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Analysis of Gas-water flow 
transition characteristics Based 
on Multiscale Limited penetrable 
Visibility Graph
Jun Han

It’s a significant challenge for gas-water flow transition characteristics from experimental 
measurements in the study of multiphase flow systems. The limited penetrable visibility graph has 
been proved to be an efficient methodology for revealing nonlinear dynamical behaviors of time 
series. In order to uncovering gas-water flow transitions, gas-water flow experiment was carried out 
to obtain time series signals related to the transitions of three flow patterns. Then a novel multiscale 
limited penetrable visibility graph (MLPVG) is used to construct complex networks from many different 
experimental flow conditions. The multiscale network measures associated with node degree are 
employed to describe the topological features of the constructed MLPVG. The results show that the 
multiscale limited penetrable visibility graph can not only effectively characterize flow transition but 
also yields novel insights into the identification of gas-water flow patterns.

Multiphase flow is a complex fluid phenomenon, widely exists in many fields of industry1,2. The study of mul-
tiphase flow is of great significance for the progress of science and technology in all walks of life. With the 
improvement of the requirements of measurement, energy saving and control in the industrial production 
process, the demand for the identification of multiphase flow characteristics and parameter measurement is 
becoming more and more urgent, which is also an important aspect of solving the problem of multiphase flow. 
Multiphase flow is the study of the mixed flow of gaseous, liquid and solid materials. The phase refers to different 
physical properties or mechanical states of different or the same state of matter, which is defined as the form of 
existence of matter, i.e. gas, liquid or solid. Multiphase flow often has more than one kind of fluid, that is, the fluid 
with two or more phase substances flowing at the same time, multiphase flow is also known as multiphase flow.

Multiphase flow includes gas-liquid two-phase flow, gas-solid two-phase flow, liquid-solid two-phase flow, 
liquid-liquid two-phase flow and oil-gas water three-phase flow3. Each specific multiphase flow has many similar-
ities, but it has its own physical characteristics and different flow characteristics. The importance of studying the 
flow pattern and its transformation lies in that different multiphase flow structures have different flows. Therefore, 
it is very important for the design and operation of engineering equipment to study and design the multiphase 
flow structure.

The study of two-phase flow pattern characteristics and flow pattern recognition not only has important 
industrial application value and academic value, but also can provide important technical support for the safety 
and automatic production of related industries, the design and operation of management system, the develop-
ment of two-phase flow measurement instruments. The relationship between flow parameters is different under 
different flow patterns, which results in the influence of flow patterns on the accuracy of measurement methods. 
Therefore, in order to realize the measurement of multiphase flow, the influence of flow pattern changes must be 
considered first.

The multiphase flow in the pipeline presents different flow patterns with different geometric and dynamic 
characteristics, which can be described by component or phase morphology, but it is difficult to achieve quan-
titative description, because the flow parameters change with the flow pattern, and the relationship between 
the forces acting on the fluid and parameters is very complex. These effects include buoyancy, turbulence and 
surface tension, which are very important in hydrodynamics analysis. They all change with the flow rate, pipe 
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diameter, pipe inclination angle and the properties of each phase fluid4. Although the basic equations of fluid are 
very close, the relationship between the flow parameters in different flow patterns is different, and the accuracy 
of measurement method in one flow pattern is difficult to achieve in the other. Therefore, if the measurement of 
multiphase flow is realized, the influence of flow pattern change must be considered first. There are many methods 
of flow pattern recognition. At the same time, the research of convective pattern is gradually developing towards 
the formation and transition mechanism of flow pattern, as well as the prediction of convective transformation5.

Gas-water two-phase flow transition can be widely observed in many industrial applications. Different to the 
single-phase flow, two-phase flow usually exhibits many complicated flow structures, known as flow patterns 
which describe how the two phases are distributed and mixed. The characterization of gas-water flow pattern 
transition represents a significant challenge. Three typical gas-water flow patterns include bubble flow, slug flow 
and churn flow. Previous studies indicated that the flow behaviors underlying different flow patterns are distinct 
and complicated, e.g., slug flow exhibits obviously complex chaotic features. In addition, gas-water flow patterns 
in different diameter pipes usually present different dynamic flow behaviors. Many efforts have been made to cope 
with the increasing challenges encountered in the gas-water flows, but the dynamical mechanism governing the 
gas-water flow pattern transitions is still unclear. The last decade has witnessed a fantastic development of com-
plex network6–10, which allows studying complex systems that consists of abundant components interacting with 
each other in a complicated manner.

Time series data mining methods are usually based on feature representation and similarity measurement, and 
then mining and analyzing classification, clustering, interest pattern discovery, anomaly pattern discovery and 
data visualization. To evaluate the state of a complex system based on the time series data is an important research 
content of time series data. The network of time series data introduces the theory of complex network into the 
mining and analysis of time series data.

In recent years, the complex network analysis method of time series9–13 has become a hot research direction, 
which has produced many novel research methods. For a review of the research on complex network analysis 
methods of time series, please refer to the paper14 cited in this paper. These methods are increasingly used to solve 
challenging problems in the areas of climate15, brain network16, thermoacoustic instability17, sunspot series18, 
crude oil prices19, traffic flow20, and turbulent heated jets system21, etc.

In this paper, We have carried out experiments of gas-water two-phase flow and obtained the differential 
pressure time series signals related to the three flow pattern transitions. Then we use multiscale limited penetrable 
visibility graph (MLPHVG)22 to analyze the signals and infer complex networks from many different flow condi-
tions. The results suggest that the multiscale network measures associated with node degree are very sensitive to 
the flow pattern transitions, and the multiscale limited penetrable visibility graph allows identifying gas-liquid 
flow patterns and further enables to characterize flow transitions among three gas-water flow patterns.

Multiscale limited penetrable visibility graph analysis of time series. Researchers have done a lot 
of research on complex network analysis of time series and have made great progress in finance, medicine, mete-
orology and other fields. For example, Costa m. et al.23 proposed the method of multiscale entropy, which cal-
culated the entropy value of time sequence data on multiple scales, used multiscale entropy value to evaluate the 
complexity of complex systems, and applied the multiscale entropy algorithm to the evaluation of human phys-
iological systems. Wavelet entropy is the combination of wavelet analysis theory and entropy principle. It gives 
full play to the advantages of both. It can not only achieve the purpose of information fusion, but also analyze 
mutation signal more effectively, and can better adapt to the feature extraction of signal. Wavelet entropy can be 
used to represent the change of signal complexity in time domain, and also to represent many frequency-domain 
features of signal. Wavelet entropy can reflect the energy distribution information of signal in time domain and 
frequency domain.

The starting point of visibility graph11,13,22 is to use complex network technology to analyze time series data 
and explore the relationship between time series data structure characteristics and network characteristics.

The visibility graph algorithm is adopted to transform time series data into network, and network topology 
features are further extracted as the features of complex systems.

More recently, the well-established multiscale horizontal limited penetrable visibility graph22 provides an effi-
cient way for characterizing a time series in terms of multiscale analysis and complex network analysis.

Multiscale limited penetrable horizontal visibility graph (MLPHVG)14,22,23 is a powerful tool for analyzing 
time series. The basic idea of MLPVG method can be described as follows: For a time series of length N, {x(i), 
i = 1, 2, …, N}, we first define temporal scales in terms of coarse grain process14,22,23 and obtain a coarse-grained 
time series {ys (j), j = 1, 2, …, N/s} in the following form
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where s represents scale factor. Next, we construct limited penetrable visibility graph from the coarse-grained 
time series {ys (j), j = 1, 2, …, N/s}.

In Fig. 1, it shows a process example of deriving a a limited penetrable visibility graph from a time series. In 
the figure, the light blue vertical bars represents the measured differential pressure time series signal value, and 
the LPVG set to 2 based on the limited penetration distance L is exemplified in the figure, each node in the figure 
represents the sequential time series data, and the connection line defines the link of the nodes in the connection 
diagram.

In Fig. 1, we illustrate the evolution of LPVG in a continuous time series with a length of 10, and show it in the 
form of vertical bars and link line.
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Considering the evolution process of LPVG in continuous time series, each light blue vertical bar (each value vertex 
of the time series) is linked to all light blue vertical bars (black lines) that can be seen from the top of the considered bar 
(black line), so as to obtain the associated visibility graph. In the visibility graph, the line visibility lines between two 
nodes are connected only when they do not intersect any intermediate data height. At the same time, it means that two 
nodes (two vertical line vertical bar) can see each other, and then there is a connection between the two nodes.

We can establish the following description and expression of the visibility criteria:
two arbitrary data values (ta, Ea) and (tb, Eb) will have visibility, and consequently will become two connected 

nodes of the associated graph, if any other data (tc, Ec) placed between them fulfills:
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In particular, if the limited penetration distance is set to L, there is a connection between the two nodes if the 
number of middle nodes blocking the visibility is not greater than L. The red line in Fig. 1 shows that when the 
limit penetration distance is 2, when VG11,13 infers LPVG13, a new red line connection is established. Based on the 
standards and steps described above, LPVG can be derived from coarse-grained time series of different scales to 
obtain multiscale limited penetration visibility graph (MLPVG)22.

The MLPVG22 is a type of MLPHVG14,22,23 and their basic idea is similar. This method leads to a natural 
graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics.

Multiscale complex network analysis of vertical gas-water flow. The gas-water two-phase flow 
experiment was conducted in a large diameter vertical pipe. The experimental plan can be described as follows: 
First we injected the water and gas into a vertical pipe with a fixed water flow velocity, then we gradually increased 
the gas flow velocity to generate different flow patterns and flow conditions. After this, we changed the water flow 
velocity and repeat the above procedures. For each generated flow condition, the time series signals can be meas-
ured by a sensor. The sampling frequency is 400 Hz and the sampling time is 60 s. Three gas-water flow patterns 
were observed, including gas-water bubble flow, slug flow and churn flow.

Figure 1. Example of (a) the light blue vertical bars represents the measured differential pressure time 
series signal value and (b) an example of LPVG based on the limited penetration distance L of 2, where each 
node represents the sequential time series data, and the connecting line defines the link of the nodes in the 
connection diagram.

Figure 2. Distribution of the average node degree of MLPVG at different scales for different gas-water flow 
conditions when Uw = 0.0226 m/s.
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Figure 3. Distribution of the average node degree of MLPVG at different scales for different gas-water flow 
conditions when Uw = 0.0453 m/s.

Figure 4. Distribution of the average node degree of MLPVG at different scales for different gas-water flow 
conditions when Uw = 0.0906 m/s.

Figure 5. Distribution of the average node degree of MLPVG at different scales for different gas-water flow 
conditions when Uw = 0.1359 m/s.
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Our method is capable of constructing complex networks at different scales from a time series. Then we use 
multiscale network measures to analyze the inferred networks. We calculate the average node degree at different 
scales and then plot it with changing scale factors to characterize the multiscale flow behaviors in the transitions 
of different flow patterns.

We show the results calculated from many different flow conditions in Figs. 2–6, in which Ug represents the gas flow 
velocity and Uw denotes the water flow velocity. As can be seen, the multiscale distributions of average node degree 
enable to identify three different gas-water flow patterns. Gas-water bubble flow in a large diameter pipe usually occurs 
at a low gas flow velocity and the typical features lie in the gas phase exists in the form of plenty of discrete bubbles 
flowing in a water continuum. Because of the stochastic flows of plenty of gas bubbles, the flow behaviors underlying 
bubble flow is very complex, corresponding to the large average node degree at different scales. With the increase in 
gas flow velocity, bubble concentration become high and correspondingly bubble coalescence occasionally appears. 
Consequently, a spherically capped bubble, known as gas slug, is formed with a diameter almost equal to the pipe diam-
eter. Small bubbles randomly flow in the large pipe positions between two slugs. For the gas-water slug flow in a large 
diameter pipe, the quasi-periodic alternating movements between gas phase and liquid phase are dominant and the 
chaotic features can be found. In the bubble to slug flow transition, the complexity underlying dynamic flow behaviors 
becomes lower, leading to the decrease of average node degree at different scales. With a further increase of gas flow 
rate, the gas-water interface of the larger gas bubble becomes distorted near the nose, but still comparatively smooth in 
the bottom part of a cylindrical gas bubble. For a high flow velocity, churn flow occurs which can be interpreted as an 
irregular and oscillatory flow. The chaotic dynamic behavior also exists in the churn flow. The average node degree at 
different scales also enables to indicate the transition from gas-water slug flow to churn flow.

All these interesting findings suggest that multiscale limited penetrable visibility graph not only can identify 
different gas-water flow patterns, but also is capable of characterizing flow transitions among gas-water bubble flow, 
slug flow and churn flow. It should be pointed out that, our work is different to the previous seminal works by Gao 
et al.13,14. The previous work13 developed a novel multiscale phase-space complex network to analyze multivariate 
time series and uncovered the flow behavior underlying gas-liquid flow in a small diameter pipe. Their designed 
four-sector conductance sensor is different to ours. The flow behavior and flow transitions underlying gas-liquid 
flows in a small diameter and large diameter pipe are very different. Gao et al.14,22 then proposed a MLPHVG to 
analyze oil-water flow behaviors and detect epileptic seizure. Our works focus on gas-water flow pattern transitions 
in a large diameter pipe, which enrich the multiscale analysis and limited penetrable visibility graph theory.

Discussions
Identifying the gas-water flow transition from experimental measurements constitute a challenging problem of 
continuous interests. In this paper, we conducted gas-water flow experiment in a large diameter pipe to obtain 
time series signals related to the transitions of three flow patterns. Then the multiscale complex networks are con-
structed from many different flow conditions in terms of multiscale limited penetrable visibility graph (MLPVG).

The basic idea of the MLPVG is to define temporal scales in terms of the coarse-grain process and then infer 
limited penetrable visibility graph from coarse-grained time series for each scale to construct a multiscale com-
plex network. The multiscale network measures associated with node degree are used to assess the topological 
features of the constructed gas-water flow networks. Our findings suggest that the network measures at different 
scales are capable of revealing the flow transitions associated with gas flow velocity and water flow velocity. Our 
analysis also yields novel insights into the flow pattern identification.
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Figure 6. Distribution of the average node degree of MLPVG at different scales for different gas-water flow 
conditions when Uw = 0.1812m/s.
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