicated by their IDs.

Figure 2.  Outline of updating elements in the adjacency matrix to community relevance. The red nodes in 
the networks are the nodes represented in the matrices. The number of nodes in the network represents the 
corresponding row indexes in the matrix. Community IDs in the networks are represented as c1, c2, and c3, 
which correspond to the numbers 1, 2, and 3, respectively, in the adjacent community matrix. The example 
values of community relevance are represented by the red numbers 0.55 and 0.18 in the right graph, which are 
equivalent to the values in the adjacent outer community relevance matrix.
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Visualization of the networks ranked by six node indexes.  To verify the performance of the pro-
posed index, we visualized the three types of networks by six node indexes: within-cluster degree Z (Z), Katz 
centrality (Katz), betweenness centrality (Bet), participation coefficient P (P), weighted P (PW), and inverse of 
Burt’s constraint (iBurt). In addition to the above-described differences in the community relevance, the networks 
showed different degree distributions, as characterized by a nearly uniform number of links (RC network), and 
diverse degrees (LFR and Tohoku network)(see Methods for details). We used a conventional force-directed 
placement method33 for the visualization. Because this method draws connected nodes closer to each other, the 
distance between visualized communities can be assumed as the extent of community relevance calculated based 
on common neighbors.

In every visualization of the network, PW was the best at identifying the nodes connecting distant communi-
ties (Figs. 3, 4 and 5). Although P identified the nodes connecting plural communities, it did not distinguish the 
degree of differences between the communities because the P index evaluates only the degree of link dispersion 
at the community level. The other four indexes, namely Z, Katz, Bet, and iBurt, mostly depended on the number 
of links and did not identify community differences, especially when the network consists of nodes with diverse 
degrees.

RC network: uniform link density with different values of community relevance.  In this experiment, the RC net-
work had three communities with IDs c1, c2, and c3 from the right to left in Fig. 3. We named the only node that 
connects all three communities as “connector” and the node with the largest number of links as “hub.” We first 
examined how the six indexes evaluate these two typical nodes by comparing the rankings of the indexes. The 
Z index ranked the connector lowest at 20th, contrary to the other indexes, which ranked the connector quite 
highly. Bet, P, and PW gave the highest rank of 0th to the connector. Katz and iBurt also ranked it highly at 4th 
and 1st, respectively. On the other hand, the hub was given high ranks by all indexes, although P and PW ranked 
it lower at 2nd and 3rd, respectively. Z, Katz, and iBurt gave the highest rank of 0th to the hub, and Bet ranked it 
the second highest, reflecting that these indexes evaluate the number of links by definition (see Methods).

Next, we investigated if the six indexes could represent the community relevance. Except for Z, every index 
ranked gave higher ranks to nodes between communities compared with those inside communities. However, 
P and iBurt failed to capture the differences between communities because there is almost no difference in the 
order of the nodes connecting communities. For example, consider the top 4 nodes in the middle-positioned 
community c2. When ranked by P, the nodes connecting c1 and c3, which have low relevance, were ranked 2nd 
and 6th, respectively, and the nodes connecting c1 and c2, which have high relevance, were ranked 5th and 4th, 
respectively. Likewise, when ranked by iBurt, the nodes connecting communities with low relevance were ranked 
0th and 3rd, and the nodes connecting communities with high relevance were ranked 2nd and 4th. On the other 
hand, Katz, Bet, and PW ranked nodes connecting distant communities higher, and PW was the best at ranking 
them highly. Katz did not evaluate nodes connecting distant communities, ranking the nodes as 16th, 15th, 13th, 
and 5th in c3. Bet also failed to rank nodes in c1 because it evaluated the nodes connecting close communities as 
5th, 6th, and 8th. Overall, PW evaluated nodes properly in every community, rating the nodes connecting distant 
communities higher and those connecting close communities lower (Fig. 3).

LFR network: diverse link density with low community relevance.  A notable point of P and PW is that they are 
not affected by the degrees, because they reflect the proportion of inter-community links to the total number of 
links. Therefore, P and PW are different from other network centrality indexes such as Bet and iBurt, which reflect 
the degrees by their definitions (see Methods). In other words, nodes can be ranked high in P or PW even if they 
have a small number of links, which is impossible for Bet and iBurt. To illustrate this characteristic, we generated 
an LFR network with diverse degrees holding five communities. In this network, only one community pair was 
strongly connected, while the others were weakly connected (Table 2, Fig. 4).

In this experiment, iBurt did not identify nodes connecting communities, although it has been considered 
to inversely represent structural holes in a network. In fact, except for P and PW, none of the indexes identified 
these connector nodes. The indexes Z, Katz, Bet, and iBurt ranked the nodes within communities highly, while 
P and PW ranked the nodes between communities highly. However, while the P index evenly evaluated nodes if 
they connected the communities, PW ranked the nodes connecting the most relevant communities lower than 

Pairs Relevance

(1, 2) 0.149

(1, 3) 0.211

(1, 4) 0.104

(1, 5) 0.075

(2, 3) 0.570

(2, 4) 0.555

(2, 5) 0.394

(3, 4) 0.580

(3, 5) 0.449

(4, 5) 0.495

Table 3.  Relevance of community pairs in the Tohoku network. Pairs represent the community pairs in the 
network and are indicated by their IDs.
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those mediating distant communities’ relationships. In short, only PW could detect nodes connecting distant 
communities in this network. (Fig. 4).

Tohoku network: diverse link density with high community relevance.  The limit of the P appeared markedly in the 
Tohoku network with diverse degrees holding five communities, and we found that PW was the best at identify-
ing the nodes connecting communities with low relevance. In this network, one community had relatively few 
inter-community links, while the others were strongly connected to each other (Table 3). Z, Katz, P, and iBurt 
highly ranked the nodes within these highly relevant communities and did not identify structural holes. On the 
other hand, both Bets and PW highly ranked the nodes between weakly connected communities, but PW showed 
better performance in identifying them (Fig. 5).

Node rankings and attack tolerance of the network.  The selection and removal of a few nodes that play 
a vital role in maintaining the network’s connectivity weaken the tolerance of inhomogeneous networks34. Here, we 
demonstrate that attack tolerance is also influenced by the structure of communities in the networks. We examined 
the attack targets that change network connectivity most and found that, among several node indexes, PW was the 
best at detecting the most influential nodes with a smaller number of edges in a heterogeneous network.

Figure 3.  Index values of nodes in the RC network. Each network has 24 nodes and 84 edges with a rewiring 
probability of 0.2. The network had three communities named c1, c2, and c3 from the right to left. The color 
of the node represents the value of each index: Z, Katz, Bet, P, PW, and iBurt. The darker the color, the larger is 
the index value. The numbers on the nodes are their ranks in each index. The values of nodes can be found as 
Supplementary Table S2.

Figure 4.  Index values of nodes in the LFR network. Each network has 100 nodes colored by their index values, 
391 edges, and five communities with a mixing rate of 0.1. Top 20 nodes are marked by orange circles with labels 
of the node ranking in each network. The values of the top 20 nodes can be found in Supplementary Table S3.
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Changes in diameter by removed nodes and edges.  We assumed that the absence of a node connecting distant 
clusters increases the diameter more than the absence of nodes connecting close clusters because the absence of a 
node connecting distant clusters can eliminate important links that many paths have to pass through to connect 
nodes in the network. We also noticed that attack tolerance comes at a high price in the case of target nodes with 
many links, such as influencers with many followers in social networks, because it is costly to remove or control 
them. Therefore, considering the cost of the removal, we investigated the number of removed edges as well as that 
of removed nodes (Fig. 6).

The inter-connectedness of a network is described by its diameter, which is defined as the average length of the 
shortest paths between any two nodes in the network. To address the attack tolerance of networks, we measured 
the diameter after sequential attacks on the top 15 nodes ranked by seven indexes: Z, Katz, Bet, P, PW, iBurt, and 
degree centrality in the Tohoku network. The Tohoku network has a scale-free property with degree distributions 
from 10 to 2,000 (see data in Methods). We compared the increasing patterns of the diameter after the sequential 
attacks on the nodes ordered by each index. We also included a random selection of 100 nodes in the comparison. 
As with the previous studies on inhomogeneous networks34, the diameter remains unchanged under an increas-
ing level of errors by random selection. When the top-ranked nodes in any of seven indexes are eliminated, the 
diameter of the network increases faster than in the case of random selections. As expected, Bet was the best at 
finding the most influential nodes to shorten the diameter because it evaluates the number of links via the node. 
However, when we count the number of edges, PW was the best at detecting the most influential nodes with a 
smaller number of edges, which implies a low cost for the removal.

Rank correlation in networks with different numbers of communities.  To address the node values in the network, 
we extended and applied the experiment of attack tolerance in three steps. First, we measured the average shortest 

Figure 5.  Index values of nodes in the Tohoku network. Each network has 217 nodes colored by their index 
values, 2696 edges, and five communities. Top 20 nodes are marked by orange circles with labels of the node 
ranking in each network. The upper community had fewer inter-community links compared to the other four 
communities below. The values of the top 20 nodes can be found in Supplementary Table S4.

Figure 6.  Changes in the diameter after the attack. The vertical axis represents the average shortest path length 
of the Tohoku network after the attack, and the horizontal axis is the cumulative number of the nodes (left 
figure) and the edges (right figure) that was removed after each attack. At every attack, we re-calculated the node 
values and we stopped the attack when the network was divided from the largest component.
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path length of the network when a node is removed and stored the node IDs in the increasing order of path length 
as the standard ranking. Second, we obtained the node rankings with three node indexes that discriminate com-
munities in the network: Z, P, and PW. Third, we calculated the difference of the node ranking of each index with 
the standard ranking using Spearman’s rank-order correlation coefficient. By investigating the RC network with 
2, 3, and 12 communities, we found that the rankings of PW show higher correlations with the standard rankings 
compared to the rankings of P, and the rankings of Z show no correlation (Fig. 7).

The rankings of P and PW were completely overlapped when the number of communities was two because 
there was only one community pair and the weight of P was constant. On the other hand, we detected differences 
between the rankings of P and PW in the network with three or more communities. When the network had three 
communities, middle-ranked nodes had different orders because there were three community pairs with different 
relevance values. However, at the lower ranks, the orders of P and PW overlapped with no correlation because 
low-ranked nodes had only within-community links and the same P and PW values of 0, which makes the rank-
ing meaningless. The orders of P and PW were the same or close at the higher ranks, which might be because 
these nodes have links to all three communities. When the number of communities was 12, the rankings were 
different in general, and PW showed a higher correlation than P. In this case, as the ratio of inter-community links 
was relatively high, nodes that had only within-community links or had links to all 12 communities were very few. 
Therefore, the orders of P and PW did not match in almost every ranking in this network.

Rank correlation in networks with varied mixing rate.  We generated six LFR networks with different 
inter-community link ratios (mu); in each network, we calculated Spearman’s rank correlation between the rank-
ing ordered by each index and the average shortest path length after the attack. In the LFR network, the rank 
correlation decreased as mu increased because both P and PW evaluate links between communities (Table 4). 
However, PW showed the highest correlations in all networks, suggesting that PW identifies nodes that would 
make the average shortest path longer if they are removed. Typically, when the mixing parameter was 0.5 or 0.6, 
both P and PW have no correlation with the standard ranking, because the number of inter-community links 
exceeded that of within-community links and the community structure disappeared. We executed similar calcula-
tions in the RC networks with different numbers and sizes of communities, which can be found in Supplementary 
Tables S5 and S6. The analysis result of these RC networks showed a tendency in which PW has the highest cor-
relations, suggesting its discriminating capacity on larger networks.

Discussion
In this study, we proposed a new nodal index based on community structures and verified its performance. We 
designed the index PW using community relevance as the weight of the index P, which reflects the community cover-
age. To clarify the difference between P and PW, we used combined ego networks in Facebook. We showed that PW 
had a wider range than P, suggesting that it has a higher capacity to discriminate nodes in the network. In fact, closer 

Figure 7.  Rank correlations by path length and node indicators. The vertical axis represents the standard node 
ranking sorted by the average shortest path length after the attack, and the horizontal axis represents the node 
ranking ordered by the indexes Z, P and PW. Nodes with the same rankings in P and PW are indicated by red 
circles around green dots. We used RC networks with 2, 3, and 12 communities having 16, 24, and 96 nodes and 
56, 84, and 336 edges, respectively, from left to right, with the Spearman’s rank correlations between standard 
node rankings and the rankings by the indexes.

mu Z P PW

0.1 −0.424 0.617 0.895

0.2 −0.569 0.596 0.838

0.3 −0.435 0.549 0.766

0.4 −0.357 0.404 0.504

0.5 0.019 0.258 0.280

0.6 −0.021 0.082 0.163

Table 4.  Rank correlation in LFR networks with different link rates.
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inspection of ego networks revealed that PW showed better performance in detecting common friends than P. Then, 
to determine the capability of community discrimination of PW, we prepared three types of heterogeneous networks 
with different community relevance values and link densities. The visualization of these networks with the node 
ranking based on six indexes confirmed that PW is the best at identifying the nodes connecting distant communi-
ties. We also examined the attack tolerance of the networks by sequentially removing nodes ranked by each of the 
six indexes, as well as a simple degree ranking method and a random selection of nodes. We found that PW detects 
the most influential nodes with a smaller number of edges compared to the other indexes in a heterogeneous net-
work. We generated networks with different numbers of communities and rewiring ratios. By analyzing rank-order 
correlation with the diameters of the networks, we revealed that PW showed a consistently higher correlation than 
P, suggesting that PW contributed to the improvement of identification of rare nodes that would make the diameter 
longer if they are removed. Considering the cost of removing nodes with many links, it would be useful to identify 
nodes that have fewer links but substantial impacts on the network, which can be detected using the proposed index.

A potential limitation of the study is its focus on the comparison between P and PW in the limited types of 
networks. Although we detected some differences with the other indexes such as iBurt, Bet, and Katz by the vis-
ualization of the networks and the changes in the diameter after the attack, further investigations are needed to 
clarify the characteristics of the proposed index, regarding the roles of the nodes in the heterogeneous networks. 
For designing the weight of the index P, we referred to information entropy35, considering the average of linkage 
probability related to the distances between communities. Finer-grained weighting schemes are expected for 
future research, such as random-walk based modular decomposition of Markov chain36, which incorporates the 
information as flow on network links37. Our approach to evaluate nodes by quantifying the local community 
structure can easily be applied to any network with diverse communities. In addition to finding key factors that 
implement shortcuts in small world networks, weak ties or bridges over structural holes, the proposed index 
could be applied to investigate the fusion of knowledge in different fields. It may also be used to plan strategies 
to mitigate phenomena related to the intensification of similar information, such as echo-chambers38 or filter 
bubbles25,39, by finding mediators to bring heterogeneity into the network.

Methods
Data.  To verify the performance of the proposed index, we used two benchmark networks with different num-
bers of communities and rates of rewiring, as well as an inter-firm transaction network in Tohoku region based on 
real data (for visualization of the clusters in each network, see Supplementary Fig. S4).

Facebook network.  The Facebook network was provided by SNAP30, which contained ego networks of 10 anon-
ymous users that had the users’ friends lists31. In addition to the combined network with all users’ ego networks 
distributed by SNAP, we developed a new combined network with three users’ ego networks of G0, G2, and G6, 
for comparison.

RC network.  The RC network has small world characteristics in that it simultaneously satisfies a small L and 
large C as well as a moderate average number of degrees6. First, we generated and visualized a simple network 
with the number of communities, number of nodes in a community, rewiring probability, and random seed set 
to 3, 8, 0.2, and 16, respectively, resulting in different community relevance values in the network. Next, for the 
experiments on attack tolerance, we generated three RC networks with 2, 3, and 12 communities; the number of 
nodes in each community was 8, and the rewiring probability was 0.2.

LFR network.  The LFR network allows flexible and fine-grained parameter setting close to that of a real net-
work32. We generated and visualized a network with the number of nodes, average number of degrees, maximum 
number of degrees, inter-community link ratio, and number of nodes in the communities set to 100, 8, 30, 0.1, and 
5–50, respectively, resulting in different community relevance values with a scale-free property in the network. 
For the experiments on attack tolerance, we generated six LFR networks with 100 nodes, 8 degrees per node, and 
10 communities with inter-community link ratios of 0.1–0.6. Note that networks lose community structure with a 
rewiring rate greater than 0.5, which disables the discriminating power of the indexes Z, P, and PW.

Tohoku network.  The Tohoku network was generated using data provided by TOKYO SHOKO RESEARCH, 
LTD. (TSR), which consisted of annual data of firms and their business transactions with up to 20 business part-
ners for each firm. The Tohoku network was generated with real inter-firm transaction data related to the Tohoku 
region in Japan in 2016, and the total volume of collected transaction data was 154,918. To avoid extreme devi-
ation of the degree distribution, we excluded nodes with more than 2000 edges as well as those with less than 10 
edges, resulting in 317 firms and 2412 transactions. As shown in Fig. 5, the Tohoku network had a community 
with fewer inter-community links and four tightly connected communities.

Node Indicators based on centrality, neighbors, and link structures.  Betweenness centrality10,40 
measures the degree to which a node falls on the shortest path between other nodes in the network, and it is 
defined as follows:

∑
σ
σ

=
∈

Bet
s t v
s t

( , )
( , )

,
(3)

v
s t V,

where v is the set of nodes, σ s t( , ) is the number of shortest s t( , )-paths, and σ s t v( , ) is the number of paths pass-
ing through some node v other than s t, . If σ= =s t s t, ( , ) 1, and if σ∈ =v s t s t v, , ( , ) 0.
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Katz centrality11 takes into account the total number of paths between a pair of nodes. The Katz centrality xi of 
node i is expressed as follows:

∑α β= +x A x ,
(4)

i
j

ij j i

where A is the adjacency matrix of the graph with eigenvalues λ. The parameters α and β are constants, where 
α <

λ
1

max
 and β controls the initial centrality.

The measure to grasp structural holes was proposed as the opposite concept of network constraint, which 
represents the absence of a structural hole13. The sum of the local constraints of all pairs in a network for node i is 
called Burt’s constraint, which is expressed as follows:

∑ ∑=





+





∈ ≠ ∈ ≠
Burt p p p ,

(5)
i

j V j i
ij

q V q i j
iq qj

, , ,

2

i i

where Vi  is the set of neighbors of i and pij is the normalized mutual weight of the edges joining i and j, for each 
vertex i and j. The mutual weight of i and j is the sum of the weights of edges joining them. Note that edge weights 
are assumed to be one if the graph is unweighted. By definition, Burt’s constraint does not count nodes more than 
three paths away from node i.

The role of each node is determined by its within-cluster degree and its participation coefficient P, which is 
defined by Eq. (1). The within-cluster degree and P characterize how the node is positioned in its own cluster and 
between clusters15. These two properties can easily be calculated after dividing the network into clusters. The 
within-cluster degree Zi measures how “well connected” node i is to other nodes in the cluster, and it is defined as 
follows:

σ
=

−Z K K ,
(6)

i
i Si

K Si

where Ki is the number of links of node i to other nodes in its community Si, KSi
 is the average of K overall nodes 

in Si, and σK Si
 is the standard deviation of K  in Si. Zi is high if the within-cluster degree is high and vice versa.

Link prediction using community structure information.  To extract the community structure of a 
network, we applied the fast and accurate Louvain method29, which is among several widely used 
modularity-based community division methods41,42. Then, we calculated the CRJC between communities, which 
showed the highest accuracy in predicting missing links in previous research24. CRJC measures the probability 
that both ci and cj have common neighbors, and it is defined as follows:

∪ ∩ ∪
∪ ∪ ∪

=
| Γ Γ |

| Γ Γ |
c c

c V c c V c
c V c c V c

CRJC( , )
( ( ) ( )) ( ( ) ( ))
( ( ) ( )) ( ( ) ( ))

,
(7)

i j
i i j j

i i j j

where ci and cj are a pair of nodes within any one of the communities in the network defined by = …C c c c{ , , , }m1 2 . 
V c v v V c C v( ) { , ( )}i i= ∈ ∈  is the sum of the nodes in community ci. V  represents the set of nodes in the net-
work, and C v( ) is the set of communities holding node v. Γ c( )i  indicates the neighbors of community ci.

Data availability
The datasets used in this article are all publicly available and cited in the references except for Tohoku network 
data provided by TOKYO SHOKO RESEARCH, LTD. (TSR).
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