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The Effect of Planning, Strategy 
Learning, and Working Memory 
Capacity on Mental Workload
Thea Radüntz  

In our modern society, planning and problem solving are crucial for handling a wide range of situations. 
Investigation of the experienced mental workload connected to planning, strategy learning, and 
working memory capacity is of particular interest for adjusting conditions according to the mental 
state of the individual. In our study, we examined 21 subjects during a planning and a working memory 
task. We applied the method of Dual Frequency Head Maps (DFHM) from the electroencephalogram 
for capturing mental workload objectively. We evaluated the DFHM-workload index and performance 
data during the learning and main phase of the planning task and linked the results to subjects’ working 
memory capacity. The DFHM-workload index indicated that subjects with higher working memory 
capacity experienced a gradual decrease in mental workload during strategy learning of the planning 
task. However, the effect of learning on mental workload disappeared during the main phase.

Planning is a basic task in work and everyday life. In order to solve a problem, we firstly create a mental rep-
resentation of the current situation and the goal state and plan the steps we need for transforming the initial 
state to the goal state1. Thereby, we generate multiple sequences of sub-goal states, rate their consequences, make 
decisions, and carry out actions, while continuously monitoring the outcome2. During planning, the working 
memory capacity plays an important role for maintaining and coordinating the sub-goal sequences2–4. Working 
memory defines the ability to temporally maintain information in mind and is linked not only to planning and 
problem solving but also to comprehension, reasoning, and learning5. Furthermore, working memory load is 
strongly connected to the experienced mental workload6,7 that can be conceived as the amount of cognitive 
demands required for task solving related to the available cognitive resources8–11.

Mental workload was often linked to mental health and human performance12–18. Objective registration and 
evaluation of mental workload is particular important in order to minimize errors and increase the safety of 
persons. Especially in our modern society, where planning and problem solving are crucial for handling a wide 
range of situations, the experienced workload as connected to planning, strategy learning, and working memory 
capacity is of particular interest. Understanding the interrelation between these constructs may contribute to 
adjust conditions, facilitate learning, enhance planning, and reduce mental workload.

A number of authors studied planning using the Tower of Hanoi (TOH) task and its connection to working 
memory4,19–23 and found a connection between both24,25. Research on how planning and working memory relate 
to each other regarding their induced mental workload is rare. However, several researchers found that planning 
includes the interaction of working memory, inhibitory control, and cognitive flexibility and can be seen as a 
higher-order executive function that integrates core cognitive processes26–28.

The study by Schiff and Vakil29 investigated the connection between planning and learning. The authors 
employed the TOH task because they considered it to be particularly appropriate for the assessment of problem 
solving and learning of complex cognitive procedures. They stated that the learning phase starts with the first 
engagement with the task (i.e., subjects’ baseline performance) and continues with rapid improvements dur-
ing repeated practice within seconds to minutes. Study’s findings emphasized a trade-off between younger and 
older children during the learning phase that became evident through faster speed and greater accuracy for the 
older ones. Schiff and Vakil29 argued that there exists only one further study by Beaunieux et al.30 that examined 
learning effects by means of the TOH. Aside from this, working memory is needed for concept formation and 
for controlling processes as well as remember strategies that are all important for learning5. Several studies sug-
gested that learning can be facilitated by increased working memory capacity31–37. Thus, the relation between the 
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amount of available cognitive resources and cognitive demands required for task solving during learning should 
be reflected accordingly by registration of mental workload. A study that connects and investigates these aspects 
is not present yet.

Research also indicated a quick saturation after a fast learning effect29,38,39. Specifically, after a short learning 
phase the performance became stable for consecutive trials within a session38. Despite that, the performance 
might continue to improve again on subsequent daily sessions38. The time course of learning follows a curve 
that gradually reaches an asymptote but after intense practice and rehearsal the learned skill could become auto-
matic40. This trend of fast improvement followed by a floor effect of performance can be observed also in the fig-
ures of the TOH study by Schiff and Vakil29 for younger as well as older children. Human performance and mental 
workload were often linked to each other17,18 and their relation was frequently outlined by the Yerkes-Dodson 
curve41,42. Consequently, a quick saturation in performance after a fast learning effect, should be also prevalent in 
the registration of mental workload.

As far as we know there exists only one study related to mental workload and planning. Hardy and Wright43 
manipulated the difficulty of the TOH task and assessed the workload using the NASA-TLX questionnaire44 as 
a subjective method for workload registration. Thereby, workload ratings increased with increasing TOH diffi-
culty and individual performance on the TOH correlated with the subjective ratings. The authors suggested that 
mental workload did not only reflect task’s cognitive demands but also the cognitive abilities of the performer. 
That means that although subjects could reveal similar task performance, they might experience different levels 
of workload. Hardy and Wright43 stated that measuring workload during cognitive tests provided additional 
information about the cognitive state of the subject and captured individual differences.

However, the assessment of workload using subjective questionnaire methods has a number of drawbacks. 
Subjective registration of mental workload is only possible in retrospect and the questionnaire method might 
alter subject’s mental state by imposing additional demands. An objective and reliable method for measuring 
instantaneous mental workload continuously over time would be more beneficial.

Over the past 50 years, different physiological parameters (e.g., heart rate and derived parameters, electroder-
mal activity, body temperature, etc.) have been evaluated for their validity regarding continuous mental workload 
registration. In last century’s 90 s, the ability of the electroencephalogram (EEG) for registering mental workload 
was evaluated and served as a starting point for the use of the EEG in applied research. Basically, changes in the 
alpha-frequency (8–12 Hz) and theta-frequency (4–8 Hz) band powers related to mental workload have been 
confirmed many times. Thereby, the majority of workload studies dealt with the analysis of the EEG during cog-
nitive tasks related to working memory and executive control45–49. In a review article, Borghini et al.50 provided 
a detailed overview of the measurement of neurophysiological signals for the determination of mental workload 
and confirmed essentially the known relations. In recent years, classifiers were increasingly used for the separa-
tion of workload levels. The feature vectors derived from the EEG revealed varying complexity and extent, and 
frequency bands were taken differently into account. The used EEG parameters were, for example, the amplitude 
of the EEG, spectral power of different frequency bands and different EEG channels7,51–55. The focus was on 
frontal, parietal, and occipital EEG channels according to previous findings. Independent component analysis 
(ICA) was used to determine specific reactions of spatio-temporal different sources56 and allowed the successful 
detection and elimination of artifacts57–59.

Nevertheless, different cognitive strategies in task solving, both intra- and inter-individually, can influence the 
classification results of mental workload. Additionally, the question arises whether machine learning algorithms 
provide reliable and reproducible results over time. In particular, the need for appropriate retraining of the clas-
sifier regarding subjects and tasks poses additional demands for the investigation of the interrelations between 
planning, strategy learning, working memory capacity, and mental workload. To the best of our knowledge, there 
is no other study currently available that investigated the interactions of working memory, learning effects during 
planning, and objective mental workload registration using the EEG.

In our prior work we developed a mental-workload classifier that does not need retraining, neither for new 
subjects nor for new tasks60. In a laboratory study conducted with 54 subjects which executed well-established 
cognitive tasks, we developed the so-called Dual Frequency Head Maps (DFHM). These head maps consist of 
personalized spectral features and their spatial occurrence (i.e., frontal theta-band and parietal alpha-band pow-
ers). Support vector machines are used for classification in three classes: low, moderate, or high workload. Under 
laboratory conditions, we successfully proved the DFHM method as universally applicable for mental-workload 
indexing.

In the current study, we applied the DFHM method for capturing mental workload objectively during a plan-
ning and a working memory task. We employed the TOH as a planning task and the automated orientation span 
(AOSPAN) task as a working memory task. The aim of our study was the investigation of the effect of planning, 
strategy learning, and working memory capacity on mental workload. In a first step, we aimed to show that a 
higher-level executive function like planning involving several core cognitive processes26–28 imposes a higher 
mental workload than a working memory task as it binds more cognitive resources. Next, we investigated inter-
relations between planning, strategy learning, working memory capacity, and mental workload according to the 
last two hypotheses.

 1. Execution of a planning task induces higher mental workload compared to a working memory task.
 2. A higher working memory capacity contributes to a better strategy learning and thus to a gradual decrease 

in mental workload during the learning phase of the planning task.
 3. After the learning phase, the effect of strategy learning on mental workload disappears during increasing 

task load.
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Methods
Procedure, Tasks, and Subjects. For our investigation we employed the TOH and AOSPAN tasks. Their 
implementation was realized with the E-Prime application suite. All subjects executed both tasks in counterbal-
anced order.

The TOH task consists of three pegs with discs of graduated size. Subjects were asked to transform the starting 
configuration into a given goal configuration (Fig. 1) in as few moves as possible. For this, they had to select a 
top disc from the source peg and place it to a destination peg. They were allowed to move only one disc at a time 
and they were not allowed to place big discs on smaller ones. The experiment started with a small instruction 
procedure where the TOH task was explained to the subjects. For familiarizing themselves with the clicking 
procedure during the task, subjects were asked to execute three trials with 1, 2, and 3 moves required to reach 
the goal configuration. Thereafter, the main experiment started including a learning phase and a main phase. The 
learning phase consisted of 3 trials with 3 discs each and 5, 6, and 7 moves required to reach the goal state. The 
main phase consisted of 3 trials with 4 discs and 7, 11, and 15 moves. In order to reach the goal-state configura-
tions with the least-possible moves, subjects were instructed to plan their actions before starting. The number of 
least-required moves was given to them before each trial. If a move was not optimal and would result in a greater 
number of moves, they got an error message and had to start the trial again. There was no time limit set, neither 
for the planning time nor for task solution in general, for avoiding the tendency of a speed and accuracy trade-off. 
Furthermore, subjects should make full usage of the time before their first move, which was used later for perfor-
mance evaluation of planning time, instead of planning during the movements.

The AOSPAN task was administered as a working memory task in the version developed by Unsworth et 
al.61. It was translated in German and adapted accordingly. Subjects were asked to memorize letters in the order 
presented while simultaneously solving math problems. The math problems required to click as soon as subjects 
knew the answer. After the click a number was presented and subjects had to judge if it was the right answer to the 
problem. Then a letter to be memorized was shown. At the end a recall slide was presented asking them to select 
the letters shown in the correct order. Finally, subjects got feedback about both their memory and math perfor-
mance. Furthermore, the subjects were instructed to keep the percentage number indicating their math perfor-
mance above 85%. The AOSPAN training took place directly before the actual task as described in Unsworth et 
al.61. The math practice of the task aimed to calculate for each person how long they needed to solve the math 
problems. Each individual’s mean (plus 2.5 SD) was used during the main AOSPAN task as a time limit for the 
math operations in order to account for individual differences. According to Unsworth et al.61, the time limit 
serves to prevent participants from rehearsing the letters when they should be solving the operations.

The participating subjects needed about 25 min to complete both tasks. Performance evaluation for the TOH 
task was done by analysis of individual error rates and planning time until their first move. The working memory 
capacity of the subjects reflected by the AOSPAN task was calculated by means of the sum of correctly recalled 
letters from only the sets in which all characters were recalled in correct serial order. Similar to Unsworth et al.61, 
we refer to it as absolute score.

We examined 21 subjects in the age between 22 and 64 years (2 female, 19 male, mean age 38 ± 11). All 
subjects had a background in science or engineering associate education. All of the investigations acquired were 
approved by the local review board of our institution and complied with the tenets of the Declaration of Helsinki. 
All procedures were carried out with the adequate understanding and written consent of the subjects.

EEG and DFHM-Workload index. Biosignal processing and all calculations were done with MATLAB.
For EEG registration we used g.tec’s g.LADYbird/g.Nautilus system with 25 active electrodes placed at posi-

tions according to the 10–20 system (Fig. 2). Registration was carried out with a sample rate of 500 Hz and with 
reference to electrode Cz. For signal recording we used g.tec’s Matlab interface.

After recording, the EEG was filtered with a bandpass filter (order 100) between 0.5 and 40 Hz. Independent 
component analysis (ICA, Infomax algorithm62) for artifact rejection was applied to the signal. In order to 
increase topographical localization, we applied a simple Hjorth-style surface Laplacian filter using 8 neighbours63. 
This spatial high-pass filter was aimed to attenuate large-scale scalp signals and amplify localized signals.

The artefact-free EEG was transformed to average reference and cut into segments of 1 s length, overlapping by 
0.5 s. By means of Fast Fourier Transformation (FFT) we computed the workload relevant frequency bands (theta: 
4–8 Hz, alpha: 8–12 Hz) over the segments and generated the DFHM as outlined in the article by Radüntz60. In 
brief, we applied a theta-bandpass filter to the signals of the frontal electrodes and an alpha-bandpass filter to 
the signals of the parietal electrodes and calculated for each participant, each electrode, and each segment the 
z-scores of theta and alpha band power. The compilation of the z-scores of the theta band power from the frontal 

Figure 1. Computerized version of Tower of Hanoi. Subjects were required to transform the starting 
configuration into the goal configuration by three moves.
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electrodes and alpha band power from the parietal electrodes constituted the DFHM for each EEG segment. The 
individual mean and standard deviation for z-score calculation were obtained from subject’s segments of the first 
minute of EEG recordings. These consisted not only of the two tasks relevant for this article but also of six rest 
measurements and eight different workplace tasks familiar to the subjects. They were conducted during a follow-
ing two-day experiment and are not subject of this article.

We used the already trained SVM classifiers from the laboratory study60 to classify the DFHM of each subject 
from the tasks’ segments. Every 0.5 s we obtained a value determining if the segment belongs to low, moderate, 
or high workload. We applied a moving-average time window of 6 s and adjusted the result in order to gain a 
DFHM-workload index as percentage value between 0 (all DFHM classified as low) and 100 (all DFHM classified 
as high).

Statistical analysis. For evaluating our first hypothesis confirming the expected higher mental workload 
during the the planning task, we calculated the DFHM-index average over the TOH and AOSPAN tasks. The 
Shapiro-Wilk test did not show normal distribution for the differences of the DFHM-index averages between 
both tasks. Thus, a Wilcoxon signed-rank test was calculated.

For investigating the effect of working memory capacity on mental workload during strategy learning of a 
planning task (hypothesis 2), we employed the DFHM-index averages of the three TOH trials of the learning 
phase. The Shapiro-Wilk test showed a normal distribution for the three DFHM-index averages. Thus, we carried 
out an analysis of variance (ANOVA) with the items’ mean DFHM index as dependent variable. We utilized a 
repeated-measures design with one within-subject factor for the number of required moves (three levels: 5, 6, and 
7 moves) and one between-subject factor for the working memory capacity (two levels). The latter was calculated 
using the median of the absolute score of the AOSPAN task. Subjects with an absolute score below the median of 
43 were classified as low working memory capacity subjects (n = 10), the remaining as subjects with high mental 
workload capacity (n = 11). General differences between the levels were examined and tested with a post-hoc test 
(Bonferroni corrected). Additionally, we evaluated subjects’ planning times and the number of errors (i.e. number 
of restarts) for each TOH trial. The Shapiro-Wilk test did not show normal distribution, neither for the planning 
time nor for the number of errors. For achieving a normal distribution for the further analysis, we computed 
the logarithm of the planning time. Thus, we were able to proceed in the same way as described above and con-
duct a repeated-measures mixed ANOVA with one within-subject and one between-subject factor. Computation 
of the logarithm of the number of errors did not yield normal distribution. Hence, statistical analysis of the 
number of errors was conducted via non-parametric Friedman test of differences among the repeated measures. 
Dunn-Bonferroni post-hoc tests were calculated for the examination of the differences between the levels.

Figure 2. EEG layout used.

https://doi.org/10.1038/s41598-020-63897-6


5Scientific RepoRtS |         (2020) 10:7096  | https://doi.org/10.1038/s41598-020-63897-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Finally, we addressed the issue of mental workload related to planning after the learning phase (hypothesis 3). 
We employed the DFHM-index averages, planning times, and number of errors of the three TOH trials during 
the main phase. The Shapiro-Wilk test showed similar results for all variables as during the learning phase. We 
carried out two repeated-measures mixed ANOVA with one within-subject and one between-subject factor, one 
for the DFHM index and one for the logarithm of the planning time. A non-parametric Friedman test of differ-
ences was conducted for the number of errors among the repeated measures. Dunn-Bonferroni post-hoc tests 
were calculated for the examination of the differences between the levels.

Statistical calculations were conducted using SPSS and the significance threshold was set at 5%.

Results
Planning task causes higher mental workload than working memory task. The Wilcoxon signed-
rank test indicated significant mental workload differences between the TOH and AOSPAN tasks (T = 26, z = 
−3.11, p = 0.002, r = 0.48). The mental workload assessed by the DFHM-workload index from the EEG was 
higher for the TOH than for the AOSPAN task. Descriptive statistics are presented in Table 1 and Fig. 3 shows 
the results.

Higher working memory capacity contributes to workload decrease during strategy learn-
ing of planning. The mixed ANOVA yielded a significant interaction effect of requested moves and work-
ing memory capacity on mental workload (F(2, 38) = 3.62, p = 0.036, η2 = 0.159). For subjects with higher 
working-memory capacity the DFHM-workload decreased during the learning phase. Post-hoc analysis indi-
cated that workload decreased significantly from the initial to the second (p = 0.031) and third trial (p = 0.025). 
For subjects with lower working-memory capacity, we were not able to obtain any significant workload differ-
ences during the learning phase. Evaluation of planning time and errors did not reveal any significant effects for 
the number of requested moves or subjects’ working memory capacity during the learning phase. Descriptive 
statistics are presented in Table 1 and Fig. 4 presents the results.

Learning effect on mental workload disappears after the learning phase. During the main phase, 
no significant learning effect could be obtained. This applied for mental workload as well as for planning time 
where mixed ANOVA calculations showed no significant effects of the number of requested moves or subjects’ 
working memory capacity. The non-parametric Friedman test revealed a general significant change in the number 
of errors for the lower working memory capacity subjects (χ2 = 8.960, df = 2, n = 10, p < 0.011). Nevertheless, 
subsequently conducted post-hoc tests did not reveal significant differences between the levels. For the higher 
working memory capacity subjects this effect was not prominent at all. Descriptive statistics are presented in 
Table 1 and Fig. 5 illustrates the results.

DFHM-workload index Planning time [s] Errors

Condition Mean ± SD, median [min, max] Mean ± SD, median [min, max] Mean ± SD, median [min, max]

AOSPAN, whole taska 57.5 ± 6.0, 56.6 [48.4, 67.5] – –

TOH, whole taska 62.5 ± 7.4, 63.6 [42.5, 73.9] – –

TOH learning, 5 moves

Lower WM capacityb 63.0 ± 6.9, 64.8 [52.2, 72.0] 22.5 ± 16.2, 20.2 [5.1, 58.5] 1.2 ± 2.2, 0 [0, 7]

Higher WM capacityc 65.4 ± 10.3, 65.0 [43.8, 81.5] 20.5 ± 12.2, 17.1 [5.3, 42.5] 0.9 ± 1.2, 1 [0, 4]

TOH learning, 6 moves

Lower WM capacityb 62.9 ± 7.8, 64.8 [47.9, 70.4] 14.1 ± 9.6, 12.1 [4.9, 37.5] 0.6 ± 1.6, 0 [0, 5]

Higher WM capacityc 61.8 ± 11.1, 62.9 [35.3, 75.5] 16.2 ± 11.8, 10.3 [5.1, 38.0] 0.5 ± 0.9, 0 [0, 3]

TOH learning, 7 moves

Lower WM capacityb 64.9 ± 8.1, 66.4 [51.8, 77.0] 20.3 ± 13.4, 17.1 [6.9, 45.4] 1 ± 1.3, 0.5 [0, 4]

Higher WM capacityc 60.7 ± 9.0, 59.8 [48.4, 79.0] 15.7 ± 11.2, 11.8 [4.5, 36.0] 0.6 ± 0.7, 1 [0, 2]

TOH main, 7 moves

Lower WM capacityb 63.9 ± 8.0, 66.0 [48.1, 76.6] 10.9 ± 7.8, 7.8 [4.5, 26.4] 0.2 ± 0.6, 0 [0, 2]

Higher WM capacityc 60.2 ± 10.7, 63.4 [40.0, 73.2] 15.3 ± 9.7, 10.5 [5.2, 35.0] 0.2 ± 0.4, 0 [0, 1]

TOH main, 11 moves

Lower WM capacityb 63.4 ± 6.1, 64.3 [53.1, 70.4] 20.1 ± 17.7, 15.4 [6.8, 64.6] 1.1 ± 1.4, 1 [0, 4]

Higher WM capacityc 63.1 ± 11.4, 62.1 [37.6, 78.7] 16.5 ± 13.4, 9.0 [2.6, 38.2] 0.6 ± 0.8, 0 [0, 2]

TOH main, 15 moves

Lower WM capacityb 64.3 ± 5.8, 65.3 [53.8, 71.4] 18.8 ± 10.4, 18.2 [8.9, 45.5] 2.6 ± 4.2, 1 [0, 13]

Higher WM capacityc 64.4 ± 10.0, 66.7 [42.7, 76.0] 19.4 ± 15.7, 12.8 [6.5, 56.3] 1 ± 1.6, 0 [0, 5]

Table 1. Descriptive statistics of the dependent variables related to research hypotheses’ conditions (WM: 
working memory). Note. aAll subjects: N = 21, bSubjects with lower WM capacity: N = 10, cSubjects with higher 
WM capacity: N = 11.
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Discussion
In our study, we investigated the effect of planning, strategy learning, and working memory capacity on mental 
workload. For assessing mental workload, we used the DFHM method that was previously developed in a labora-
tory setting and is based on the EEG. In the current study, 21 subjects participated and completed the TOH and 
AOSPAN tasks in randomized order. We registered the EEG and computed the DFHM-workload index for each 
subject and task. We did not retrain the classifiers neither for the new tasks nor for the new subjects.

The DFHM-workload index was significantly higher for the TOH than for AOSPAN task as stated by hypoth-
esis 1. This indicated that planning imposed higher mental workload suggesting that more cognitive resources 
were required during planning than working memory task. The result was consistent with literature that stated 
that planning is a higher-order executive function that integrates core cognitive processes such as working mem-
ory, inhibitory control, and cognitive flexibility26–28. Although attentive readers could argue that the time limit set 
for the math operations during the AOSPAN task might result in time pressure and increase mental workload, 
our results did not support this assumption.

More insight regarding intra-individual differences linked to strategy learning and mental workload during 
planning was gained from subject clustering by means of the absolute score from the AOSPAN task as an indi-
cator for subjects’ working memory capacity. During the learning phase of the TOH task, we were able to obtain 
a significant interaction effect between task load and working memory capacity on mental workload. Thereby, 
mental workload of subjects with higher working memory capacity significantly decreased while the workload 
of subjects with lower working memory capacity did not yield significant changes. The effect was particularly 
prominent for the mental workload assessed by the EEG whereas the number of errors and planning time showed 
only a weak tendency in that direction. This fits well the assumption by Hardy and Wright43 that mental workload 
reflects the cognitive abilities of the performer, captures individual differences, and reveals additional information 
about the cognitive state although task performance might be similar. We concluded that a higher working mem-
ory capacity contributes to workload decrease during strategy learning of planning as suggested by hypothesis 
2. Nevertheless, learning is traditionally associated with a change in behavior64 and one could ask if a reduction 
in mental workload can indicate a learning process when there is no such change. According to the definitions 
of different authors8–11, mental workload reflects the amount of cognitive resources required for task solving. In 
our experiments, subjects with higher working memory capacity needed less cognitive resources for maintain-
ing their performance although the number of required moves gradually increased during the learning phase. 
Consequently, we suggested that this result indicated an initial learning process on neurological level that might 
produce behavioral changes after longer practice. Considering the obtained tendency of performance enhance-
ment, this assumption seems rational. However, further studies should allow subjects to perform the same version 
of the task more times for providing statistical-significant evidence. A possible explanation that performance 
changes did not reach the significance level might be also related to the higher educational background of our 
subjects. This might have impacted the performance by a floor effect as well. Finally, we want to call attention to 
a study by Huang et al.65 with supporting results for our assumption. The research was concerned with driving 
learning. The authors found that later stages of motor learning increased metabolic efficiency but did not reveal 
any gains in performance.

As task load of the planning task increased during the main phase of the TOH, the learning effect disappeared 
and mental workload increased regardless of subjects’ working memory capacity. The DFHM-workload index of 
both subject clusters converged at the most demanding trial. Conforming to hypothesis 3 results indicated a quick 
saturation after the short learning phase. This was particularly true for subjects with higher working memory 
capacity that have previously experienced a fast learning effect. Even though we were able to detect a tendency to 
more errors for the subjects with lower working memory capacity, the pairwise comparisons between the levels 
did not become significant for none of our variables. The subjects with lower working memory capacity did not 
seem to have learned the task at all, since at no point did the DFHM-workload index display refinement nor did 
performance improve. In addition, in the main phase of the experiment, the performance of the low working 
memory capacity group tended to reduce with no apparent change in workload. In other words, although sub-
jects invested the same amount of cognitive resources their performance got worst with increasing task difficulty. 
All facts together support our previous suggestion that mental workload indicates an initial learning process on 
neurological level that may result in behavioral changes during the main practice.

Figure 3. Mean DFHM-workload index during TOH and AOSPAN tasks (Wilcoxon signed-rank test 
differences: **0.001 < p ≤ 0.01; error bars indicate 95% confidence interval).
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A limitation of our study was our small sample set. Future studies should involve more females, subjects with 
different educational levels, and also older participants. In our study, the educational background of our sub-
jects was in science or engineering and equally high among them. Affinity with the underlying tasks might have 
affected subjects’ performance and mental workload. The investigation of older subjects in connection to learning 
and mental workload is particularly relevant and meets the evolving needs and expectations of the demographic 
change of our society and the challenge of life-long learning. An objective method for continuous mental work-
load registration can offer a way for understanding procedural learning, enhancing skill acquisition, and identi-
fying possible risks.

To conclude, our study was concerned with the neuronal registration of mental workload as connected to 
planning, strategy learning, and working memory capacity. The topic is of particular interest because of the 
importance of these constructs for handling a wide range of situations in our digitized world. Understanding the 
interrelation among them may contribute to adjust conditions, facilitate learning, enhance planning, and reduce 
workload in accordance to the cognitive abilities of the individual. To the best of our knowledge, there is no other 
study that investigated planning and mental workload by means of the EEG. We demonstrated the capability of 
the DFHM index from the EEG to successfully register mental workload and suggest the DFHM method as a 
useful tool for further studies. In our future research, we aim at employing the DFHM index for the investigation 
of mental workload related issues of the modern society.
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Figure 4. Mean values of DFHM-workload index (left), logarithm of planning time (middle), and errors (right) 
during the learning phase of the TOH task for subjects with lower (blue) and higher (red) working memory 
capacity as indicated by the absolute score of the AOSPAN task (Bonferroni corrected post-hoc tests: *0.01 < p 
≤ 0.05; error bars indicate 95% confidence interval).

Figure 5. Mean values of DFHM-workload index (left), logarithm of planning time (middle), and errors 
(right) during the main phase of the TOH task for subjects with lower (blue) and higher (red) working memory 
capacity as indicated by the absolute score of the AOSPAN task (error bars indicate 95% confidence interval).
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