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Hierarchical phononic crystals for 
filtering multiple target frequencies 
of ultrasound
Ki Yong Lee & Wonju Jeon ✉

Hierarchically structured phononic crystals are proposed for filtering multiple frequency bands. The 
advantages of using structural hierarchy come from its multiscale periodicity and the increased number 
of controllable parameters, which contribute to open multiple bandgaps in broadband frequency ranges 
and adjust the positions of those bandgaps. By deriving a transfer-matrix-based theoretical formula, 
hierarchical phononic crystals are designed that filter the frequency bands for randomly selected 
frequencies in the ultrasonic range of 20 kHz to 10 MHz. Their wave-filtering capability is demonstrated 
by using numerical simulations with consideration of material loss. By comparing the transmittance 
spectra of the hierarchical phononic crystals with those of conventional ones, the structural hierarchy of 
the former is shown to be advantageous in filtering multiple frequency bands.

A hierarchical structure has the architectural feature of successively embedded structural elements with different 
length scales. Such structures occur naturally in numerous biological materials such as bone1,2, wood2,3, nacre4 
and gecko foot pads5, and they are used in engineered structures such as the Garabit Viaduct6 and the Eiffel 
Tower7. In spite of the structural complexity, hierarchical structures are used widely in various engineering prob-
lems because of their mechanical properties. Generally, materials in nature are rarely both tough and stiff8, but 
those two mutually exclusive mechanical properties can be realized simultaneously in hierarchically structured 
materials. In static problems, the structural role of multiscale hierarchy in providing beneficial mechanical prop-
erties is now well known8–12.

Recently, several studies have explored the advantages of using hierarchical structures in dynamic problems. 
For instance, in thermodynamics, it was reported that using structural hierarchy in a honeycomb structure 
improved the heat resistance and thermal anisotropy, and those properties could be controlled by manipulating 
the geometrical parameters of the hierarchical structure13. Another application of hierarchical structure that has 
been investigated is for opening broad acoustic and elastic bandgaps. In 2013, Zhang and To14 showed that pho-
nonic crystals (PCs) with a hierarchical structure have broader acoustic stopbands than do those without hierar-
chy; they highlighted that using structural hierarchy opens bandgaps in low-frequency ranges. Thereafter, broader 
elastic bandgaps were obtained by applying self-similar hierarchies to honeycomb PCs15, nacre-like composites16, 
hub–spoke metamaterials17 and cross-like porous metamaterials17. Geometrical modification for obtaining wave 
energy attenuation using acoustoelastic metamaterials was also explored for multiscale structures such as frac-
tals18, spider-web structures19 and multiscale resonators20. A common feature of the aforementioned studies is 
that they realized broadband wave filtering based on multiscale periodicity of hierarchy. However, hierarchical 
structures are not just for manipulating bandgaps; they can also be used to realize double-negative effective prop-
erties regarding the mass density and Young’s modulus of one-dimensional (1D) infinite structures21.

Previously, Zhang and To14 investigated the wave-filtering capability of 1D hierarchical structures thoroughly 
for different hierarchy levels. They reported that (i) the overall bandwidth covered by the bandgaps of PCs with 
hierarchy is much broader than that of the conventional PCs and (ii) using a higher level of hierarchy opens broad 
bandgaps in lower-frequency ranges.

In the present study, we propose 1D hierarchical PCs (HPCs) for filtering an arbitrary set of multiple target 
frequency bands. Whereas Zhang and To14 performed forward analysis by investigating the wave-filtering capa-
bility of the hierarchical structures, we consider the inverse design of the hierarchical structures with an in-depth 
understanding of their multiple bandgaps via quasi-static homogenization theory. Unlike the forward analysis, 
the inverse design obeys design constraints such as the maximum thickness of the structure, the unit cell size, 
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and the number of unit cells. In other words, the ultimate goal of the present study is to find the optimal internal 
hierarchical structures for given geometrical constraints.

Because increasing the hierarchy level increases the number of geometrical parameters in the HPCs, evalu-
ating their bandgaps by using finite-element simulations would be time consuming. Instead, we use the transfer 
matrix method22 to derive the exact power transmission coefficient HPCs, and we use this fast and accurate 
method to perform parametric studies. We perform finite-element simulations only to validate our theoretical 
results and predict the wave-filtering capability of the designed structures when considering material loss in a 
viscoelastic material.

As well as designing hierarchical structures, we investigate the advantage of HPCs over conventional PCs in 
filtering multiple target frequency bands. By using a quantity defined as the filtering efficiency, which is a measure 
of whether one can achieve the desired wave-filtering capabilities by using HPCs or conventional PCs, we show 
that structural hierarchy is a key concept for handling wave problems and is not limited to solving static problems 
or thermodynamic problems.

Results
Geometry of HPCs. A PC23–25 is a man-made structure comprising a periodic arrangement of inclusions or 
voids in a matrix. This structure uses the physical properties of interference or Bragg scattering to create phononic 
bandgaps at which waves cannot pass through the structure. Because of their wave-filtering capability, PCs have 
various applications such as wave guiding, filtering, harvesting and confinement.

Figure 1a shows a 1D two-phase PC comprising hard (blue) and soft (yellow) materials whose filling fractions 
are γ0 and 1−γ0, respectively. Throughout this paper, aluminium (Al)26 and polydimethylsiloxane (PDMS)27 are 
used as the hard and soft materials, respectively, and their mass densities (ρ), longitudinal moduli (κ) and sound 
speeds (c) are given as follows: ρ = 2, 700 kg/m ,Al

3  ρ = 969 kg/mPDMS
3, κ = .1 21 GPaPDMS , =c 6, 320 m/sAl  and 

=c 1, 119 m/sPDMS .  Acoustic attenuation is considered with a frequency-dependent loss factor 
α = . × ×− .f1 854 10 dB/m7 1 35  for the viscoelastic medium PDMS28. The loss factor of Al is neglected because 
it is much smaller than that of PDMS.

As shown in Fig. 1b, an HPC is formed by successively embedding smaller scale of periodic structures into the 
locations of the hard material in a conventional PC. Here, N is the total number of hierarchy levels, γi is the filling 
fraction of the hard material, li is the size of the unit cell and ni is the number of unit cells, with the subscript i 
indicating the geometrical parameters of the i-th level in the HPC. Figure 1b shows an example of an HPC with 
N = 2, =l 1 cm0 , =n 100 , = =n n 51 2  and γ γ γ= = = .0 70 1 2 . From how the geometrical parameters are 
defined, the HPC becomes a conventional PC when N = 0, and the relation γ= − −l l n/i i i i1 1  holds for 

= …i N1, 2, .
In this study, we use only two materials, the geometrical parameters of which act as free variables (or control-

lable parameters) to satisfy our design goals. Of course, there are many ways to create the controllable parameters 
depending on how the hierarchical structure is constructed. First, if we use one hard material and one soft mate-
rial, then the number of unit cells and the filling fraction for each hierarchy level are the controllable parameters. 
Second, if we use more than two constituent materials, then the additional degrees of freedom regarding the 
material selection for each layer can be considered. Third, in addition to the material selection and the manip-
ulation of geometrical parameters, the desired wave-filtering capabilities can be achieved by changing how the 
materials are arranged in the hierarchical structure. Although the hierarchical structure could be designed with 

Figure 1. Geometry and transmittance spectra of one-dimensional two-phase phononic crystal (PC) and 
hierarchical PC (HPC). (a) PC with n0 = 10, l0 = 1 cm and γ0 = 0.7, and (b) HPC with hierarchy level N = 2, l0 = 
1 cm, n0 = 10, n1 = n2 = 5 and γ0 = γ1 = γ2 = 0.7. Aluminium (blue) and PDMS (yellow) are used as the hard and 
soft materials, respectively. (c) Transmittance spectra of PC (upper) and HPC (lower). Black solid lines denote 
the theoretical results without loss and red dotted lines denote the numerical results with loss. The bandgaps 
in the frequency range below 10 MHz remain unchanged, which means that the material loss has almost no 
effect on the wave-filtering capabilities of the HPCs (or the conventional PCs) for the materials and geometrical 
parameters used in this study (i.e. viscoelastic PDMS and total thickness of less than 10 cm).
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far more degrees of freedom, we restrict the number of materials to two because the main motivation of this study 
is to investigate whether one can achieve improved wave-filtering capabilities by changing only the geometrical 
framework from the conventional periodic structure to a hierarchical one, not by introducing any other materials 
or changing their arrangement.

Multiple bandgaps of HPCs. We investigate the bandgap characteristics of HPCs by calculating their 
power transmission coefficients with the aid of a theoretical formula based on the transfer matrix method. In 
the section entitled ‘Methods’, we explain in detail the procedure for deriving the theoretical formula. Figure 1c 
shows the transmittance spectra of HPCs with the different hierarchy levels of N = 0 and N = 2. The black solid 
lines indicate the theoretical results without loss, and the red dotted lines indicate the numerical results with loss. 
As shown in Fig. 1c, the hierarchical structure opens a number of wide stopbands in the higher-frequency ranges 
because of the structural advantage of the multiscale periodicity, but the overall bandwidth of the stopbands in 
the lower-frequency ranges becomes narrow. In the figure, a couple of separate bandgaps in the high-frequency 
regime near 10 MHz are merged into a single stopband because of the acoustic attenuation. However, most band-
gaps below 10 MHz remain unchanged, which means that considering the material loss has almost no effect on 
the bandgaps under the conditions of this study, namely using (i) the viscoelastic material PDMS, (ii) a total 
thickness of less than 10 cm and (iii) frequencies of less than 10 MHz.

To obtain a theoretical understanding of such HPC bandgap characteristic, we apply quasi-static homogeni-
zation theory. Homogenization is a method for evaluating the effective material properties of a heterogeneous 
medium. Especially in wave problems, when the wavelength of an incident wave is much longer than the size of a 
unit cell in a periodic structure, the effective mass density is obtained from the volume-weighted arithmetic mean 
of the mass densities, and the effective longitudinal modulus is obtained from the volume-weighted harmonic 
mean of the longitudinal moduli29. This homogenization technique that is suited to the long-wavelength limit is 
called quasi-static homogenization.

Figure 2a shows l0-, l1- and l2-periodic homogenized structures for different wavelength scales. The HPCs can 
be regarded as different types of homogenized structure depending on the wavelength of the incident wave. For 
instance, when the wavelength is much larger than l2 and comparable with or smaller than l1, the HPC can be 
regarded as the l1-periodic homogenized structure comprising PDMS and an effective hard material with 
ρ γ ρ γ ρ= + −(1 )eff Al PDMS2 2  and κ γ κ γ κ= + −− − −{ (1 ) }eff Al PDMS2

1
2

1 1. Then, we can expect the bandgaps of the 
HPC in the wavelength range of λl l2 1 to be almost the same as those of the l1-periodic homogenized 
structure.

Figure 2b shows the transmittance spectra of the HPC and the homogenized structures. For each frequency 
range indicated by the different colours of red, green and blue, the transmittance spectra of the HPC and the 
homogenized structures are nearly same, which means that the bandgaps of the HPC are the union of those in the 
homogenized structures, and therefore multiple bandgaps occur in the hierarchical structure.

Furthermore, we investigate why the relative bandwidth of the first stopband in the HPC is smaller than that 
of the conventional PC. In general, the relative bandwidth of the first stopband in PCs increases with increasing 
impedance contrast between the constituent materials. Thus, for the l0-periodic homogenized structure, the rel-
ative bandwidth of the first stopband decreases because the impedance contrast decreases as the hierarchy level 

Figure 2. Relationship between bandgaps of HPC and homogenized structures. (a) Homogenized structures of 
HPC for different wavelengths. Depending on the wavelength, the HPC can be regarded as a different type of 
homogenized structure according to quasi-static homogenization theory. For example, if the wavelength is 
much larger than l2 but smaller than or comparable with l1, then the structure can be regarded as an l1-periodic 
homogenized structure comprising PDMS and a hard material with an effective density of 
ρ γ ρ γ ρ= + −(1 )eff Al PDMS2 2  and an effective longitudinal wave modulus of κ γ κ γ κ= + −− − −{ (1 ) }eff Al PDMS2

1
2

1 1. 
(b) Transmittance spectra of HPC and its homogenized structures. For each wavelength range, the stopbands of 
the homogenized structure accord with those of the HPC, which means that the multiple bandgaps of the 
hierarchical structure are the unions of bandgaps created by individual homogenized structures with 
periodicities corresponding to the different hierarchies.
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increases. Because the first stopband of the l0-periodic structure is almost the same as that of the HPC (as shown 
in Fig. 3b), the relative bandwidth of the first stopband in the HPC also decreases as the hierarchy level increases. 
From the investigation via quasi-static homogenization, using a hierarchical structure is advantageous in broad-
ening the phononic bandgaps but diminishes the wave-filtering capability in the low-frequency range.

Effects of geometrical parameters on phononic bandgaps. In this section, we investigate how the 
geometrical parameters of an HPC affect its multiple bandgaps. Of the four geometrical parameters N, γj, lj and 
nj, we consider mainly the effects of N and γj because those of the other two parameters are already well estab-
lished and can be understood from Eqs. (9)–(11). In Eqs. (9)–(11), the term lj is always multiplied by the wave-
number kj, which means that the frequency ranges of the bandgaps are inversely proportional to lj. Meanwhile, the 
number nj of unit cells is proportional to the frequency ranges of the bandgaps in the case of j ≠ 0 because the 
following relation holds for j ≥ 0: γ=+ +l l n/j j j j1 1. In the case of j = 0, we require n0 ≥ 3 for the stopbands to exist.

Figure 3a shows the transmittance spectra of the HPCs with the different hierarchy levels of N = 0, N = 1 and 
N = 2. In the respective cases, the geometrical parameters are given by γ= = = .l n{ 1 cm, 10, 0 7}0 0 0 , 

γ γ= = = = = .l n n{ 1 cm, 10, 3, 0 7}0 0 1 0 1  and γ γ γ= = = = = = = .l n n n{ 1 cm, 10, 3, 0 7}0 0 1 2 0 1 2 . As 
shown in the figure, the HPC with the highest hierarchy level has multiple broad bandgaps in the frequency 
ranges of 40 kHz to 10 MHz. Results such as these mean that an HPC with a higher hierarchy level is more suitable 
for filtering multiple frequencies in a broad frequency range.

However, increasing the hierarchy level decreases the bandwidth of the first stopband, thereby weakening the 
wave-filtering capability in the low-frequency range. To find the hierarchy level at which the first stopband begins 
to disappear, we investigate the first stopbands of HPCs with different hierarchy levels. The first stopband of an 
HPC can be obtained by calculating that of the l0-periodic homogenized structure, and Fig. 3b shows the band-
width of the first stopband with respect to the sound speed in the hard material and its mass density. The yellow 
triangle and circle indicate the material properties of Al and PDMS, respectively, and the yellow crosses indicate 
the effective properties of the hard material in the l0-periodic homogenized structure for different hierarchy levels 
from one to seven.

When the hard-material properties are in the zero-bandwidth zone bounded by the two yellow lines indicat-
ing = .z 0 8 MRayl and = .z 1 4 MRayl, the first stopband becomes null. As the hierarchy level increases, the yel-
low crosses approach the zero-bandwidth zone, and an HPC with a hierarchy level of at least six has no stopband. 
An interesting point is that many hierarchically structured biomaterials that possess an extraordinary resistance 
to waves have a hierarchy level of six1,2,9,10. Those observations could be interpreted as meaning that hard bioma-
terials have adopted six as their optimal hierarchy level to protect themselves from the catastrophic failure by 
dynamic attack30–32.

In what follows, we investigate how the total filling fraction (γtot) affects the bandgaps of HPCs. Figures 4a–c 
show the bandgap regions of the HPCs (N = 0,1,2) for different total filling fractions of Al. The filling fraction is 
set as γ γ= +

i tot
N1/( 1) in each hierarchical level; for instance, in the case of =N 2, we have γ γ γ γ= = = tot0 1 2

1/3. The 
other geometrical parameters are taken as = =l n{ 1 cm, 10}0 0 ,  = = =l n n{ 1 cm, 10, 3}0 0 0  and 

= = = =l n n n{ 1 cm, 10, 3}0 0 1 2  for the respective hierarchical structures. The black areas indicate the stop-
bands and the white areas indicate the passbands.

Figure 3. Effects of hierarchy level on multiple bandgaps. (a) Transmittance spectra of HPCs for different 
hierarchy levels of N = 0, N = 1 and N = 2. For the respective structures, the geometrical parameters are taken as 

γ= = = .l n{ 1 cm, 10, 0 7}0 0 0 , γ γ= = = = = .l n n{ 1 cm, 10, 3, 0 7}0 0 1 0 1  and 
γ γ γ= = = = = = = .l n n n{ 1 cm, 10, 3, 0 7}0 0 1 2 0 1 2 . The frequency ranges covered by the stopbands are 

much broader for higher hierarchy levels, but the first stopband range is narrowed. (b) Bandwidth of first 
stopband (Δf) of periodic structures for different hard materials with fixed soft material of PDMS. The crosses 
indicate the homogenized properties of the hard materials in the l0-periodic scale, and the yellow triangle and 
circle denote the material properties of Al and PDMS, respectively. As the hierarchy level increases, the yellow 
crosses approach the zone of zero bandwidth and Δf becomes null for hierarchy levels higher than six, which 
means that an unnecessarily high level of hierarchy has no merit for acoustic wave filtering.
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As shown in Fig. 4, the HPCs with smaller total filling fraction have either narrow bandgaps or no stopband 
because of the small impedance contrast between the hard and soft materials of the l0-periodic structure. 
Increasing γtot opens several bandgaps, and for γtot >  0.5 the HPCs have a couple of narrow bandgaps in the 
low-frequency range but broad bandgaps in the high-frequency range. The positions of the multiple bandgaps in 
HPCs are highly dependent on the filling fraction.

HPCs for filtering multiple frequencies. In this section, we compare the filtering efficiency of HPCs with 
that of conventional PCs. The ‘filtering efficiency’ is a measure of the possibility that one could design (or obtain) 
a proper structure that filters an arbitrary set of target frequency bands; it is defined as the ratio of the number of 
filtered frequency sets to the total number of test sets. In this study, we generate 2,000 sets of frequencies for 10 
repetitions, thus we examine 20,000 test sets for each number of target frequencies. Here, a frequency is consid-
ered as ‘filtered’ when the power transmission coefficient is less than 10−4.

The frequency sets used to evaluate the filtering efficiency are generated using the ‘rand’ function in the com-
mercial software MATLAB R2018b, which is a function for generating uniformly distributed random numbers. 
For given numbers Rn and Rs, we generate a set of Rn random numbers within the open interval (0, 1) for Rs rep-
etitions, so that the random numbers in each test set are distributed almost uniformly. Then, for each test set, we 
use a linear mapping to transform those random numbers within (0, 1) to the range of (20 kHz, 10 MHz) to obtain 
the target frequencies. In this study, we use Rn = 2,000 and Rs = 10, and thus the standard deviations for Rs sets are 
indicated by error bars for each number of target frequencies, each hierarchy level and the relative bandwidth, as 
shown in Fig. 5.

Figure 4. Effects of total filling fraction (γtot) on phononic bandgaps. Bandgaps of HPCs for different total 
filling fractions of Al for (a) N = 0, (b) N = 1 and (c) N = 2. The black and white areas indicate stopbands and 
passbands, respectively. For each structure, the filling fractions of the embedded structures are identical, which 
means γ γ γ= = tot0 1

1/2 in the case of N = 1. The other geometrical parameters are taken as = =l n{ 1 cm, 10}0 0 , 
= = =l n n{ 1 cm, 10, 3}0 0 1 , and = = = =l n n n{ 1 cm, 10, 3}0 0 1 2  for the respective structures.

Figure 5. Filtering efficiencies of HPCs for hierarchy levels of 0 and 1. Red and blue lines indicate the filtering 
efficiencies of PCs (i.e., N = 0) and hierarchical structures (i.e., N = 1), respectively. Dashed and solid lines 
denote the results for relative bandwidths of 0.04 and 0.10, respectively. Each error bar represents ±2 standard 
deviations, and its centre is the mean filtering efficiency evaluated for 10 repetitions. Each repetition has 2,000 
sets of randomly generated frequencies in the ultrasonic frequency range of 20 kHz to 10 MHz for each number 
of target frequencies.
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Figure 5 shows the filtering efficiency of the HPCs with respect to the number of target frequencies for differ-
ent hierarchy levels and relative bandwidths. The red lines indicate the filtering efficiency of PCs (i.e. N = 0), and 
the blue lines indicate the filtering efficiency of HPCs (i.e. N = 1). The dashed and solid lines denote the results for 
the relative bandwidths of 0.04 and 0.10, respectively. Each error bar represents plus or minus two standard devia-
tions, and its centre is the mean value of the filtering efficiency evaluated for 10 repetitions. As shown in Fig. 5, the 
filtering efficiency of the conventional PCs with N = 0 decreases faster with increasing number of target frequen-
cies compared to the case of N = 1. When the number of target frequencies is 10 and the relative bandwidth is 0.1, 
the filtering efficiency is only 0.286 in the case of N = 0 but is over 0.9 in the case of N = 1. These results show that 
HPCs have much better capability for frequency filtering than do conventional PCs, especially for a large number 
of target frequencies. For example, we design one-level HPCs to filter 10 target frequencies that conventional PCs 
cannot filter, namely 0.095, 0.27, 0.42, 0.66, 1.21, 1.96, 2.48, 4.38, 5.58 and 8.61 MHz.

By following the design procedure given in the section entitled ‘Methods’, an HPC with the geometrical 
parameters of γ γ= . = . = . = =l n n{ 0 65 cm, 0 55, 0 7, 4, 3}0 0 1 0 1  is designed to filter the 10 frequencies with a 
relative bandwidth of ∆ = .0 1r . To demonstrate the wave-filtering capability of the designed hierarchical struc-
ture, we investigate the acoustic pressure distribution and transmittance spectrum when a longitudinal wave with 
an amplitude of 0.01 Pa is incident on the designed structure, as shown in Figs. 6a,b. The results in Fig. 6a show 
that the acoustic pressure decreases sharply near the left interface (x 0 cm= ) between the outer fluid and the 
designed structure, and the acoustic pressure is almost zero at the right interface ( = .x 2 7 cm), indicating that the 
longitudinal waves with the 10 targeted frequencies are filtered perfectly in the structure. In addition, as shown in 
Fig. 6b, the transmittance is almost zero in the targeted bands (∆ = .0 1r ) whose centre frequencies are the 10 
targeted frequencies, implying that the designed HPCs can filter not only the target frequencies but also the tar-
geted bands.

In the design procedure, the number of unit cells and the filling fractions at each level were used as the control 
parameters. Additional degrees of freedom could be obtained by inserting a third material at different hierarchy 
levels or changing the structural arrangements, but we used only two materials because the ultimate goal of the 
design procedure was to find the optimal internal structure for each hierarchy level with the simplest combina-
tions of two types of material.

Discussion
In this study, PCs with structural hierarchy were designed to have multiple bandgaps in a broad frequency range 
by calculating their exact power transmission coefficient via the transfer matrix method for a 1D multi-layered 
structure. The overall bandwidth covered by multiple bandgaps using the HPCs was an order of magnitude 
broader than that of a conventional PC with single periodicity. The multiple bandgaps in the HPCs were char-
acterized as the union of bandgaps created by multiscale periodicities based on quasi-static homogenization. 
Among the geometrical parameters affecting the phononic bandgaps, an HPC with hierarchy level N of greater 
than six has no bandgap because the contrast in acoustic impedance between the soft material and the homog-
enized hard material decreases after several homogenization steps for each scale, and our interpretation is that 
unnecessarily high level of hierarchy gave no further improvement in wave-filtering capability.

We compared the filtering efficiencies of hierarchical structures and conventional periodic structures and 
found that the former are more capable of filtering several wide frequency bands. The relative bandwidth was 
considered in the design procedure to retain the wave-filtering capability of the hierarchical structures even if the 
target frequencies are shifted within a small range because of uncertainty. In addition, the wave-filtering capability 
of the designed structure was demonstrated by using numerical simulation with material losses.

Figure 6. Wave-filtering capability of designed HPC for given target frequencies and relative bandwidth. (a) 
Acoustic pressure in designed structure ≤ ≤ .x(0 cm 2 7 cm) and outer water medium ( ≤x 0 cm or 

≥ .x 2 7 cm). The sound source located at = − .x 0 5 cm emits longitudinal waves with the target frequencies 
and an amplitude of 0.01 Pa in the positive x direction. The acoustic pressure at ≥ .x 2 7 cm is nearly zero in all 
cases. (b) Transmittance spectrum of the designed HPC. The red dashed lines indicate the target frequencies 
and the orange areas indicate the target frequency bands with a relative bandwidth of Δr = 0.1. All the target 
frequencies with bands fall into the stopbands, thereby showing that the wave-filtering capability of the designed 
structure is realized well.
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To conclude, we mention briefly our ongoing work on HPCs. Because all the results in the present study 
were obtained for 1D HPCs, we cannot guarantee the wave-filtering capability of hierarchical structures for 
higher-dimensional issues such as oblique incidence, shear vertical waves, or curved geometries. To bridge 
the gap between the concept of structural hierarchy and its actual applications, we are extending 1D HPCs to 
higher-dimensional ones comprising two or more materials by considering their geometrical arrangements. 
As discussed in earlier sections, introducing different combinations of materials at different hierarchy levels or 
changing their structural arrangement are possible ways to create the additional degrees of freedom needed to 
design advanced-level hierarchical structures. We are using the acoustic–solid interaction module in COMSOL 
for the numerical computations to consider elastic deformations and the propagation of shear vertical waves. Our 
ongoing work also includes fabricating HPCs made of Al and PDMS and investigating their ultrasound-blocking 
capability in water. Because the hierarchical structures in the present study are made from continuous materials 
whereas those in previous studies were mostly structured with discrete materials, the technical challenges of 
fabricating our hierarchical structures must be addressed. We fabricate by using overlay-aligned roll-transfer 
printing33, which is suitable for fabricating multi-layered hierarchical structures.

Methods
Power transmission coefficients of HPCs. The power transmission coefficient of an HPC is derived by 
using the transfer matrix method for 1D multi-layered structures. When a harmonic plane wave propagates in a 
1D stratified medium, the displacement and stress fields are governed by
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derived as

M
u x

x

u x

x

( )

( )

( )

( )
,

(4)

j
R

j
R j

j
L

j
Lσ σ
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where = −M P Q Ps( )j j j j j
1 is the transfer matrix for the j-th layer and is expressed by

M
k s k s z

z k s k s
cos( ) sin( )/( )

sin( ) cos( ) (5)
j

j j j j j

j j j j j

ω

ω
=







−








.

Applying the continuity conditions of displacement and stress to each boundary, the displacement and stress 
at the left boundary of the first layer are the same as those at the right boundary of final J-th layer with a cumula-
tive transfer matrix = − M M M MJ J 1 1, namely

σ σ

















=















.M

u x

x

u x

x
( )

( )

( )

( ) (6)

J
R

J
R

L

L
1

1

Combining Eqs. (6) and (3) for j = 0 and j = J + 1, the relation between the coefficients of traveling waves in 
the left and right outer media is derived as

Ω










 =













+
+ +

−
+A e A

A0
,

(7)
J

ik s
1 0

0

n t1
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where = ∑ =s st j
J

j1  and Ω = +
−P MPJ 1

1
0. The power reflection coefficient of a multi-layered structure is defined as 

the square of the ratio between the amplitudes of the propagating and reflected waves in the left outer medium, 
and therefore the power transmission coefficient is expressed by

= − = −
Ω
Ω

.
−

+T A
A

1 1
(8)

0

0

2
21

22

2

An advantage of the transfer matrix method is that the reflectance and transmittance of a multi-layered 
medium can be calculated simply by multiplying matrices in terms of the geometrical parameters and the constit-
uent materials. We use this method to derive the power transmission coefficient of an HPC. Denoting M(N) as the 
cumulative transfer matrix of an HPC with a hierarchy level of N, we have that M(0), M(1) and M(2) are expressed as

=M M M( ) , (9)S H
n(0) (0) (0) 0

=M M M M( ( ) ) , (10)S S H
n n(1) (0) (1) (1) 1 0

=M M M M M( ( ( ) ) ) , (11)S S S H
n n n(2) (0) (1) (2) (2) 2 1 0

where 
γ γ ω

ω γ γ
=









− −

− − −









M
k l k l z

z k l k l
cos( (1 ) ) sin( (1 ) )/( )

sin( (1 ) ) cos( (1 ) )S
j S j j S j j S

S S j j S j j

( )  and 
γ γ ω

ω γ γ
=







−









M
k l k l z

z k l k l
cos( ) sin( )/( )

sin( ) cos( )H
j H j j H j j H

H H j j H j j

( ) .

Here, the subscripts H and S stand for the hard and soft materials, respectively. Comparing Eqs. (9) and (10) 
shows that M(1) is the same as M(0) if MH

(0) in Eq. (9) is substituted into M M( )S H
n(1) (1) 1. Similarly, comparing Eqs. (10) 

and (11) shows that M(2) is the same as M(1) when MH
(1) in Eq. (10) is substituted into M M( )S H

n(2) (2) 2. Repeating those 
operations gives the cumulative transfer matrix for an HPC of level N as

= .− −
 M M M M M M( ( ( ( ( ) ) )) ) (12)N

S S S
N

S
N

H
N n n n n( ) (0) (1) ( 1) ( ) ( ) N N 1 1 0

By putting Eq. (12) into Eqs. (7) and (8) gives the exact power transmission coefficient of an HPC with a hier-
archy level of N.

Here, we demonstrate the applicability of the theoretical formulas in Eqs. (7), (8), (12) by comparing its cal-
culated power transmission coefficients with those from numerical simulations for different hierarchy levels. As 
shown in Fig. 1c, the theoretical results agree well with the numerical results. Also, the computational time was 
reduced by a factor of around 2,000 compared to the numerical simulations. This made it easy to manipulate 
the bandgaps and find the optimal structure by controlling several geometrical parameters in the hierarchical 
structures, and we obtained the statistical data in Fig. 5 through repeated calculations for random sets of target 
frequencies.

Procedure for designing HPCs. In this section, we summarize the four-step procedure for designing HPCs 
to filter multiple frequency bands.

Step 1. We choose the maximum thickness of the entire structure (3 cm in the present study), the constituent 
materials (Al and PDMS in the present study) and the outer medium (water in the present study).

Step 2. We choose the hierarchy levels (0 and 1 in the present study), the numbers of target frequencies (2, 4, 
6, 8 and 10 in the present study) and the relative bandwidths for the target frequencies (0.04 and 0.1 in the pres-
ent study). For the given numbers of target frequencies and the relative bandwidths, we choose multiple target 
frequencies randomly from the ultrasonic frequency range of 20 kHz to 10 MHz. The detailed procedure for gen-
erating frequency sets randomly is explained in the second paragraph of the section entitled ‘HPCs for filtering 
multiple target frequencies’.

Step 3. We obtain the transmittance spectra of the hierarchical structures by changing the free parameters of 
l0 (thickness of the unit cell in the 0-th hierarchy level), γi (filling fraction of Al in the i-th hierarchy level) and ni 
(number of unit cells in the i-th hierarchy level). The total thickness of the hierarchical structure (i.e. n0l0) is set 
to be less than or equal to the maximum thickness of 3 cm. Those free parameters are shown in detail in Fig. 1b. 
For a parametric sweep, we use the sufficiently small resolutions of 1 mm for l0 and 0.001 for γi, and we use the 
maximum value of 10 for ni to avoid designs that cannot be fabricated, such as a layer that is thinner than the 
manufacturing precision.

Step 4. From the results obtained from the parametric sweep in step 3, we select sets of geometrical parameters 
such that the hierarchical structure with those parameters filters the union of all the frequency bands centred at 
each target frequency with its relative bandwidth. Here, the design criterion regarding the frequency filtering is 
that the power transmission coefficients be less than 10−4.

By following the above design procedure, we obtain HPCs that filter multiple target frequency bands for given 
materials and geometrical constraints.

Numerical simulations. We used the finite-element method (COMSOL 5.2a software) to calculate the 
acoustic pressure distribution in each designed HPC and its outer medium. The governing equation was the 1D 
Helmholtz equation for harmonic analysis, and we considered the frequency-dependent loss of PDMS. The com-
putational domain was [−0.5 cm, 3.5 cm], the designed structure was located at [0 cm, 2.7 cm] and the rest of the 
domain as water. The element size was determined so that there were 12 nodes for the shortest wavelength. The 
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sound source located at x = −0.5 cm emitted time-harmonic plane waves in the positive x direction. Plane-wave 
radiation conditions were given at both ends of the computational domain to prevent unphysical reflections from 
the boundaries of the domain.
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