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Three-State Majority-vote Model 
on Scale-Free Networks and 
the Unitary Relation for Critical 
Exponents
André L. M. Vilela   1,2, Bernardo J. Zubillaga2, Chao Wang2,3 ✉, Minggang Wang2,4,5, 
Ruijin Du2,6 & H. Eugene Stanley2

We investigate the three-state majority-vote model for opinion dynamics on scale-free and regular 
networks. In this model, an individual selects an opinion equal to the opinion of the majority of its 
neighbors with probability 1 − q, and different to it with probability q. The parameter q is called the 
noise parameter of the model. We build a network of interactions where z neighbors are selected by 
each added site in the system, a preferential attachment network with degree distribution k−λ, where 
λ = 3 for a large number of nodes N. In this work, z is called the growth parameter. Using finite-size 
scaling analysis, we obtain that the critical exponents β ν/  and γ ν/  associated with the magnetization 
and the susceptibility, respectively. Using Monte Carlo simulations, we calculate the critical noise 
parameter qc as a function of z for the scale-free networks and obtain the phase diagram of the model. 
We find that the critical exponents add up to unity when using a special volumetric scaling, regardless of 
the dimension of the network of interactions. We verify this result by obtaining the critical noise and the 
critical exponents for the two and three-state majority-vote model on cubic lattice networks.

Regular networks and random graphs are widely used to study and describe the structure of diverse systems 
investigated in condensed matter physics. Still, they do not capture several behaviors of real networks found in 
nature1–6. By using the complex network framework, scientists studied a wide variety of physical systems such as 
the world wide web, cellular networks, protein-protein interaction networks, the scientific collaboration network, 
airline networks, economic and financial markets, among others7–16. Many real systems are labeled by networks 
that present the same universal features, or the same architectures of assembly. One of the most investigated 
kinds of networks present in real-world systems are the scale-free networks1–3. These networks can be built using 
the Barabási-Albert model. In this model, two simple mechanisms - growth and preferential attachment - are 
responsible for the emergence of scale-free networks. By starting with an initial number of interconnected nodes 
(or core), one adds new nodes that have a higher probability of attaching to the more connected nodes already 
present in a mechanism known as preferential attachment. In this process, highly connected nodes acquire more 
links to other nodes than those that have fewer connections, yielding sites with a very high number of neighbors. 
These sites are called the hubs of the network. The degree distribution of the scale-free networks built by the 
Barabási-Albert model presents a power-law decay with exponent λ = 3 for a large number of nodes N. In Fig. 1 
we illustrate the preferential attachment algorithm for a network where each newly added site connects to others 
with the growth parameter z = 2.

The scale-free distribution and its mathematical structure have motivated several studies investigating the 
phase transition of different ferromagnetic spin systems17–20. For the Ising model, the increase of the temperature 
induces the system to be in a fully disordered state, where all the possible configurations are accessible due to 
the high thermal energy available. In these works, the authors obtain a linear dependence between the critical 
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temperature Tc, and the average number of interacting spins 〈k〉 for the scale-free networks investigated17. They 
also find that the critical temperature of the Ising model is proportional to the logarithm of the finite system size 
N18. This result was also verified for the Potts model with two states on semi-directed Barabási-Albert networks20.

The complex network framework allowed physicists to propose models aiming to investigate the critical phe-
nomena in social dynamics21–35. Although human individuals may be difficult to simulate, the dynamics of people 
in groups seem to be conceivable to model due to herd effects and other group behaviors. By employing statistical 
physics techniques, several works confirm that these models present order-disorder transitions and universality 
among other standard characteristics of condensed matter physical systems. From microscopic interactions 
among individuals in a social network, several sociophysics models exhibit a robust collective behavior. 
Concerning opinion dynamics in complex networks, we highlight the majority-vote model with noise24. In this 
model, an individual assumes the same opinion of the majority of its neighbors with probability p and the oppo-
site opinion with probability q = (1 − p). In its two-state version, the opinion of an individual is represented by the 
spin variable σ, which assumes the value +1 or −1 in a given time. In a regular square lattice of interactions, this 
model undergoes a nonequilibrium phase transition at a critical probability .q 0 075c , and the critical exponents 
are the same as those of the equilibrium two-dimensional magnetic Ising model.

The three-state majority-vote model with noise is a system of spins, where each one is allowed to be in one of 
three states, that is σ = 1, 2, or 331–33. As in the two-state model, each spin assumes the state of the majority of its 
neighboring spins with probability p = (1 − q) and the opposite state with probability q, which is known as the 
noise parameter of the model. The increase of the parameter q promotes the formation of different opinion con-
figurations in the model, acting as an increase of the social temperature of the system. For a regular square lattice 
network, the three-state majority-vote model with noise present an order-disorder phase transition at the critical 
noise value .q 0 118c , where the consensus in the system vanishes.

In this work, we investigate the influence of a network with preferential attachment, built by using the classical 
Barabási-Albert model, on the three-state majority-vote model with noise. We perform Monte Carlo simulations 
to estimate the critical noise parameter as a function of the growth parameter qc(z). Moreover, we use the standard 
finite-size scaling techniques to obtain the critical exponents for several values of the parameter z for the networks 
investigated. Based on the results, we propose a unitary relation to examine the criticality of the system. We con-
jecture that this relation is universal, regardless of the network of interactions. We also perform simulations for 
the three-state majority-vote model on cubic networks that confirm our results, and we obtain the critical noise 
for this system and its critical exponents.

The remainder of this paper is divided into four sections. In Section II, we describe the three-state 
majority-vote model with noise for opinion dynamics, the network construction process, and introduce the rele-
vant quantities used in our simulations. Section III contains our results for complex and regular networks, along 
with a discussion. In Section IV, we present our conclusions and final remarks.

The Model
The Barabási-Albert network.  The three-state majority-vote model with noise consists in a set of spin 
variables {σi} with i = 1, 2, …, N, where each variable can be assigned to one of the values σ = 1, 2, or 3, represent-
ing the opinion for an individual in the community at a given time t. The individuals are distributed in the nodes 
of a scale-free network of social interactions with N sites. That is, before adding individuals and their opinions in 
our system, we build a network of interactions. We start with a core of z +1  fully connected nodes, and then we 
add new nodes - one at a time - with z free links, which will be connected by preferential attachment to the exist-
ing nodes of the network. The probability of connecting a new node j to node i, Π k( )i , depends on the degree ki of 
the node i. Thus, for Barabási-Albert networks with linear preferential attachment we write




k k
k

( ) ,
(1)

i
iΠ =

∑

where the summation is equal to the total number of existing links in the scale-free network, and more nodes are 
added to the network until it reaches a total of N sites. A double connection to the same site is forbidden.

In Fig. 2 we show an illustration of the Barabási-Albert network with N = 100 sites for z = 5 (left). Observe 
that some nodes have a high number of connections, despite the small average value of links per site in the net-
work. We also present the histogram of the degree of the nodes for networks with N = 20000 nodes and different 

Figure 1.  The sequence shows five subsequent steps of the Barabási-Albert model for the growth of scale-free 
networks with z = 2. Empty circles mark the newly added node to the network, and dashed lines represent its 
new links, which connect using the preferential attachment.
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values of the growth parameter z (right), where we obtain the characteristic scale-free degree distribution plot 
with exponent λ = 3. Note that the decay exponent λ is the same, even for different values of the average degree 
per node z as expected2.

Dynamics and numerical quantities.  The dynamics of the system consists of a generalization for three 
opinions of the two-state majority-vote model24–26,28–33,36–43. For a randomly selected individual σi we determine 
the majority opinion of the individuals that are linked to it. With probability 1 − q, the selected agent σi adopts the 
dominant opinion of its neighbors (follows the majority), and with probability q, the individual adopts a different 
opinion (follow a minority). For a tie between the three states, the selected agent σi changes to any opinion with 
the same probability equal to 1/3. For the case of a tie between two majorities, σi assumes one of these tied states 
with probability (1 − q)/2, and the minority with probability q. Finally, for the case of a single majority, σi follows 
any of the two minorities with probability q/2, and the majority with probability 1 − q. That is, if nα is the number 
of neighbors of the individual σi in a given state α = 1, 2, 3, then, the probabilities for σi to assume the opinion 
α = 1 is:

P n n n q P n n n q P n n n q
P n n n q n n n
(1 , ) 1 , (1 ) (1 )/2, (1 ) ,
(1 , ) /2, (1 ) 1/3 (2)

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

| > = − | = > = − < = =
| < = | = = = .

These transition rules present the C3v symmetry for the simultaneous change of all opinions. The probabilities 
for the other states σ = 2 and 3 are obtained by symmetry operations. The total number of individuals connected 
to σi is n = n1 + n2 + n3. We remark that all probabilities satisfy the relation

P P P(1 ) (2 ) (3 ) 1 (3)|… + |… + … = .

In our simulations, we choose the consequential update for the opinion dynamics of the agents. To investigate 
the critical behavior of the three-state majority-vote model, we first calculate the average opinion, defined by
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where the sum is over all sites in the scale-free network of social interactions and δ(α, σi) is the Kronecker delta 
function. In this way, to investigate the critical behavior of the model, we consider the following numerical quan-
tities: the magnetization M, the magnetic susceptibility χ, and the Binder’s fourth-order cumulant U defined by

=M q z N m( , , ) , (6)t c

χ = 

 − 


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2 2

Figure 2.  A illustration of the Barabási-Albert network with N = 100 nodes and z = 5 (left), and the degree 
distribution histogram P(k) for a single network of size N = 20000, with z = 1, 2, 5, 10 and 20 (right). The 
straight line is a guide to the eye and has slope corresponding to the network’s predicted degree exponent of 
decay λ = 3.
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where q is the noise parameter, z is the growth parameter of the network, N is the total number of individuals 
or agents, 〈…〉t represents the time average taken in the stationary regime and 〈…〉c denotes the configurational 
average. The critical behavior of the model is investigated by performing computer simulations and by using 
finite-size scaling analysis.

The three-state majority-vote dynamics evolves over time according to the probability rules given by Eq. (2). 
After a transient, the model reaches a steady state that presents complete order, partial order(disorder) or com-
plete disorder. That is, for q = 0 the system exhibits an ordered steady macrostate, characterized by the predomi-
nance of individuals with one of the three possible opinions. Assuming for this case that σ = 1 ∀ N, we obtain 

=m 2/31 , = = −m m 1/ 62 3  and m = 1, yielding M = 1 for q = 0. The upper limit for q, that is, the infinite 
social temperature, is obtained when the probability of agreeing with the majority is equal to the probability of 
agreeing with any minority, thus − = ⇒ =q q q1 /2 2/3. In this case, any opinion or individual state σ = 1, 2 or 
3 can be found with equal probability in the network of social interactions. Thus, leading to m m m, , 01 2 3  and 
M(q = 2/3) = 0 in the thermodynamic limit N → ∞.

Discussion and Results
Monte Carlo simulations.  We perform numerical simulations on scale-free networks with sizes ranging 
from N = 1000 to 20000 using the Monte Carlo method. For each pair of values for the parameters q and z, we 
set a fraction of sites f0 = 0.8 to point to one opinion, i.e., σi = 1, and the remaining fraction 1 − f0 to point to 
the other two options, equally distributed. We next select a randomly chosen individual and update its opinion 
with the probabilities given by Eq. (2). This process is repeated N times to allow that the opinion of each agent is 
updated once (on average) for each Monte Carlo Step (MCS). We skip 105 MCS in the simulation to overcome 
the initial transients and allow the system to reach a steady-state, characterized by the set of parameters q and z. 
Next, we perform the time averages in the following 2 × 105 MCS. For each realization, we generate at least 100 
independent random samples to obtain the configurational averages. Different values for f0 yield the same final 
steady-state for the system, which becomes ordered or disordered, depending on the values for q, z, and N. In the 
ordered phase, the dominant opinion is found in one of the possible states 1, 2, or 3. In the disordered phase, the 
three opinions are equally distributed in the network of social interactions.

In Fig. 3, we illustrate the effect of the network of interactions with preferential attachment in the consensus 
(order) of the system. We show the plot for the magnetization M(q, z, N), for the susceptibility χ(q, z, N) and for 
the Binder’s fourth-order cumulant U(q, z, N) as a function of the noise q for N = 20000 and z = 2, 3, 4, 5, …, 
10. We find that for small values of the noise parameter q, the system presents an ordered macrostate, or phase, 
where M(q, z, N) = O(1). In this phase, the society becomes ordered, with a preference for a dominant opinion. 
By increasing the social temperature q, the magnetization will continuously decrease to zero near a critical value 
qc, denoting the second-order phase transition of the system. In this region (q > qc), there is no prevailing opinion 
in the society, and every state can be found with the same probability. In Fig. 3(b) the magnetic susceptibility χ(q, 
z, N) exhibits a maximum near some critical value qc, where the transition order-disorder occurs. This behavior 
is also denoted by the rapid decrease of the Binder’s fourth-order cumulant U(q, z, N), showed in Fig. 3(c). From 

Figure 3.  Three-state majority-vote model on Barabási-Albert networks for N = 20000. (a) Magnetization M(q, 
z, N), (b) susceptibility χ(q, z, N) and (c) Binder’s fourth-order cumulant U(q, z, N) as a function of the noise 
parameter q for z = 2, 3, 4, 5, …, 10, from left to right. The error bars are smaller than the symbol size, and the 
lines are just a guide to the eyes.
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the results, we obtain that the critical noise is an increasing function of the growth parameter of the network z, 
indicating that the consensus is stronger if there are more connections to an individual in the society.

Next, we consider the finite-size effects on our measured quantities. In Fig. 4 we show the (a) magnetization 
M(q, z, N), (b) the susceptibility χ(q, z, N) and (c) the Binder’s fourth-order cumulant U(q, z, N) versus the noise 
parameter q for z = 10, and several system sizes N. We remark that M(q, z, N) ≠ 0 for high values of the parameter 
q due to finite-size effects. The susceptibility χ(q, z, N) exhibits a sharper peak as we increase the system size, and 
the position of its maximum in the horizontal axis depends on N. Thus, we write the pseudocritical noise as qc(z, 
N), and the values for qc(z, N) are our first estimative for the critical noises of the system. To obtain the critical 
noise for each z in the thermodynamic limit, qc(z), we calculate the Binder cumulant of the system U(q, z, N). In 
Fig. 4(c) we show the Binder’s fourth-order cumulant as a function of the social temperature q for different sys-
tem sizes. The critical noise parameter qc(z) can be estimated for the value of q where the curves of U(q, z, N) for 
different system sizes intercept each other. In this figure, we estimate qc = 0.513 (1).

Figure 5(a) illustrates the dependence of the Binder’s fourth-order cumulant on the noise q for z = 5 and differ-
ent system sizes. The curves for different values of N intercept in the region 0.43 < q < 0.44. Figure 5(b) shows the 
details of the Binder cumulant data, along with a polynomial fit for the lines near the interception. At this point, 
the critical noise does not depend on the system size, and for this case, shown in figure qc = 0.4326 (4). By calcu-
lating the cumulant U(q, z, N) for other values of z, we obtain the phase diagram for the three-state majority-vote 

Figure 4.  (a) Magnetization M(q, z, N), (b) susceptibility χ(q, z, N) and (c) Binder’s fourth-order cumulant as 
a function of the noise parameter q for several values of the system size N with z = 10. The critical noise for this 
value of the growth parameter is qc = 0.513(1), obtained at the intersection point for Binder cumulant (c). The 
error bars are smaller than the symbol size, and the line is a guide to the eye.

Figure 5.  (a) The Binder’s fourth-order cumulant U(q, z, N) as a function of the noise parameter q for the 
three-state majority-vote model in Barabási-Albert networks with z = 5 for several values of the system sizes. 
From top to bottom we have N = 20000, 15000, 10000, 5000, 2000 and 1000. In (b), we exhibit the details of 
the interception for different system sizes and a cubic fit for the data points. Within the accuracy of the data, all 
curves intersect at qc = 0.4326(4). (c) Phase diagram of the three-state majority-vote model on Barabási-Albert 
networks. The orange region denotes the phase where the system presents an order or a global majority opinion. 
The solid line is just a guide to the eye. In all plots, the error bars are smaller than the symbol size.
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model on Barabási-Albert scale-free networks shown in Fig. 5(c). The orange region denotes the ordered phase 
of the system, where one of the three opinions is the majority state of the system. In this result, the error bars 
are smaller than the thickness of the line. Note that the critical noise increases with the growth parameter z, 
which controls the average number of connections 〈k〉 of a given individual in the social system. Here, we obtain 
qc = 2/3 as z → ∞, where qc = 2/3 is the infinite temperature equivalent for the social system of the three-state 
majority-vote model. This result agrees with the critical temperature obtained in other studies for ferromagnetic 
spin systems in scale-free networks17,18.

The unitary relation and scaling results.  To obtain the critical exponents in complex networks, we pro-
pose that near the critical noise qc the correlation length ξ scales with the actual volume of the system44,45 as

ξ ∼ .N (9)

Thus, the pseudocritical noise qc(N), the magnetization M(q, z, N), the susceptibility χ(q, z, N), and the Binder 
cumulant U(q, z, N) satisfy the finite-size scaling relations

q N q bN( ) , (10)c c
1/= + ν−

ε= β ν ν− ˜M q z N N M N( , , ) ( ), (11)/ 1/

χ χ ε= γ ν ν


q z N N N( , , ) ( ), (12)/ 1/

U q z N U N( , , ) ( ), (13)1/ε=
∼ ν

where ε = q − qc is the distance to the critical noise, b is a constant, and M̃, χ


, and ∼U are scaling functions that 
only depend on the scaled variable ε= νx N1/ . For regular networks, we recall that N = Ld, where d is the effective 
dimension of the network, and L is an effective linear size of the system. In this case, we obtain for the magnetiza-
tion and the magnetic susceptibility

˜ ε= β ν ν−M q z N L M N( , , ) ( ), (14)d / 1/

χ χ ε= .γ ν νq z N L N( , , ) ( ) (15)d / 1/


We use the notation ν  instead of v since we changed the correlation length scaling relation from the usual 
linear scaling ξ ~ L to a “volumetric scaling” ξ ~ Ld. In this case, the hyperscaling relation now reads 
β ν γ ν+ =d d d2 / / . Thus, we obtain

β
ν

γ
ν

+ =
2 1, (16)

regardless of the effective dimension d of the network. This result allows us to remark that the hyperscaling rela-
tion cannot be used to estimate the dimension of these networks when using the volumetric scaling ξ ~ Ld, in 
contrast to the results of previous studies25,28,33,38,39. Nevertheless, the unitary relation (Eq. (16)) was verified in 
these works for random graphs and scale-free networks. In this context, we rewrite the unitary relation by denot-
ing a new exponent upsilon υ, defined as

υ β
ν

γ
ν

≡ +
2 , (17)

where we conjecture that the exponent υ = 1 for any network under the condition of the volumetric scaling of 
Eq. (9). In this work, we denote the equation υ = 1 as the unitary relation for critical exponents. We validate the 
consistency of this result according to the comparison with the numerical findings for the critical exponents β ν/  
and γ ν/  for regular and complex networks.

By calculating the logarithm of Eqs. (10), (11) and (12) at the critical point qc, we obtain an explicit relation 
involving the critical exponents, the measured quantities and the system volume N

ν
− ∼ −q N q Nln[ ( ) ] 1 ln , (18)c c

β
ν

∼ −M q z N Nln[ ( , , )] ln , (19)

χ γ
ν

∼
¯

q z N Nln[ ( , , )] ln , (20)

and we use the Eqs. (18), (19) and (20) to obtain the critical exponents of the system.
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Figure 6 shows the logarithm of the (a) magnetization, of the (b) susceptibility and of the distance between the 
pseudocritical noise and the critical noise −q N q[ ( ) ]c c  versus the logarithm of the volume of the system N, where 
q is set to be equal to qc(z). In this figure we show our results for z = 2, 5, 14, 20, and 50, where the angular coeffi-
cient of the lines give us an estimation of the critical exponents ν1/ , β ν/  and γ ν/ . We find 
β ν = . . . ./ 0 102(4), 0 229(5), 0 300(3), 0 307(3) and 0.326(4), and γ ν = . . . ./ 0 83(1), 0 59(1), 0 44(1), 0 43(1) and 
0.40(1), and ν = . . . .1/ 1 01(2), 0 61(3), 0 45(1), 0 47(1) and 0.40(1), for z = 2, 5, 14, 20, and 50, respectively.

Table 1 provides critical noise, critical exponents, and the unitary relation values for each growth parameter 
investigated in the model. Note that the critical exponent for the magnetization (susceptibility) is a decreasing (an 
increasing) function of the growth parameter z. The critical noise qc increases with z, while the critical exponent 

ν1/  decrease with z. For all values of the critical exponents, we obtain υ ∼ 1 as expected.
By relating the critical exponents, we obtain the characteristic unitary line of the model showed in Fig. 7. Here, 

we plot the values of the critical exponents γ ν/  versus β ν2 / . The linear fit of the data yield 
= − . + .y x0 96(1) 1 02(1), and an averaged unitary exponent υ = .1 02(1) for the three-state majority-vote 

model on Barabási-Albert networks. We conjecture that this line is universal, regardless of the geometric struc-
ture of the network used in the model. Thus, one can use the volumetric scaling ξ ~ N with the unitary relation Eq. 
(17), and the Eqs. (18), (19) and (20) to obtain the critical exponents and the unitary line for any spin model 
under consideration, with or without a system size length clearly defined.

Figure 8 shows the plot of the rescaled (a) magnetization β νM q z N N( , , ) / , (b) susceptibility χ γ ν− ¯q z N N( , , ) / , 
and (c) Binder cumulant U(q, z, N) versus rescaled noise parameter − νq q N( )c

1/  for the growth parameter z ~ 14. 
Here, we used β ν = ./ 0 300, γ ν = ./ 0 44 and ν = .1/ 0 45 with qc = 0.5282. Other values for the growth parameter 
z exhibit the same features and the same qualitative results for the data collapse of the magnetization, susceptibil-
ity, and Binder cumulant. From our simulation results and analysis, we conclude that the three-state majority-vote 

Figure 6.  Plot at the critical point qc(z) for the logarithm of the (a) magnetization ln M(qc, z, N), (b) magnetic 
susceptibility ln χ(qc, z, N), and (c) ln [qc(N) − qc] versus ln N using z = 2, 5, 14, 20 and 50, with g = 1, 2, 3, 4 and 
5. Here, g is an integer used to better display the data. In all plots the error bars are smaller than the symbol size.

z qc /β ν γ ν/ /1 ν υ

2 0.2549(3) 0.102(4) 0.83(1) 1.01(2) 1.04(3)

3 0.3561(5) 0.141(4) 0.75(1) 0.82(3) 1.03(2)

4 0.4015(5) 0.197(5) 0.64(1) 0.65(2) 1.03(2)

5 0.4326(4) 0.219(5) 0.59(1) 0.61(3) 1.03(2)

6 0.4550(6) 0.249(5) 0.54(1) 0.53(1) 1.04(2)

7 0.4699(6) 0.244(5) 0.54(1) 0.53(1) 1.03(2)

8 0.4832(5) 0.261(4) 0.51(1) 0.51(1) 1.04(2)

10 0.5031(9) 0.299(2) 0.45(1) 0.48(1) 1.04(2)

14 0.5282(1) 0.300(3) 0.44(1) 0.45(1) 1.04(1)

20 0.5494(3) 0.307(3) 0.43(1) 0.47(1) 1.05(1)

25 0.5617(1) 0.309(4) 0.43(1) 0.44(1) 1.05(2)

50 0.5918(1) 0.326(4) 0.40(1) 0.41(1) 1.05(1)

Table 1.  The critical noise qc, the critical exponents β ν/ , γ ν/  and ν1/ , and the unitary relation υ, for the three-
state majority-vote model on Barabási-Albert networks with growth parameter z.
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model defined on Barabási-Albert networks and on the Erdös–Rényi random graphs belong to different univer-
sality classes when the volumetric scaling ξ ~ N is used33.

Unitary relation on regular networks.  To confirm the validity of our statements, we performed Monte 
Carlo simulations for the majority-vote model with two and three states on regular square lattices and cubic net-
works. From our simulations of the three-state majority vote model on cubic networks, we obtain the Fig. 9 that 
shows the (a) magnetization M(q, L), the (b) susceptibility χ(q, L) and the (c) Binder cumulant U(q, L) versus the 
noise parameter q, where N = L3. We observe some familiar results such as M(q, L) → 0 for q > qc, with L → ∞, 
and χ(q, L) that also exhibits a sharper peak as we increase L. From the Binder parameter, we find the critical 
noise of the model qc = 0.25230(2).

By performing numerical simulations for the majority-vote model with two and three states on regular square 
lattices and on cubic networks, we build the Table 2 with the critical exponents for the magnetization and suscep-
tibility. We also calculate the unitary relation υ and effective dimension d obtained for each model with the volu-
metric (ξ ~ N) and linear (ξ ~ L) scalings, respectively. We conclude that the critical exponents with the linear and 
volumetric scalings relate by β ν β ν= d/ /  and γ ν γ ν= d/ / , as expected by recalling that ξ ~ Ld.

In Fig. 10, we plot the logarithm of the magnetization, and magnetic susceptibility used to obtain the critical 
exponents for the majority-vote model with two and three states on a square lattice and cubic networks, where we 
used the volumetric scaling. Our results confirm that the unitary relation holds for this model on these networks, 
and it points that the effective dimension obtained by previous works with the majority-vote model on random 
graphs and on Barabási-Albert networks might be not equal to unity25,28,33,38,39.

Figure 7.  Plot of the characteristic unitary line y = −0.96(1)x + 1.02(1) estimated by the linear fit of the relation 
between the critical exponents β ν/  and γ ν/  for several values of the growth parameter z. The error bars are 
smaller than the symbol size.

Figure 8.  Data collapse for (a) the magnetization M(q, z, N), (b) the magnetic susceptibility χ(q, z, N) and (c) 
the Binder’s fourth-order cumulant U(q, z, N) for N = 1000, 2000, 3000, 5000, 10000, 15000 and 20000 with 
z = 14. Here, we used β ν = ./ 0 3, γ ν = ./ 0 44 and ν = .1/ 0 45. The error bars are smaller than the symbol size.
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Conclusion and Final Remarks
We have investigated the dynamics of the three-state majority-vote model for opinion dynamics on 
Barabási-Albert networks. We obtained the phase diagram and the critical exponents of the model, and we veri-
fied that the second-order phase transition occurs for networks with growth parameter z > 1. The critical expo-
nents γ ν/  and ν1/  decrease with z, while β ν/  increases. We also find that the critical noise qc is an increasing 
function of the growth parameter z, which converges to the infinite social temperature value 2/3 as z → ∞. In 

Figure 9.  (a) Magnetization M(q, L), (b) magnetic susceptibility χ(q, L) and (c) Binder cumulant U(q, L) 
for the three-state majority-vote model on cubic networks with L = 10, 20, 30 and 40 and periodic boundary 
conditions. In all plots the error bars are smaller than the symbol size.

Network
States 
(Q) qc /β ν /γ ν υ β/v γ/v d

Square 3 0.118(1) 0.067(1) 0.90(1) 1.03(1) 0.134(1) 1.80(1) 2.07(1)

Square 2 0.075(1) 0.062(1) 0.87(1) 0.99(1) 0.124(1) 1.74(1) 1.99(1)

Cubic 3 0.2523(1) 0.197(5) 0.64(1) 1.03(2) 0.33(1) 2.41(1) 3.07(3)

Cubic 2 0.1761(3) 0.154(2) 0.70(1) 1.01(1) 0.461(7) 2.11(1) 3.03(2)

Table 2.  The critical noise qc,  the critical exponents with the volumetric scaling ξ ~ Ld, the unitary relation υ, 
the regular critical exponents β/v and γ/v, and the effective dimension d when ξ ~ L for the majority-vote model 
with two and three states on regular networks.

Figure 10.  Logarithm of the magnetization (squares) and of the susceptibility (circles) for the majority-vote 
model with Q = 2 and Q = 3 states as a function of the logarithm of the system sizes N in for (a) square lattice 
and (b) cubic networks. We obtain for regular square lattices β ν = ./ 0 067(1), γ ν = ./ 0 90(1) and υ = .1 03(1)3  
for Q = 3, and β ν = ./ 0 062(1), γ ν = ./ 0 87(1) and υ = .0 99(1)2  for Q = 2. For a cubic network (b), we obtain 
β ν = ./ 0 107(5), γ ν = ./ 0 81(1) and υ = .1 02(2)3  for Q = 3, and β ν = ./ 0 154(2), γ ν = ./ 0 70(1) and 
υ = .1 01(1)2  for Q = 2.
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other words, if z is big enough, the three-state opinion society remains ordered, with a consensus, even for a high 
value of the social disorder (or preference for dissensus q). From Fig. 5 we estimate that this occurs for z ≥ 20, 
where qc ~ 2/3, indicating that it is harder to destroy consensus in a more connected society.

By assuming that near criticality, the correlation length ξ scales with the actual volume of the system ξ ~ N, we 
found that the new hyperscaling relation is equal to 1, regardless of the effective dimension of the network of 
interactions. Nevertheless, by performing Monte Carlo simulations we verified that the unitary relation 
υ β ν γ ν≡ + =2 / / 1 for all values of the growth parameter z investigated. The unitary relation was also verified 
for the majority-vote model with two and three states on regular square lattices and cubic networks, with well 
defined effective dimensions. Our analysis sheds light on a curious result of several works, where authors find that 
the effective dimension of different complex networks is equal to one25,28,33,38,39. We show that this result is a con-
sequence of the scaling used and that this is not the real dimension of those networks, excluding eventual coinci-
dences. Furthermore, the unitary relation here defined for a sociophysics model holds for other spin-like models 
in condensed matter systems, regarding the geometric dimensions in which these systems are embedded.

We remark that obtaining the effective dimension for some complex networks - such as the random graphs 
and the Barabási-Albert networks - using the finite-size scaling analysis near the critical points of such spin sys-
tems, and the relations between its critical exponents, remains a task to perform. Although other methods and 
scalings have been successfully developed46,47. Our results may suggest future research finding and using other 
finite-size scaling relations, such as some power-law with a characteristic length instead. We also recommend the 
use of the unitary relation (Eq. (17)) and the unitary line (Fig. 7), defined and discussed in this work, as a form 
investigation of the criticality of systems with complex interactions of unknown effective dimension, or with a 
linear size not precisely defined.
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