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production of gold/silver doped 
carbon nanocomposites for 
effective photothermal therapy of 
colon cancer
fang Liu, Xiao-di Wang & Shi-yu Du ✉

Surgery followed by adjuvant chemotherapy is a reliable therapy for colon cancer, but is associated 
with side effects and risks. Recent advancements in nanobioengineering in the form of targeted 
nanoparticles, cubosomes, liposomes, nanosheets, nanorods, quantum dots have generated 
substantial advancements in theranostics of colon cancer decreasing the cytotoxic drugs’ side 
effects. We describe a facile mechanism of preparation of hybrid nanocomposite encompassing Au 
and Ag. Preparation of hybrid nanocomposite is one step process which may be easily escalated. The 
nanocomposite was characterized using transmission eleactron microscopy, energy dispersive X-Ray 
spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infra-red spectroscopy, UV-Vis 
spectroscopy, photoluminescence and cytotoxic studies. In-vivo studies were carried out in Balb/c 
mice. Photothermal heating experiments in HeLa cells were promising and the characterization studies 
clearly indicated the formation of hybrid nanocomposite. In-vivo experiments confirmed the efficacy of 
treatment, along with involvement of epigenetic regulation, which may be helpful in translation from 
research to clinical applications.

Colon/colorectal cancer is the fourth most dangerous form of cancer causing high mortalities around the world1. 
Surgical interventions followed by adjuvant chemotherapeutic sessions remain until today, the only option for 
treatment of solid tumors. Other treatments including transplant of stem cell, immunotherapy, hormonal therapy, 
targeted drug through nanoparticles have been suggested. However, these may be accompanied by side effects like 
chances of recurrence of metastatic tumors, unendurable cytotoxicity, non-restricted annexations in various other 
tissues and extremely low bioavailability of encased drugs2,3. Hence, there is an immediate need for the develop-
ment of new theranostic options for these metastatic tumors with minimal side effects.

Photothermal therapy has emerged as an alternative option for cancer therapeutics and the reasons that make 
it such an attractive option are manifold. This therapy is highly efficient, can be achieved in a controlled manner 
and is minimally invasive2. Photothermal therapy involves ablation of the cancerous tissues utilizing laser4–7, 
high intensity ultrasonography, microwave or radiofrequency radiation8,9. Optically sensitive mediators are used 
to endogenously absorb the optical energy and transform it into thermal heat using near-infrared (NIR, 650–
1025 nm) radiation. The heat energy which is so generated destroys the cellular membranes and causes protein 
denaturation causing cancer cell death2,10,11. However, the procedure is generally restricted by the precision of 
imaging, applicator utilized for the therapy and the shape of the applicator whether conical or round as this is 
directly related to energy deposition4. Hence for precise and effective therapy, the mediators must absorb energy 
in the NIR spectrum and must be absorbed at the specific cancerous tissue. These must also facilitate imaging for 
increasing therapeutic efficacy12. Photo thermal therapy utilizes no drug but metallic or semiconductor materials 
for cancer cell destruction.

Nanobioengineering offers choice of nanoplatforms for the ablation therapy of the solid tumors. These 
sub-micron or nanosized particles offer great precision in such applications and are designed such that they 
accumulate precisely at the site of tumor without invading other normal cells or tissues. This is accomplished 
by passively targeting the particles to the tumor site by vascular fenestrations13–15. One of the most frequently 
reported is the gold based nanoparticles for this photo ablation therapy16. Gold based nanoshells, nanoparticles, 
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nano cages, nano clusters have all being used for photothermal ablation, targeted drug delivery and so on17. 
Gold nanoplatforms have generated significant interest due to their submicron size and absorption coefficients. 
Furthermore, there are also reports on Gandolium based compounds being integrated with gold nanoparticles to 
prepare a hybrid nanocomposite for photothermal ablation therapy18–20.

These studies formed a background for the current research to prepare a gold/silver doped hybrid carbon 
nanocomposite utilizing a very facile yet effective agent for photothermal therapy against colon cancer. Our study 
demonstrates a restrained, simple and bio-compatible formation of hybrid gold/silver doped carbon quantum 
dot nanocomposite without utilizing any supplementary reducing compounds. The hybrid nanocomposite was 
prepared by addition of a gold precursor to the silver quantum dots. The gold/silver hybrid carbon quantum dot 
nanocomposite exhibited excellent stability and absorbance at NIR region. They were also noted for the photo 
ablation therapy by destroying HeLa cells in in-vitro studies. In-vivo studies in mice demonstrated their ability to 
reduce the volume of tumors. Hence, to our knowledge, this is a first of its kind study to prepare gold/silver doped 
hybrid carbon quantum dot nanocomposite for photothermal therapy in colon cancers.

Materials and Methods
Unless specifically mentioned, all the chemicals were procured from Sigma Aldrich (China).

Preparation of silver doped hybrid carbon quantum dot nanocomposite. Silver doped hybrid 
carbon quantum dot nanocomposite was prepared following the protocol as per Gedda et al.21 and adding neces-
sary modifications. The methodology was being termed as one-pot microwave pyrolysis method which was also 
reported by22. The facile mechanism of synthesis is as follows; AgCl (0.03 mM), N-acetyl-L-cysteine (0.24 mM), 
sodium citrate (0.16 mM), and Na2S9.9H2O (0.16 mM) were added as final concentration to distilled water (20 mL) 
under ultrasonication. This mixture was moved to a glass tube which could be microwaved and further warmed 
for 10 min at 220 °C. Following the reaction, the glass tube was brought to room temperature for cooling. After 
cooling, the subsequent mixture, using a Millipore syringe filter (0.22 μm) was filtered. Consequently, centrifuga-
tion of the mixture was done at 2000 rpm for 20 min to remove unreacted materials. Finally, the supernatant com-
prising silver doped hybrid carbon quantum dot nanocomposite was freeze-dried overnight and further liquefied 
in Milli-Q water for synthesis of gold/silver doped hybrid carbon quantum dot nanocomposite. The mixture will 
hence forth be mentioned as Ag-CQD-NC.

Preparation of gold/Ag-CQD-NC. Chemical reduction of HAuCl4.3H2O was induced for the preparation 
of gold/Ag-CQD-NC henceforth to be termed as Au/Ag-CQD-NC. In a typical process, 5 ml of Ag-CQD-NC 
was added dropwise to 300 µl of HAuCl4.3H2O (1 mg/ml) followed by rigorous stirring. It was also subsequently 
heated for 2 hours at 80 °C. The reddish yellow tinged Au/Ag-CQD-NC was for one last time, centrifuged at 
14000 rpm for 15 minutes and dispensed in Milli-Q water for further utilization.

Visualization of Au/Ag-CQD-NC using Transmission Electron Microscopy (TEM). Morphological 
analysis of the Au/Ag-CQD-NC and only Ag-CQD-NC was done using a high resolution TEM, JEM-2010HR 
microscope. On carbon coated copper grids of 5 mm diameter, drops of Au/Ag-CQD-NC and Ag-CQD-NC were 
placed with care and additional solution was soaked up carefully with absorbent paper. Samples were stained with 
1% phosphotungstate solution and the hybrid nanocomposites were viewed at 10000X magnification.

Energy-dispersive X-ray spectrometer (EDS). Elemental composition of the Au/Ag-CQD-NC and only 
Ag-CQD-NC was done using JEOL JSM Scanning electron microscopy.

Optical Characterization (UV-VIS spectroscopy and Photoluminescence (PL). Absorbance 
spectra of the Au/Ag-CQD-NC and Ag-CQD-NC were recorded using a UV-Vis spectrophotometer (Lasany 
LI-2800). A HORIBA Fluoro Max-4P spectrophotometer was utilized to determine the photoluminescence 
(PL) spectra at room temperature. 0.03 mg/ml aqueous solutions of Au/Ag-CQD-NC and Ag-CQD-NC were 
used. The PL studies were conducted for Au/Ag-CQD-NC for different concentrations which were further to be 
tested in the cytotoxicity and in-vivo studies. PL studies were carried out for 0.1, 0.5, 1, 2, 3 and 4 mg/ml of Au/
Ag-CQD-NC.

Fourier transform infra-red (FTIR) spectroscopy and X-ray photoelectron spectroscopy 
(XPS). The FTIR spectra were plotted to confirm the functional groups utilizing a Nicolet IR 200 FT-IR spec-
trometer (Thermo Fisher Scientific). XPS (Thermo Fisher) measurements were completed by means of mono-
chromatic AlKα radiation (hʋ= 1486.6 eV).

Cell culture and cytotoxicity assay. Rat C6 glioma (C6 cells) were purchased from ATCC China. They 
were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with the following supplements; 10% fetal 
calf serum (FCS), penicillin (100 IU/mL), and streptomycin (100 mg/mL). The supplements were added in 
humidified air containing 5% CO2 at room temperature (37 °C). The in vitro cytotoxicity was assessed by 3-(4, 
5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. In 96-well plates, 5 × 103 cells/well were 
seeded and gestated for 72 hours to ensure cell viability on addition of Au/Ag-CQD-NC and Ag-CQD-NC; 0.1 mL 
of DMEM (control), Au/Ag-CQD-NC (100 μg/mL and 4000 μg/mL) and Ag-CQD-NC (100 μg/mL and 4000 μg/
mL) were added and gestated overnight. Then, 150 μL of MTT solution (5 mg/mL) was added to each well and 
the plate was gestated at 37 °C for 6 h. After adequate gestation, the absorbance was comprehended by means of 
a microplate reader at 492 nm21,23. The measurements were made for three times under identical condition to 
ensure reproducibility.
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Cell Culture for photothermal heating experiment. Human cervical carcinoma (HeLa) cells were 
procured from ATCC China. Dulbecco’s Modified Eagle’s Medium (DMEM) was the medium in which the cells 
were initially cultured adding 10% fetal bovine serum, 100 μg/mL streptomycin which acted as antibiotic or 
antimycotic, 1% L-glutamine, 1% non-essential amino acids and 1% sodium pyruvate was added to the media. 
Under optimum conditions (37 °C, 5% CO2 atmosphere), cells were harvested in an incubator. The procedure was 
adapted from Banerjee et al.24.

Photothermal heating experiment. For understanding the photothermal effect of the Au/Ag-CQD-NC 
and Ag-CQD-NC nanocomposites, the following procedure was adapted from Gedda21 with necessary modifi-
cations. 1, 2 and 4 mg/ml of Au/Ag-CQD-NC and Ag-CQD-NC were added to 1 mL of aqueous solution. These 
solutions were irradiated utilizing an NIR laser (808 nm, 2 W/cm2) for 10 min. To indicate the increase in temper-
ature of the solution, a digital thermometer was used. The control was water without Au/Ag-CQD-NC which was 
irradiated under the same conditions with the laser (808 nm, 2 W/cm2).

The incubated HeLa cells were transferred to 96 well plates with a concentration of 2 × 106 cells in each well in 
DMEM for 24 hours. The incubated cells were washed with PBS thrice and each time the medium was renewed. 
Then to each well, 1, 2, 4 mg/ml Au/Ag-CQD-NC and Ag-CQD-NC were added. This was then irradiated with 
NIR laser (808 nm, 2 W/cm2) for 10 min.

The cell viability was assessed using fluorescence co-staining by calcein AM and propidium iodide. 
Simultaneous fluorescence staining of live and dead cells is assessed by the Live/Dead Cell Double Staining Kit 
which is procured from Merck Pharmaceuticals (Hong Kong) Ltd. This procedure was adapted from Wang et 
al.25,26.

Histone H3 acetylation. Total histone H3 acetylation was measured by Histone H3 Acetylation Assay Kit 
(Abcam, China) which allows measurement of global acetylation of histone H3. The assay was performed exactly 
as recommended in the supplied protocol. % histone acetylation was calculated using the formula: ((Absorbance 
of treated sample – Absorbance of blank)/ (Absorbance of untreated sample – Absorbance of blank))*100.

In-vivo studies. The in vivo experimental protocols were approved by Institutional Animal Care and 
Use Committee of the China-Japan Friendship Hospital (protocol # 19/345 A). All methods were carried out 
in accordance with relevant guidelines and regulations, and guidelines under “Guide for the Care and Use of 
Laboratory Animals” (Institute of Laboratory Animal Resources, Commission on Life Sciences 2011) were strictly 
followed. 3–5 months old Balb/c female mice were utilized for the experiments. Four groups were designated 
for the study. They were caged in four cages having 2 each with ample amount of food and water. They were 
obtained from Vital River laboratories in Beijing, China. The in-vivo study protocol was presented in front of the 
small animal institutional ethics committee and permitted by them before commencing the studies. The technical 
incorporation from the committee was included in the studies.

Murine colon cancer cells (CT26) were obtained from ATCC, China. 80% of the CT26 cells were trypsinized 
followed by a wash with PBS. This was further centrifuged at 200 × g for 5 mins. The supernatant was discarded 
and the washing step was repeated thrice. 5 × 106 cells in 50 µl of PBS were kept ready for injection in mice sub-
cutaneously. The hair was removed from the lower abdominal region of mice and an incision of made in body 
wall. The cecum was slowly pulled out, kept moist and the cells were injected in the wall of the cecum. Then the 
cecum was put back slowly. The abdominal layer and the skin were sutured. The procedure was adapted with 
modifications from Liao et al.27.

After the tumor volume reaches an average size of 100 mm3, one group was injected with irradiated water 
(100 ml/kg−1), another with only Ag-CQD-NC, one with Au/Ag-CQD-NC, one with Au/Ag-CQD-NC (irradiated 
with NIR laser, 808 nm, 1 W/cm2 for 5 minutes) (Wang et al.). The mice were kept under constant observation.

Statistical Considerations. Data were compared using SPSS software and the two-sided student t-test. 
p <  0.05 was considered statically significant.

Results
Preparation of the hybrid nanocomposites. The hybrid nanocomposite can be seen in Fig. 1A,B. The 
Ag-CQD-NC has a yellowish tinge to it which converts into reddish yellow upon interaction with the Au metal 
ions and consequently the thermal activation may have led to a change in the colour of the solution of the hybrid 
nanocomposite.

Visualization of Au/Ag-CQD-NC through TEM. TEM of the prepared Au/Ag-CQD-NC and 
Ag-CQD-NC exhibits a well-known and interesting trend depicted in Fig. 1C,D. The nanocomposite appears 
to be spherical but with established smooth edges. Hence, we can say that it’s quasi-spherical in shape. They are 
homogeneous in distribution and have a uniform separation too. Furthermore, we may hypothesize that as men-
tioned above the Au3+ ions of gold precursor form an electron salt trap for the Ag-CQD-NC leading to initiation 
of nucleation causing a quenching effect of the Ag-CQD-NC. Therefore, in Fig. 1C,D, we clearly see the high 
contrast images of Au/Ag-CQD-NC as compared to the low contrast images of Ag-CQD-NC.

EDS characterization. The EDS spectrum is depicted in Fig. 2. As seen in this figure, the presence of C, O 
N is seen. Moreover, the presence of Cu, Au and Ag is also visualized. Cu in the sample is probably from the cop-
per grids on which the samples were placed during TEM sample preparation. The images confirm the successful 
preparation of Au/Ag-CQD-NC.

https://doi.org/10.1038/s41598-020-64225-8


4Scientific RepoRtS |         (2020) 10:7618  | https://doi.org/10.1038/s41598-020-64225-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

UV-Vis spectroscopy and photoluminescence (PL) studies. UV-Vis spectroscopy results are seen in 
Fig. 3A. Few interesting observations have been made. It was seen that Ag-CQD-NC have an absorption spec-
tra exhibited a strong peak at around 550 nm. After the addition of the Au3+ ions from the gold precursor, the 
peak disappeared due to durable resonance of the plasmon, after which an absorption band is seen in the region 
of 400–1000 nm. This trend confirms the formation of Au/Ag-CQD-NC from Ag-CQD-NC and as well as its 
absorption properties in the NIR region of the spectrum.

PL studies exhibit similar interesting trends depicted in Fig. 3B. The PL emission spectra of Au/Ag-CQD-NC 
is significantly more intense than Ag-CQD-NC. The PL intensity is almost 2.5 times more than Ag-CQD-NC. 
As verified from the TEM images, this is substantiated by PL studies that on addition of Au metal atoms to 
the Ag-CQD-NC, the shift in brightness in the PL causes the Au/Ag-CQD-NC to stand out in contrast to the 
Ag-CQD-NC. The increase in PL intensity may also be a result of localization of electron hole pairs which results 
from the carbon-oxygen matrix on addition of Au metal atoms28. In Ag-CQD-NC the disruption of electron hole 
pairs occurs due to nucleation at these sites, thereby decreasing the intensity of PL emission spectra caused by 
quenching.

Furthermore, realising this trend, PL studies were conducted for different concentrations of Au/Ag-CQD-NC 
to check for PL intensity. The concentration of 0.1, 0.5, 1, 2, 3, 4 ng/ml of Au/Ag-CQD-NC were tested. It was 
clearly seen from Fig. 3C, that with increase in concentration of Au/Ag-CQD-NC, there is a rise in PL intensity. 
Hence the three increased doses were used for the other studies. This maximization of intensity on increasing con-
centration may be due to additional chemical stability provided by Au metal atoms to the hybrid nanocomposite.

FTIR and XPS studies. The FTIR spectrum is seen in Fig. 4A and validates the previous observations. The 
characteristic N-H stretching mode was found to be present at 3448 cm−1. There is a stronger N-H stretching in 
Au/Ag-CQD-NC than Ag-CQD-NC. The C=O at 1650 cm−1 respectively was visible in both groups. The C-OH 
bond at 1400 cm−1 was seen in Ag-CQD-NC and Au/Ag-CQD-NC. It was clear cut indication of formation of 
nanocomposites.

XPS studies indicated in Fig. 4B confirms the presence of Au, Ag, C, O in the nanocomposite. The binding 
energy of 88.4 and 86 eV indicates presence of Au atoms29. The presence of Ag is indicated by the binding energy 
of 368 and 374.5 eV30. This is an elucidation that both Au and Ag are associated with the hybrid nanocomposite. 
284.5, 284.6, 285.0, and 288.4 eV are the peaks exhibited by C, conforming sp2 carbon (C=C), sp3 carbon (C–C), 
C=O, and C–O. The additional 285.0 eV and 288.4 eV peaks endorse the occurrence of functional groups having 
oxygen29,31,32.

In-vitro cytotoxicity. The cytotoxicity was tested on rat glioma C6 cells and it was observed that cells were 
viable even after treatment with 4000 µg/mL of both Au/Ag-CQD-NC and Ag-CQD-NC which according to 
some studies was quite high dose of nanocomposite treatment. Typically, the cytotoxicity of a nanocomposite 
depended upon the aberrations it causes in the cells at high dose. It was seen in our studies that cell viability upon 
exposure to control is 92% which is 76% in case of treatment with Ag-CQD-NC (100 µg/mL) and 71% in case of 
Ag-CQD-NC (4000 µg/mL). It was also seen that the cell viability was 88% upon treatment with Au/Ag-CQD-NC 
(100 µg/mL) and 85% upon treatment with Au/Ag-CQD-NC (4000 µg/mL). This is depicted in Fig. 5A. Therefore, 
it may be safely said that Au/Ag-CQD-NC and Ag-CQD-NC are not cytotoxic.

Figure 1. (A) Ag-CQD-NC and (B) Au/Ag-CQD-NC. Addition of Au metal atoms leads to change in colour. 
(C) Au/Ag-CQD-NC and (D) Au/Ag-CQD-NC & Ag-CQD-NC. Au/Ag-CQD-NC is different from Ag-
CQD-NC.

Figure 2. EDS characterization of Au/Ag-CQD-NC.
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Photothermal heating. The photothermal heating experiment revealed that upon irradiation by NIR laser, 
HeLa cells were exposed to photocatalytic process which severely hampered the cell viability. The photocata-
lytic process is heat induced targeting of the HeLa cells. The HeLa cells are thermosensitive cells which upon 
exposure to severe increase in temperature, led to cell death. The hybrid nanocomposite Au/Ag-CQD-NC and 
Ag-CQD-NC upon induction caused by NIR laser (808 nm, 2 W/cm2) led to cell death. It may be appropriate to 
remind here that almost the same dosage of hybrid nanocomposite when checked for their cytotoxicity in rat 
glioma c6 cells didn’t exhibit cytotoxicity. Here, when the cells were exposed to 1, 2 and 4 mg/ml of Ag-CQD-NC 
and Au/Ag-CQD-NC and then irradiated with NIR laser caused cell death indiscriminately as seen in Fig. 5B. 
The Au/Ag-CQD is an efficient NIR absorber which conveniently upon exposure to NIR laser converts the optical 
energy into thermal energy. The photothermal property of the Au/Ag-CQD-NC was exhibited when upon irradi-
ation with NIR laser, the temperature of the solutions increased by 19 °C, 20 °C and 23 °C respectively for 1, 2 and 
4 mg/ml nanocomposite. The temperature increase of 20 °C and above is sufficient for effective killing of tumor 
cells21. For Ag-CQD-NC, the increase in temperature was 13, 15 and 16 °C respectively for 1, 2 and 4 mg/ml of 
nanocomposite. The results sufficiently prove that Au/Ag-CQD-NC not only has the ability to quickly transform 
the NIR laser optical energy to thermal heat and is also an efficient mediator in the conversion and is quite stable 
too.

The images of the cells stained with calcein AM and propidium iodide exhibit a similar trend. Propidium 
iodide penetrates the disintegrated cell membrane of the dead cells upon exposure to thermal heat and therefore 
stains them red. The thermal heat generated by converting the optical energy from NIR laser was effectively trans-
ferred to the environment of the cells. Subsequently, local hyperthermia was formed which killed the cancerous 
cells. Majority of cells are stained red in higher doses of Au/Ag-CQD-NC. Calcein AM stained the live cells green 
as seen in Fig. 5B. These results demonstrate that Au/Ag-CQD-NC has tremendous potential for use as photo-
thermal agents for effective killing of cancer cells.

In-vivo studies. Enthused by the in-vitro performance of Au/Ag-CQD-NC, we proceeded for the in-vivo 
implantation of the Au/Ag-CQD-NC and Ag-CQD-NC in the Balb/c mice. We saw an expected but a quite inter-
esting trend. Upon irradiation with NIR laser the mice which were injected with Au/Ag-CQD-NC, the tumor 
ablated and turned black as seen in Fig. 6A. The tumor increased in the mice injected with water and tumor 

Figure 3. (A) UV-Vis spectra of Au/Ag-CQD-NC & Ag-CQD-NC. (B) Photoluminescence (PL) spectra 
of Au/Ag-CQD-NC & Ag-CQD-NC. (C) Photoluminescence (PL) spectra of Au/Ag-CQD-NC at different 
concentrations of nanocomposite.

Figure 4. (A) FTIR spectra of Au/Ag-CQD-NC & Ag-CQD-NC; (B) XPS spectra of Au/Ag-CQD-NC & Ag-
CQD-NC.

https://doi.org/10.1038/s41598-020-64225-8


6Scientific RepoRtS |         (2020) 10:7618  | https://doi.org/10.1038/s41598-020-64225-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

size was reduced in ones treated with only Ag-CQD-NC but was much less than Au/Ag-CQD-NC as seen in 
Fig. 6B. The tumor turned black in this case too. This was a direct evidence of elevation of temperature upon 
irradiation with NIR laser. After a few days, the blackened area of tumor in mice treated with Au/Ag-CQD-NC 
and Ag-CQD-NC healed. But, an important point to be noted here is in our study, the body temperature of the 
mice was controlled constantly between 42 °C- 45 °C using a temperature cooling pad during the irradiation. The 
temperature was never allowed to go too high to avoid fatality in mice.

Figure 5. (A) Cytotoxicity of Au/Ag-CQD-NC at different concentrations (100 & 4000 µg/ml) & Ag-CQD-NC 
(100 & 4000 µg/ml). (B) Photothermal heating experiments on exposure to 1, 2 & 4 mg/ml of Ag-CQD-NC & 
Au/Ag-CQD-NC respectively.

Figure 6. (A) Tumors turns black after treatment and irradiation of Au/Ag-CQD-NC and Ag-CQD-NC 
with NIR laser. (B) Sizes of the tumor after treatment and irradiation of Au/Ag-CQD-NC and Ag-CQD-NC 
with NIR laser. (C) Tumor volume after 14 days after the treatment and irradiation of Au/Ag-CQD-NC and 
Ag-CQD-NC with NIR laser. (D) Estimation of total histone H3 acetylation in tumors from different groups. 
*p < 0.05, compared to control.
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The tumor volumes were also calculated as depicted in Fig. 6C. The day of irradiation with laser was denoted 
as day 1. After intervals of 3, 7 and 14 days the tumor volumes were measured. In the mice injected with water the 
tumor volume after a time period of 14 days, increased to 450 mm3, the starting volume being 100 mm3. In the 
mice treated with Ag-CQD-NC, the tumor volume decreased to 60 mm3, the starting volume being 100 mm3. In 
the mice treated with Au/Ag-CQD-NC, the tumor decreased to a mere 25 mm3. This is a clear cut indication that 
upon irradiation with NIR laser both the hybrid nanocomposites caused regression of tumor volume. The body 
weight of the mice decreased compared to the control group which after a few more days increased gradually 
and became comparable with control group. This may possibly due to the ablation of the tumor which caused 
shrinking in the size. There were no evidences of any toxicity or side effects in the mice compared with the con-
trol group. Additionally, there were no deaths reported in the mice too during the experiment or the treatment. 
Finally, we evaluated the H3 histone acetylation given the recent interest in epigenetic regulation of tumor pro-
gression and found that the H3 histone acetylation was markedly reduced by Ag-CQD-NC and even more so by 
Au/Ag-CQD-NC. Thus the action of nanocomposites involves epigenetic regulation.

Discussion
It has been studied that carbon quantum dots or the CQDs have surface which are filled with functional groups 
that may function as electron donor or acceptors33. Such architecture on the surface may qualify as nucleation site 
for the attachment of metallic nanoparticles. In the current study, the presence of carboxyl, hydroxyl and amine 
moieties on the surface of the CQDs may allow for attachment of Au and Ag and their growth and finally leading 
to the formation of Au/Ag-CQD-NC, a hybrid nanocomposite. Moreover, these functional groups may lead to 
reduction of metals salts of Au and Ag, leading to the nanocomposite formation34. They also double up as stabi-
lizers protecting the hybrid nanocomposite from accumulation and oxidation.

We hypothesize that in our study, Ag-CQDs acts as electron donor that reduces Au3+ to Au metal atoms 
to form metal nanocomposite. This was activated thermally which led to the growth and formation of Au/
Ag-CQD-NC. We further hypothesize that perhaps the Au3+ ions electrostatically interacted with the carboxyl, 
hydroxyl and amine moieties of Ag-CQD-NC to form the foundation of Au/Ag-CQD-NC. The change of the 
colour of Ag-CQD-NC from silver-grey to reddish-yellow confirms the hypothesis. Moreover, the distinct dif-
ference in contrast in the images as visualized by TEM reconfirms it. The introduction of Au metal atoms is also 
confirmed by the FTIR, PL, UV-Vis spectroscopy and XPS studies. The physical characterization

The photothermal therapeutic treatment is evident as the local hyperthermia generated at the site of cancer 
effectively killed the HeLa cells. Solutions of calcein-AM and propidium iodide (PI) are incorporated in the 
live-dead assay kit that pigments live and dead cells, respectively. Calcein-AM is the acetoxymethyl ester of calcein 
which is lipophilic and therefore highly permeable through the cell membrane. Nevertheless, this dye by itself is 
not a fluorescent molecule; the live cell generates calcein from Calcein-AM by the enzyme esterase which emits 
green fluorescence strongly. Consequently, calcein-AM particularly stains live cells. On the other hand, propid-
ium iodide is a nucleus staining dye that cannot penetrate a live cell membrane. It penetrates the dismantled areas 
of dead cell membrane and reaches the nucleus to intercalate with DNA double helix emitting red fluorescence. 
Both these fluorescent dyes may be excited with 490 nm light, hence concurrent observation of live and dead cells 
was possible with a fluorescence microscope. The death of maximum no. of cells on exposure with NIR irradiated 
Au/Ag-CQD-NC was indicated by the propidium iodide stained cells.

Cytocompatibility or biocompatibility plays a significant part in deciding the applicability of nanocomposites 
as therapeutic agents. The hybrid nanocomposite should not be cytotoxic. Although there are huge no of citations 
reporting in-vivo distribution of nanocomposite and in-vitro cytotoxicity of the same, the fundamental mecha-
nism of cytotoxicity has still not been clearly understood. It has been seen that usually the major side effect of any 
kind of nanobioengineering products, be it nanoshells, nanorods, nanodots, CQDs, liposomes, cubosomes and 
an whole assay of other is unendurable cytotoxicity. Hence, there is a persistent need for reduction of cytotoxicity. 
It was correctly inferred from the studies that Au/Ag-CQD-NC was lesser cytotoxic than Ag-CQD-NC. One of 
the major reasons of this non-cytotoxic behaviour is that Au nanoparticles are routinely used for drug delivery in 
human as well as murine cells and are known to be ideally suited for the purpose35. The cytotoxicity induced by 
the silver nanoparticles may be shielded by the introduction of Au3+ ions which changes to Au metal atoms and 
forms the nanocomposite. This may be explained by the fact although gold and silver are inert biomaterials when 
in bulk size35 but when they are in the submicron form; they may bind to biological molecules. This may result in 
generation of side effects in cells thereby resulting in cell toxicity. The cell viability assay portrayed an interesting 
trend of cytotoxicity of the different concentrations of Au/Ag-CQD-NC and Ag-CQD-NC.

Effective targeting at the site of tumor in the in-vivo studies is exhibited by the blackening and reduction the 
sizes of tumor of mice treated with Au/Ag-CQD-NC and Ag-CQD-NC. The greater reduction in size of tumor 
in case of Au/Ag-CQD-NC (58%) when compared with Ag-CQD-NC may probably be due to the synergistic 
effects of gold and silver nanoparticles acting together in a hybrid nanocomposite. The blackening of the tumor 
may additionally refer to a significant increase in local temperature which may indicate towards mortality of the 
mice but an additional effort towards maintaining body temperature may result in avoiding it, as was in this study. 
Furthermore, we provide epigenetic regulation and this is a novel and emerging concept in the field of nanotech-
nology with not enough attention36.

Summarizing, we have prepared Au/Ag-CQD-NC successfully using an extremely facile mechanism which 
have been used for photothermal therapy of cancer both in-vivo and in-vitro. The hybrid nanocomposite was 
prepared by reduction of Au3+ ions from the gold precursor to Au metal atoms which have the ability to success-
fully create local hyperthermia37,38 and destruction of tumor cells. But the fact remains that research on these 
photothermal therapy hybrid nanocomposites in still in nascent stage in respect to translation in clinical research. 
Preclinical studies have to be undertaken to assess further selectivity and well as efficient targeting. Although the 
preliminary research in our study has indicated that there is extremely low cytotoxicity, this is a dark area that 
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may effectively bring down the possibility of a clinical translation. However, it may be added that if proven oth-
erwise, this may bring down the injected dosage for therapeutic purposes. However, the existing comprehensive 
data exhibit a clear cut advantage of the hybrid nanocomposite over ongoing therapies. Large animal studies have 
to be undertaken to ease the shift from research table to clinics.

Data availability
All the data generated during this study is included within this manuscript.
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