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Reconfiguration of magnetic 
domain structures of ErFeO3 by 
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pulses
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Understanding the interaction between intense terahertz (THz) electromagnetic fields and spin 
systems has been gaining importance in modern spintronics research as a unique pathway to realize 
ultrafast macroscopic magnetization control. In this work, we used intense THz pulses with pulse 
energies in the order of 10 mJ/pulse generated from the terahertz free electron laser (THz-FEL) to 
irradiate the ferromagnetic domains of ErFeO3 single crystal. It was found that the domain shape can be 
locally reconfigured by irradiating the THz − FEL pulses near the domain boundary. Observed domain 
reconfiguration mechanism can be phenomenologically understood by the combination of depinning 
effect and the entropic force due to local thermal gradient exerted by terahertz irradiation. Our finding 
opens up a new possibility of realizing thermal-spin effects at THz frequency ranges by using THz-FEL 
pulses.

Application of terahertz (THz) electromagnetic field with large field amplitudes have enormously expanded in 
the last years as versatile means that allow for the observation of nonequilibrium electronic states in condensed 
matter systems, by driving their elementary degrees far beyond equilibrium1–3. Due to the advancement of wave-
length conversion technique based on modelocked femtosecond laser sources, few-cycle THz waves with pulse 
energies of several microjoule order have become a common tool in ultrafast spectroscopy experiments to realize 
drastic changes in the macroscopic properties of correlated systems, such as conductivity4,5, ferroelectric polari-
zation6,7, molecular orientation8, orbital ordering9 and spin orientation10, to count a few. Especially, the dynamics 
of spin systems induced by ultrastrong THz pulses have been attracting attention from the viewpoint of ultrafast 
spintronics technology11–16, wherein the final goal is to achieve macroscopic control of magnetization states in 
ferromagnetic domains17–19.

On the other hand, in optical experiments the dynamics of thermally excited spin system is gaining impor-
tance, because the photoinduced thermalization of spin systems significantly changes the equilibrium- and 
nonequilibrium magnetization states and allow for macroscopic change of magnetization at ultrafast time 
scales20–22. However, while there are many reports on optical heat-induced magnetic domain reversal experiments 
using visible and near infrared light pulses, very few works report it using THz pulses because conventionally 
their pulse energy are much weaker than the optical ones. From the viewpoint of high-intensity THz light sources, 
cutting-edge THz free electron lasers (FEL) offer pulse energies of millijoule level, which is several orders of mag-
nitude stronger than what is available with conventional mode-locked Ti:Sapphire amplifier-based THz sources. 
The extremely high pulse energy contained in THz-FEL is known to enable even destructive phenomena such 
as desorption of molecules23,24 and amorphous-crystalline phase transition5,25,26, to count a few. In this context, 
one can expect that the irradiation of such ultrastrong THz-FEL pulses on spin systems could potentially lead 
to macroscopic change of the magnetization by strongly perturbing critical order parameters such as anisotropy, 
exchange interactions, and domain wall mobility27–29. However, little attempts have been made in such a direction 
so far.
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In this paper, we irradiated the millijoule−level THz−FEL pulses on ferromagnetic domains of ErFeO3 single 
crystal. We found that magnetic domain shapes can be permanently reconfigured upon irradiation by THz-FEL, 
without causing permanent damage in the sample. The process could be explained by the combination of ultrafast 
heating−induced depinning effect and entropic force due to local thermal gradient. Our result demonstrates the 
potential of THz−FEL as a novel light source for the investigation of thermally induced spin dynamics in the THz 
region, and paves way for the THz spintronic devices in future.

Methods
The experiment was performed in the THz-FEL facility at the Institute of Scientific and Industrial Research, 
Osaka University, which is based on the 40 MeV L-band (1.3 GHz) electron linac. The FEL consists of a perma-
nent magnet wiggler (a 6 cm period length and 32 periods; the magnet gap variable from 120 to 30 mm, or the 
K-value (rms) from 0.01 to 1.55) and a 5.531 m concentric optical cavity [Fig. 1(a)]. The linac provided an elec-
tron beam of a 15 MeV energy and approximately an 8 μs pulse duration at a repetition frequency of 5 Hz. Each 
pulse consists of electron bunches with approximately 4 nC charge at intervals of 37 ns for 8 μs. The repetition 
frequency of the electron bunches is equal to that of an optical pulse bouncing in the cavity, so that a single FEL 
pulse lases there. A portion of the pulse energy is extracted through a hole at the center of the upstream mirror 
in every round trip of the FEL pulse, so that optical pulses called micopulses are formed at intervals of 37 ns and 
they comprise an FEL macropulses with a duration of up to ~6 μs, which depends on operational conditions of 
the FEL, at the repetition frequency 5 Hz. The wavelength of the FEL beam is variable approximately from 40 to 
110 μm for the electron energy of 15 MeV by varying the magnet gap of the wiggler. The maximum macropulse 
energy was 40 mJ or higher at a wavelength around 76 μm (4 THz) measured at the experimental station in this 
experiment [Fig. 1(b)]. The micropulse energy is higher than 250 μJ estimated from the maximum macropulse 
energy and the number of micropulses ~160, which is calculated from the duration of the macropulse divided 
by the micropulse intervals. The micropulse duration depends on the detuning length of the optical cavity and it 
is estimated to be ~2 ps at the shortest, where the macropulse energy is the highest. The peak electric field of the 
micropluses is estimated to be on the order of several MV/cm24. These pulses are focused by parabolic mirror on 
the c–cut, 100 μm−thick single crystal of ErFeO3. It is a typical weak ferromagnet, wherein antiferromagnetic 
sublattice spins are slightly canted by Dyaloshinskii−Moriya interaction and exhibits finite ferromagnetic com-
ponent. At room temperature, net magnetization orients parallel to the c axis, i.e., magnetization is normal to the 
surface. Magnetic domain structure of the sample was imaged by means of Faraday rotation of the He-Ne contin-
uous−wave laser transmitted through the sample with a CCD camera, using a pair of polarizers with their relative 
angles adjusted slightly off from the cross−Nicole configuration. CCD acquisition time was 0.6 s/image. Prior to 
the experiment we applied static magnetic field bias perpendicular to the sample, so that roughly 80% of magnet-
ization in the sample orients towards up (down) and the rest 20% towards the opposite direction. [Fig. 1(c)]. No 
external magnetic field was applied on the sample during the irradiation of FEL. Focus spot diameter of the THz 
pulse on the surface was estimated to be approximately 200 μm (evaluated at 1/e2-width assuming Gaussian pro-
file). Focus position of the FEL pulse was calibrated in advance by an additional He−Ne laser which runs parallel 
to the beam from FEL. Intensity and polarization of the THz pulses were adjusted by a pair of wiregrid polarizers.

Results
Figure 2(a–d) show typical Faraday rotation images of the magnetic domain observed before (a, c) and after (b, d) 
excitation by THz-FEL with macropulse energy of 4 mJ, measured at different initial configurations of magnetic 
domain structure. Black and white regions in the images represent magnetization oriented towards either +c or 
–c direction. Here, we first positioned THz focus spot near the flat edge of the domain arm, then scanned the 
focus by moving the sample stage horizontally at a speed of approximately 18 μm/s. It can be seen that after the 
irradiation, the edge of the minor domain regions (black (b) or white (d) parts of the image) expanded slightly 
from initial shape. This domain expansion can be seen more clearly when the pulse energy was increased to 8 mJ, 

Figure 1. Schematic illustration of the Experimental setup. (a) Electron bunches injected into the wiggler 
placed in an optical cavity emit coherent THz pulses, which are focused on ErFeO3 sample. Change of the 
domain shape is then imaged by Faraday rotation of continuous-wave He-Ne laser with a CCD. (b) Spectra of 
the THz-FEL pulses used in the study. (c) Typical image of the magnetic domain structure.
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as shown in the sequential images [Fig. 2(e–i)]. Here we focused our FEL pulses near the tip of the reconfigured 
domain arm and moved the spot slowly downwards. It can be clearly seen that new arm of magnetic domain was 
produced from pre−existing domain and can be expanded by dragging the tip of the arm downwards with the 
THz spot. It should be noted that the THz irradiation always resulted in the expansion of the minor domains, in 
such a way that the net magnetization of the whole sample was reduced. (i.e., when black (white) was the dom-
inant background domain in the image, always the white (black) domain has expanded.) That means, domain 
structure that was generated from the previous irradiation could not be erased when we moved the THz spot back 
and forth across it. At the same time, when the focus spot was sufficiently far away from the domain boundaries, 
no local magnetization flip could be observed up to the damage threshold at macropulse energy of approximately 
10 mJ. Beyond this level the sample was damaged due to the field-induced plasma generation and subsequent 
ablation of the surface, while below approximately 4 mJ no static change in the magnetic domain was observed. 
No obvious dependence on the wavelength and polarization of the incident THz pulses could be observed. The 
reconfigured domain shape could be easily erased by applying a weak external magnetic field (<10 mT), leaving 
no sign of irreversible damages on the sample.

The results obtained above point to the importance of the interaction between the existing magnetic domain 
boundary and the THz excitation spot. In fact, it was found that the probability of the magnetization reversal 
depends on the relative position of THz spot with respect to the domain boundary. To show this, in [Fig. 2(e–i)] 
we indicate the estimated position and focal size of the THz spot as red circles. Here, it is seen that the tip of the 
white arm in each image lies always in the top half part of the THz spot and not in the bottom half, seemingly 
following the motion of THz spot that moves away from the domain wall. Interestingly, the domain reversal point 
does not coincide with the center of the THz excitation spot either, where the THz field is expected to have strong-
est amplitude. This indicates that the domain boundary tends to move most efficiently at the trailing side of the 
movement that exhibits strongest spatial gradient of the THz power, and not the THz power itself.

As further investigation, we carried out an image processing analysis by using approximately 40 sequential 
frames that includes [Fig. 2(e–i)]. Here, from each frame we extracted the change of the domain size S from the 
previous image caused by the THz excitation during the exposure time of CCD. At the same time, we calculate the 
center-of-mass position r of this area measured from the excitation center [Fig. 3(a,b)]. We neglected the frames 
which showed no or very little change of the domain shape. The result is shown in [Fig. 3(c)]. Here, r and S are 
normalized by the estimated spot size (r0 = 100 μm) and S0 = πr0

2, respectively. At the same time, we also plot 
Gaussian function which indicates the estimated intensity profile of the THz fluence ITHz(r) (black dotted curve). 
Clearly, it is seen that the magnetization flip event does not occur around the peak of THz excitation spot at the 
origin (r = 0) but rather occurs at approximately the peak of the intensity gradient profile dITHz(r)/dr (blue curve).

Discussion
These results give a hint on the mechanism of the observed domain reshaping phenomena. A possible candidate 
is the so called entropic force22,30–32. It has been known that when a temperature gradient is exerted on a magnetic 
domain wall, there appears an effective force that acts on the wall to move it towards hotter region. This originates 
from the fact that in most magnetic materials, raising temperature results in the decrease of free energy of the 
domain wall. It is related to the increase of the domain wall entropy at high temperatures due to the reformation 
of magnon density of states30,33. In our experiment, assuming uniform excitation within the irradiated volume 
and taking into account the parameters used (macropulse energy: 8mJ, specific heat: 110 J/Kmol at 300 K34, spot 
radius:100 μm, sample thickness: 100 μm, coefficient of absorption at 4 THz due to the tail of optical phonon: 
100 cm−1, molar mass: 271 g/mol and mass density: 7.86 g/cm335), it can be estimated that the transient tem-
perature rise in the focal spot can reach approximately 600 K, which is comparable to the Néel temperature TN 
~ 630 K36. This can result in a very strong temperature gradient in the order of ~1000 K/mm or greater. At the 
same time, it should also give rise to a strong softening of the magnetic domain because the magnetization and 
the exchange stiffness drop drastically towards TN. This can reduce the pininng effects of the domain wall due to 
impurity and defects and thus, should also increase the mobility of domain wall. Therefore, we suspect that the 
observed domain reshaping effect is driven by the entropic force due to THz−induced thermal gradient, assisted 

Figure 2. Typical images of reconfigured magnetic domain structure by FEL-irradiation. (a–d) Magnetic 
domain images before (a,c) and after (b,d) the excitation of THz-FEL with macropulse energy of approximately 
4 mJ/pulse. (e–i) Snapshots of THz-induced domain arm extension by irradiation with macropulse energy of 8 
mJ.
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by the softening of exchange stiffness (depinning) due to strong heating. It should be noticed that such process 
can in principle also occur with the irradiation by intense visible or infrared light pulses. However, in such cases 
the damage induced by electronic transitions due to direct and indirect (e.g. multiphoton) absorption can take 
place at lower average powers. The low photon energy of the THz pulses can avoid this problem and thus enables 
clear observation of the abovementioned domain configuration phenomena induced by thermalization due to 
phonon excitation.

Conclusion
To summarize, we observed permanent reconfiguration of the ferromagnetic domain structure in ErFeO3 single 
crystal induced by irradiation of THz−FEL with macropulse energy as high as 8 mJ. It was suggested that the 
domain wall motion is driven by local heating and the entropic force due to thermal gradient. Our result demon-
strates the potential of THz-FEL as a novel tool to study the thermally excited spin dynamics at THz frequencies, 
such as ultrafast spin-Seebeck effects and magnonic spin currents in the future37,38.

Received: 15 September 2019; Accepted: 13 April 2020;
Published: xx xx xxxx

References
 1. Hwang, H. Y. et al. A review of non-linear terahertz spectroscopy with ultrashort tabletop-laser pulses. J. Mod. Opt. 62, 1447–1479 

(2015).
 2. Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. 

Nat. Photonics 7, 680–690 (2013).
 3. Hafez, H. A. et al. Intense terahertz radiation and their applications. J. Opt. 18, 093004 (2016).
 4. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).
 5. Zalden, P. et al. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials. Phys. Rev. Lett. 117, 067601 

(2016).
 6. Miyamoto, T. et al. Ultrafast polarization control by terahertz fields via π-electron wavefunction changes in hydrogen-bonded 

molecular ferroelectrics. Sci. Rep. 8, 15014 (2018).
 7. Miyamoto, T., Yada, H., Yamakawa, H. & Okamoto, H. Ultrafast modulation of polarization amplitude by terahertz fields in 

electronic-type organic ferroelectrics. Nat. Commun. 4, 2586 (2013).

Figure 3. (a) Schematic explanation of the parameters used in the analysis. (b) Typical image of magnetic 
domain during image processing. Tip of the white domain colored by magenta indicates the region where there 
was reversal of magnetization from the previous frame due to THz irradiation. (c) Normalized flipped-domain 
size S/S0 plotted as a function of normalized distance r/r0 from the center. Here, r0 = 100 μm and S0 = πr0

2. Black 
dotted- and blue curves indicate estimated Gaussian intensity profile ITHz (r) and its spatial derivative dITHz (r)/
dr, respectively. Thick black vertical line is a guide to the eye.

https://doi.org/10.1038/s41598-020-64147-5


5Scientific RepoRtS |         (2020) 10:7321  | https://doi.org/10.1038/s41598-020-64147-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

 8. Fleischer, S., Zhou, Y., Field, R. W. & Nelson, K. A. Molecular Orientation and Alignment by Intense Single-Cycle THz Pulses. Phys. 
Rev. Lett. 107, 163603 (2011).

 9. Miller, T. A. et al. Terahertz field control of in-plane orbital order in La0.5Sr1.5MnO4. Nat. Commun. 6, 8175 (2015).
 10. Kurihara, T. et al. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense 

Terahertz Magnetic Near Field. Phys. Rev. Lett. 120, 107202 (2018).
 11. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
 12. Kurihara, T. et al. Enhanced spin-precession dynamics in a spin-metamaterial coupled resonator observed in terahertz time-domain 

measurements. Phys. Rev. B 90, 144408 (2014).
 13. Ohkoshi, S. et al. Rapid Faraday Rotation on ε-Iron Oxide Magnetic Nanoparticles by Visible and Terahertz Pulsed Light. J. Am. 

Chem. Soc. 141, 1775–1780 (2019).
 14. Kurihara, T., Qiu, H., Kato, K., Watanabe, H. & Nakajima, M. Enhanced detection sensitivity of terahertz magnetic nearfield with 

cryogenically-cooled magnetooptical sampling in terbium-gallium-garnet. Appl. Phys. Lett. 113, 111103 (2018).
 15. Qiu, H. et al. Enhancing terahertz magnetic near field induced by a micro-split-ring resonator with a tapered waveguide. Opt. Lett. 

43, 1658 (2018).
 16. Yamaguchi, K., Kurihara, T., Minami, Y., Nakajima, M. & Suemoto, T. Terahertz Time-Domain Observation of Spin Reorientation 

in Orthoferrite ErFeO 3 through Magnetic Free Induction Decay. Phys. Rev. Lett. 110, 137204 (2013).
 17. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).
 18. Wienholdt, S., Hinzke, D. & Nowak, U. THz Switching of Antiferromagnets and Ferrimagnets. Phys. Rev. Lett. 108, 247207 (2012).
 19. Shalaby, M. et al. Coherent and incoherent ultrafast magnetization dynamics in 3d ferromagnets driven by extreme terahertz fields. 

Phys. Rev. B 98, 014405 (2018).
 20. Stanciu, C. D. et al. Subpicosecond Magnetization Reversal across Ferrimagnetic Compensation Points. Phys. Rev. Lett. 99, 217204 

(2007).
 21. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).
 22. Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Inertia-Free Thermally Driven Domain-Wall Motion in 

Antiferromagnets. Phys. Rev. Lett. 117, 107201 (2016).
 23. Nagai, M. et al. Excitation frequency dependence of the desorption of hydrogen-bonded solids using picosecond THz free electron 

laser pulses. In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 10.1109/IRMMW-
THz.2017.8066911.1–2 (2017).

 24. Nagai, M. et al. Luminescence induced by electrons outside zinc oxide nanoparticles driven by intense terahertz pulse trains. New J. 
Phys. 19, 053017 (2017).

 25. Makino, K. et al. Significant Volume Expansion as a Precursor to Ablation and Micropattern Formation in Phase Change Material 
Induced by Intense Terahertz Pulses. Sci. Rep. 8, 2914 (2018).

 26. Hoshina, H. et al. Polymer Morphological Change Induced by Terahertz Irradiation. Sci. Rep. 6, 27180 (2016).
 27. Bossini, D. et al. Time-resolved nonlinear infrared spectroscopy of samarium ions in SmFeO 3. Phys. Rev. B 87, 085101 (2013).
 28. Rotter, L. D., Grill, W., Dennis, W. M. & Yen, W. M. Ballistic propagation of magnons in MnF2. J. Lumin. 45, 130–134 (1990).
 29. Kovalev, S. et al. Selective THz control of magnetic order: new opportunities from superradiant undulator sources. J. Phys. Appl. 

Phys. 51, 114007 (2018).
 30. Schlickeiser, F., Ritzmann, U., Hinzke, D. & Nowak, U. Role of Entropy in Domain Wall Motion in Thermal Gradients. Phys. Rev. 

Lett. 113, 097201 (2014).
 31. Moretti, S., Raposo, V., Martinez, E. & Lopez-Diaz, L. Domain wall motion by localized temperature gradients. Phys. Rev. B 95, 

064419 (2017).
 32. Yan, Z. et al. Brownian motion and entropic torque driven motion of domain walls in antiferromagnets. Phys. Rev. B 97, 054308 

(2018).
 33. Wang, X. S. & Wang, X. R. Thermodynamic theory for thermal-gradient-driven domain-wall motion. Phys. Rev. B 90, 014414 

(2014).
 34. Saito, K. et al. Heat-capacity anomaly due to spin reorientation and thermodynamic functions of ErFeO3 and TmFeO3. J. Magn. 

Magn. Mater. 225, 381–388 (2001).
 35. Persson, K. Materials Data on ErFeO3 (SG:62) by Materials Project. https://doi.org/10.17188/1200364 (2014).
 36. White, R. L. Review of Recent Work on the Magnetic and Spectroscopic Properties of the Rare‐Earth Orthoferrites. J. Appl. Phys. 40, 

1061–1069 (1969).
 37. Hinzke, D. & Nowak, U. Domain Wall Motion by the Magnonic Spin Seebeck Effect. Phys. Rev. Lett. 107, 027205 (2011).
 38. Hals, K. M. D., Brataas, A. & Bauer, G. E. W. Thermopower and thermally induced domain wall motion in (Ga, Mn)As. Solid State 

Commun. 150, 461–465 (2010).

Acknowledgements
T.K is thankful for the support from Overseas Research Fellowship from Japan Society for the Promotion of 
Science (JSPS). M.N. received support from JSPS KAKENHI (JP16H03886, JP18H04515). The authors 
acknowledge supports from the Materials Synthesis Section of The Institute for Solid State Physics of the 
University of Tokyo for assisting the Floating-Zone growth of ErFeO3 single crystal.

Author contributions
T.K. and M.N. designed this project. T.K. designed the experimental setup, conducted experiment, analysed data, 
wrote manuscript and supervised the project. K.H., H.Q., K.T.N.P. and K.K. constructed part of the imaging 
setup. G.I. constructed and optimized THz-FEL for the project. M.N. co-supervised the project with T.K. All 
authors contributed to the discussion and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.K.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-020-64147-5
https://doi.org/10.17188/1200364
http://www.nature.com/reprints


6Scientific RepoRtS |         (2020) 10:7321  | https://doi.org/10.1038/s41598-020-64147-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-64147-5
http://creativecommons.org/licenses/by/4.0/

	Reconfiguration of magnetic domain structures of ErFeO3 by intense terahertz free electron laser pulses
	Methods
	Results
	Discussion
	Conclusion
	Acknowledgements
	Figure 1 Schematic illustration of the Experimental setup.
	Figure 2 Typical images of reconfigured magnetic domain structure by FEL-irradiation.
	Figure 3 (a) Schematic explanation of the parameters used in the analysis.




