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Expected spatial patterns of alien 
woody plants in South Africa’s 
protected areas under current 
scenario of climate change
Bezeng S. Bezeng1,2 ✉, Kowiyou Yessoufou1, Peter J. Taylor2 & Solomon G. Tesfamichael1

Although protected areas (PAs) are declared to provide sanctuaries for biodiversity, they are 
increasingly threatened by the synergistic effects of anthropic factors, invasive alien species and 
climate change. Consequently, interventions are required to minimize the impacts of these threats 
on PAs’ integrity. To inform these interventions in the South African context and under the current 
climate change scenario, we tested for geographic patterns of alien woody species across the network 
of 1,453 PAs using three alien invasion indices – alien species abundance, invaded area ratio and alien 
species richness. Our analysis shows that, under current climate change scenario, none of the PAs 
would be effective in shielding against alien plants and PAs that are geographically close tend to share 
similar invasion patterns. In addition, PAs that are hotspots of alien species are also geographically 
clustered but these findings are biome-dependent. Our outlier analysis reveals not only an island of 
disproportionately rich PAs in alien species, but also identifies some alien-poor PAs. We suggest that 
PAs that are hotspots of alien species as well as outliers of disproportionately rich PAs in alien species 
should be priority in monitoring and invasion control programmes in the context of the ongoing climate 
change.

Protected areas (PAs) represent key ecological units for the conservation of native species to ensure the contin-
uous provision of ecosystem goods and services1–4. However, mounting evidences now show that invasive alien 
species threaten several PAs across the globe5–9, causing significant loss of biodiversity and jeopardizing the eco-
logical integrity of PAs. For example, a recent global study revealed that invasive alien species, which are ranked 
fifth on the list of the global drivers of biodiversity loss (see ref. 10), can be associated with the loss of up to 58% 
of amphibians, birds, mammals, plants, and reptiles11. As such, if invasive alien species are poorly managed, the 
future persistence and values of many PAs would be severely impacted12. This problem is further compounded by 
the synergistic interactions between anthropic factors, invasive alien species and climate change13,14.

A common approach to assess and monitor alien plants and related invasion characteristics employs the 
machine learning algorithms that use climate data as inputs [e.g.15–18]. This approach is particularly useful in 
developing early warning systems that inform effective alien plant management19,20. A typical example in this 
regard is Environmental Niche Modelling (ENM), which predicts a species’ past, current, and future areas of 
suitability by relating environmental parameters with a species’ geographic distribution15,21–24. Although this 
approach provides information that are solely location-related, it has found widespread applications in the field of 
ecology15,25,26. A number of studies have been conducted to map the spatial distribution of plants worldwide. For 
example, a recent study identified localized hotspots and coldspots of seagrass in eastern Canada27. Such analysis 
demonstrates the simplest form of invasion area mapping by focusing on a single species. Also, similar studies 
mapped hotspots and coldspots of invasive species diversity and spatial coverage by dividing a part of the USA 
forested ecosystems into hexagons of 1,452 km2 (e.g. ref. 28). Although the approach followed by ref. 28 is applica-
ble to a large-scale assessment of alien geographic patterns, it did not provide information specific to the invasion 
pressures that different types of PAs are facing.
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Furthermore, despite the growing interest in spatial pattern analysis of vegetation, simultaneous comparisons 
of invasion patterns across different land cover types and PAs are understudied29,30. Of relevance though is the 
study by ref. 9 who compared invasion patterns across major biomes at a global scale. Although their investigation 
incorporated PAs, it did not capture national-level biome categorization that has more localized details or relevant 
information for conservation, which might be overlooked in global-scale analysis. In addition, the same study 
targeted 36 species that are considered the worst global invaders9, with again, no clear highlights of how invasion 
at local scale may inform the management of invasive species in PAs at country-level. More critically, we have 
limited understanding of how different PA classifications perform in the face of alien invasion particularly in the 
face of climate change threat. This understanding is necessary since different classifications of PAs are expected 
to influence invasion patterns31.

The present study aims to characterize the expected spatial distribution of alien woody vegetation across all 
South Africa’s current network of PAs under current climate change. Specifically, we aim to (1) assess the spatial 
distribution of selected alien invasion indices, and (2) compare spatial distribution patterns across biomes and 
PA classifications. We focused our analysis on three invasion indices: i) abundance of invaders; referring to the 
total count of alien species in PAs, ii) ratio of invaded area; quantified as the size of invaded area in a PA divided 
by total size of the PA, and iii) species richness of invaders; referring to the count of alien species within a PA. 
Spatial patterns of these indices were analysed using global spatial autocorrelation, hotspot analysis and outlier 
analysis. The global spatial autocorrelation, which is analyzed using the Global Moran’s I index, shows generic 
spatial patterns across the study area. The hotspot analysis, expressed using Local Moran’s I index, provides an 
indication of high and low values of invasion indices at localized spatial scale. The outlier clustering, quantified 
using Anselin Local Moran’s I index, builds on hotspot analysis by identifying unusual concentration level within 
a neighbourhood of invasion status (hotspot or coldspot). The study uses more than 1,400 PAs found in South 
Africa across all biome types of the country. As such, it is the most comprehensive study in the country’s PAs that 
are affected by many invasive species15,32,33.

Results
Spatial patterns of invasion indices.  Using the Global Moran’s I statistic, our analysis shows that all 
invasion indices are significantly clustered (Table 1), that is, PAs that are geographically close tend to share similar 
invasion indices.

PAs with high abundance of alien plants (>33,843 total count of alien plants) are clustered in the north-east, 
eastern and southern parts of the country (Fig. 1A); these areas are located mostly in Savannah, Grassland, Fynbos 
and Albany Thicket biomes. PAs with lower abundance of alien plants are also clustered but predominantly in the 
central and western parts of the country, coinciding mainly with the Succulent Karoo and Nama-Karoo biomes. 
Similar geographic clustering patterns are also observed for species richness (Fig. 1B). However, the spatial pat-
tern of PAs based on invaded area ratio is more widespread than the other two invasion indices (Fig. 1C; see also 
Fig. 1D relating all three invasion indices to the most dominant biome types in each PA).

Furthermore, the distribution analysis taking into account localized neighbourhood patterns was run using 
the Getis-Ord Gi statistic. This analysis produced hotspots and coldspots of invasion indices (Fig. 2). Hotspots 
of species abundance are found in the eastern (Savannah and Grassland Biomes) and south-western (Fynbos 
biome) parts of the country while coldspots of species abundance are distributed in the geographic band stretch-
ing from the central to the northern portion of the country within Nama-Karoo and parts of Grassland and 
Savannah biomes (Fig. 2A). Random distribution patterns are shown mainly in the western and southern parts of 
the country. A distribution pattern similar to that reported for species abundance was observed for species rich-
ness; however, the entire southern part of the country (Fynbos and Albany Thicket biomes) is classified as hotspot 
of species richness (Fig. 2B). Looking at the invaded area ratio (Fig. 2C), hotspots are found predominantly in the 
south-eastern part (mainly in Albany Thicket biome) of the country while coldspots are located in the northern 
part (Savannah biome; see Fig. 2D for easy referencing of the different biome types to the hotspot and coldspot 
distributions).

A large number of PAs are located within hotspot (n = 492) and coldspot (n = 556) of abundance of alien 
species (Table 2). More than half of PAs are classified as coldspots or hotspots of invaded area ratio; in contrast, 
the distribution of invaded area ratio appears to be random in approximately 3% of PAs. However, with species 
richness of alien species, more than 96% of PAs belong to hotspot or coldspot categories (Table 2).

Finally, the distribution of outliers-within-clusters of invasion indices assessed using the Anselin Local 
Moran’s I statistic is shown in Fig. 3. This analysis reveals different geographic scenarios. First, there are regions 
that have no outliers of PAs, that is, PAs in these regions share similar invasion indices. This is the case for 108 PAs 
in the far south-western part and in the eastern parts of the country where alien abundance is equally high in all 
108 PAs (HH category of PAs; Supplementary Table S1). Second, some PAs can be regarded as islands (n = 9) in 
their regions as they harbour unusually higher alien abundance than their neighbouring PAs (HL category); these 
are found towards the central to northern part of the country (Supplementary Table S1). A significant number of 

Invasion indicator
Moran’s I 
index Z-score

Distribution 
pattern

Species abundance 0.055059 8.41*** Clustered

Invaded area ratio 0.129343 19.04*** Clustered

Species richness 0.572429 83.61*** Clustered

Table 1.  Global Moran’s I and associated results of invasion status indicators. ***p < 0.01.
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Figure 1.  Geographical distributions of the clusters for each invasion index: (A) species abundance (B) species 
richness (C) invaded area ratio (D) geographic pattern of biomes highlighting the most dominant biome types 
in each PA. Maps were prepared by the authors using ArcGIS software version 10.6.

Figure 2.  Distribution of protected areas according to clustering extent of (A) species abundance (B) species 
richness (C) and invaded area ratio High clusters (hotspots) are represented by high positive Gi Z scores while 
low clusters (cold spots) are represented by low negative Z scores. Z values in between show non-significant 
clustering patterns. (D). Biomes are shown to provide reference to the hotspot and cold spot distributions. Maps 
were prepared by the authors using ArcGIS software version 10.6.
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PAs are identified as outliers of high species richness and invaded area ratio. However, they are both concentrated 
in the northern part. In general, PAs in HL category are found predominately in the Savannah biomes for all indi-
ces. The low abundance outliers within the high abundance clusters (LH category) occur in the eastern and far 
south-western parts (Fig. 3A) with a total number of 142 PAs (Supplementary Table S1). Similar patterns of LH 
distribution were observed for species richness; however, the outliers in the south-west is comprised of more PAs 
than in the east (Fig. 3B). Outliers in terms of invaded area ratio were more widespread than those of the other 
indices, stretching from the central to the north-eastern part of the country (Fig. 3C). Similar to HL distributions, 
a generic pattern was observed for LH category for the three indices mostly in the Grassland and Fynbos biomes 
(Fig. 3; see Fig. 3D relating the different biome types for easy referencing to the distribution of outliers).

Invasion comparison by biome type.  PAs in Forest biome contain the highest mean number of 
alien woody species while PAs within the Succulent Karoo biome have the lowest mean number of invaders 
(Supplementary Table S2). The invaded area ratio appears to be comparable across biomes with the mean ranging 
between 86 (Azonal Vegetation) and 96 (Succulent Karoo). A considerable variation is observed among biomes 
for species richness of alien plants, with an average of 46 species recorded in PAs found in Forest biome. By 
comparison, Nama-Karoo and Succulent Karoo biomes have the lowest mean species richness (Supplementary 
Table S2).

In term of pairwise comparison across biomes, 19 pairs out of the 28 possible pairwise comparisons, showed 
significant differences in terms of the original values of species abundance (Fig. 4). For example, there was signif-
icant difference between the Forest biome and all the other biomes, except the Albany Thicket biome. Similarly, 
the pattern of alien species richness was significantly different from most of the remaining biomes (Fig. 4). As for 
the invaded area ratio, its pattern did not vary significantly among most biome types, except Azonal Vegetation 
vs. Fynbos (Fig. 4). Similarities in the three invasion indices were observed consistently between Nama-Karoo vs. 
Succulent biomes, Savannah vs. Grassland as well as Azonal Vegetation vs. Forest biomes.

In addition, the comparison of the spatial distribution pattern of species abundance using hotspot statis-
tic (Getis-Ord Gi) showed significant differences among PAs, depending on the dominant biomes in these PAs 
(Fig. 4). For instance, species abundance varied significantly between the Savannah biome and all the other 
biomes, except the Nama-Karoo. Forest and Grassland had significant differences in terms of species abun-
dance with all other biomes, except for two biomes. In contrast, the Nama-Karoo and Succulent Karoo had 
non-significant differences with six other biomes. The results for invaded area ratio and species richness compar-
isons were generally similar to those obtained for species abundance.

The pairwise comparisons of biomes based on outlier statistics (Anselin Local Moran’s I statistic) showed sig-
nificant differences among biomes (Fig. 4). In particular, the Savannah biome varied significantly from all other 
biomes except the Nama-Karoo, whilst Grassland had significant difference with six other biomes. In contrast, 
the Nama-Karoo, Azonal Vegetation, Albany Thicket, Forest and Succulent Karoo had comparable outlier-cluster 
patterns of species abundance with six other biomes. Compared to species abundance, few significant differences 
were observed for outlier-cluster pattern of invaded area ratio. Nearly all the significant differences in invaded 
area ratio were observed between Grassland and the rest of biomes as well as between Fynbos and Albany Thicket. 
The outlier-clustering patterns of species richness varied significantly among a number of biomes. The Succulent 
Karoo and Albany Thicket had significant differences with five other biomes, while the Nama-Karoo had an 
outlier-cluster pattern comparable with all the other biomes, followed by Azonal Vegetation, Forest and Fynbos 
with each showing similarity with five biomes.

Invasion comparison by PA classifications.  The grouping of PAs by class shows that PAs in Mountain 
Catchment Area has the highest mean abundant value of alien plants (n = 36,373; Supplementary Table S2). 
Unlike the per-biome observations, there were more variations in the mean invaded area ratio of PAs among 
classifications with Forest Nature Reserve, Nature Reserve and Special Nature Reserve having the highest mean 
invaded area ratio. However, the statistics for Special Nature Reserve is based on only one PA and thus may not 
be considered conclusive. PAs in Mountain Catchment Area, Forest Nature Reserve and Forest Wilderness Area 
have the highest mean number of alien woody species (n ≥ 40).

The comparisons between PA classifications using the original invasion indices were relatively similar for the 
three invasion indices (Fig. 5). Notably, significant differences in species abundance were observed between PAs 
under Nature Reserve vs. each of the other classes. In comparison to species abundance, most of PA types showed 
significant difference in terms of invaded area ratio. For instance, invaded area ratio of PAs in Forest Nature 
Reserve varied significantly from those in four other PAs. Significant differences in species richness between PA 
types were largely similar to those observed for species abundance (Fig. 5).

Status

Species abundance Invaded area ratio Species richness

GiZ* Number of PAs GiZ* Number of PAs GiZ* Number of PAs

Hotspots ≥1.65 492 (33.9%) ≥1.71 711 (48.9%) ≥1.64 468 (32.2%)

Coldspots ≤−1.65 556 (38.3%) ≤−1.65 701 (48.2%) ≤−1.65 276 (19%)

Random* −1.65–1.65 405 (27.9%) −1.56–1.71 41 (2.8%) −1.65–1.64 709 (48.8%)

Table 2.  Number of protected areas categorized as hotspots, coldspots and randomly distributed in terms of 
invasion indices. *Z scores with p < 0.1.
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Figure 3.  Distribution of protected areas detecting outliers within clusters (neighbourhoods) of high and low 
values of (A) species abundance (B) species richness and (C) invaded area ratio. HH = high value within a 
cluster of High values; HL = High within Low cluster; LH = Low within High cluster; LL = Low within Low 
cluster. (D) Biomes are shown to provide reference to the distributions of outliers. Maps were prepared by the 
authors using ArcGIS software version 10.6.

Figure 4.  Pairwise comparison of invasion indices by biome type using original values, Getis-Ord Gi z-score 
(hotspot/cold spot) and Anselin Local Moran’s I z-score (cluster–outlier statistic). Dashed lines indicate 
significant difference and solid lines indicate non-significant difference. Significance is measured at p = 0.05.
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There were no significant differences in the hotspot/coldspot patterns (Getis-Ord Gi z-score statistic) for 
invaded area ratio among PAs (Fig. 5). Comparisons of the patterns among PAs were similar for species abun-
dance and species richness. In both cases, the only significant differences were observed between PAs in Nature 
Reserve vs. Forest Nature Reserve as well as Nature Reserve vs. Mountain Catchment Area. The cluster-outlier 
distribution pattern (Anselin Local Moran’s I z-score statistic) returned non-significant differences among all PA 
types for species abundance and species richness. Only one significant difference was observed between PAs in 
Mountain Catchment Area vs. World Heritage Site for invaded area ratio.

Discussion
Our global distributional analysis showed unambiguously some clustering patterns of PAs with respect to the 
three invasion indices used. These clustering patterns of PAs using species abundance and species richness were 
very similar, suggesting that abundance of alien plants predicts their richness in geographically close PAs in South 
Africa. These patterns could be caused by different factors such as relatively easy dispersal of alien plants in shared 
environmental conditions (soil, water, climate, biomes types, etc.) among PAs in the same geographic regions25. 
However, for the index “invaded area ratio”, the clustering pattern of PAs is less similar to the patterns found for 
species abundance and species richness. This is due to the limited variation in “invaded area ratio” values across 
biomes (coefficient of variation 15%) compared to the 75% and 406% for species richness and species abundance, 
respectively (Supplementary Table S3).

Furthermore, localized hotspot/coldspot results show strong similarities in the distribution of species abun-
dance and species richness, as was observed for the global cluster distributions. The other noticeable similarity 
was the relatively equal number of PAs categorized as hotspots and coldspots of species abundance and species 
richness (Table 2). The large number of hotspots of species abundance and species richness is a concern as this 
suggests that most neighbouring PAs are highly invaded; this calls for integrated management efforts of alien 
invasive plants in PAs. Similar to the observation in global clustering, the local hotspot and coldspot distribu-
tions of abundance and species richness did not coincide with those of invaded area ratio. There is, however, an 
interesting pattern of the hotspot and coldspot distributions of invaded area ratio. All spatial pattern outcomes 
(hotspot, coldspot, random) of invaded area ratio stretch contiguously over large spatial areas, compared to the 
more localized variations observed in the other two indices (Fig. 2).

Although PAs are clustered irrespective of the index used, some might be unusually high or low in alien species 
in the same geographic region. To explore this possibility, cluster-outlier analysis is relevant in the context of inva-
sive species mapping, since it identifies an unusual invasion pattern within a neighbourhood of PAs. We found 
clear patterns of both HL (high values of invasion indices within clusters of low values) and LH distributions. 

Figure 5.  Pairwise comparison of invasion indices by PA classifications using original values, Getis-Ord Gi 
z-score (hotspot/cold spot) and Anselin Local Moran’s I z-score (cluster–outlier statistic). Dashed lines indicate 
significant difference and solid lines indicate non-significant difference. Significance is measured at p = 0.05. 
Note that Getis-Ord Gi statistic for invaded area ratio as well as Anselin Local Moran’s I statistic for species 
abundance and species richness did not vary among management regimes; therefore the graphs are not included 
in the figure.
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The HL distributions are predominantly related to the Savannah biome generally characterized by grasses inter-
spersed to a varying degree by woody vegetation. As such, a PA with alien woody vegetation would easily stand 
out in a cluster of grass-dominated PAs. Similarly, the LH distributions for the three invasion indices can be 
linked to the biome types they are mostly located in (Fig. 3). For example, the Fynbos biome consists of a relatively 
complex plant composition ranging from the simple plant lifeforms to woody vegetation types; it is therefore 
expected to find a low invasion of woody alien plants within a cluster of high invasion of woody vegetation. The 
LH association with Grassland biome firstly needs to be traced back to the fact that woody vegetation encroach-
ment is a common problem threatening the biome, e.g. see ref. 34. However, it is logical to expect patches of 
Grasslands with limited invasion of woody vegetation surrounded by those with high invasion status. Finally, it is 
important to note the results showing more LH than HL occurrences for all the invasion indices (Supplementary 
Table S1). This can be expected given that the goal of PAs is to maintain the natural (indigenous) vegetation 
complexity; therefore, more LH than HL is perhaps indicating that management efforts of PAs are contributing 
effectively to safeguarding PAs against invaders. However, our finding of a variation in invasion intensity across 
different biomes and ultimately different PAs is not a surprise given that a recent study showed that biome types 
constrain, to different degrees, the distribution of alien species assemblages in South Africa35. Indeed, confirming 
the findings of ref. 35, we found that invasion status was generally associated with biome and PA types as evi-
denced by significant differences in the original and derived statistics of invasion indices (Fig. 4; see also refs. 35,36).  
This significant difference is not a surprise. For example, the difference between Forest biome (which has the 
highest mean species abundance and species richness; Supplementary Table S2) and all the others, except the 
Albany Thicket biome, is related to the fact that forest ecosystems are more likely to provide suitable ecological 
niches for alien woody plants than other non-woody ecosystems35.

It is also important to note the consistent significant difference between Grassland and Savannah biomes in 
terms of vulnerability to alien woody plants invasion. The higher invasion status of Grassland than Savannah is 
surprising, given that Savannah naturally hosts some woody species, and consequently we should expect that 
Savannah would be more vulnerable to alien woody invasion than Grassland. Our opposite finding is indicative 
of the significant bush encroachment in the Grassland, and this encroachment will eventually convert current 
Grassland into Savannah if the encroachment continues34. This potential decrease of Grassland biome (partly 
due to woody encroachment) was also predicted in an early study where climate change has been pointed out 
as a driving force of shrinkage of the Grassland biome in South Africa37. The encroachment of alien woody 
plants in Grasslands also means that ecological niches for woody plants may be available in Grasslands, and 
alien woody plants are simply taking advantage of this niche availability favoured by weak competitive ability of 
grasses vis-à-vis woody plants Darwin naturalization hypothesis38,39. Nevertheless, the lack of significant differ-
ences between Forest and Albany Thicket biomes (irrespective of the invasion index used) indicates that both 
biomes are equally vulnerable to the invasion by woody alien plants. This is not a surprise because Albany Thicket 
is naturally dominated by woody bushes and shrubs40, and thus its vulnerability to the invasion by alien woody 
plants is comparable to that of the Forest biome. Another notable comparison of invasion by biome type was the 
non-significant difference between the Nama-Karoo and Succulent Karoo biomes in all comparisons (Fig. 5). The 
Nama-Karoo and Succulent Karoo are characterized by limited precipitation and high temperature conditions 
that do not favour the proliferation of woody vegetation; as a result, invasion status in the two biomes is low 
(Supplementary Table S2). By extension, the comparability between the two biomes is expected, as found in this 
study, to hold for hotspot/coldspot as well as cluster-outlier patterns.

What’s more, studies assessing the relationship between invasion and different PA types are rare. One of the 
few existing studies (e.g.41) showed a non-significant difference in number of invasive and managed species 
between national parks and biosphere reserves, although they used a far less number of PAs than used in our 
study. In our study, comparison of invasion indices among PA types returned non-significant differences in most 
instances (Fig. 5). One notable consistency was the significant difference of invasion between Nature Reserve and 
the other PA types. This classification type (Nature Reserve) did not have the highest invasion status in any of the 
three indices. It is meaningful to evaluate the invasion comparisons of PA types against the expected management 
level, as this would assist in determining if PAs are achieving their stated goals.

The results presented in this study have important implications for PAs management in South Africa and 
perhaps elsewhere. This is partly because several countries in the world including South Africa have seen a rise 
in new PAs declaration due to renewed commitments through national biodiversity strategies and action plans 
(NBSAP) to protect species and habitats. As such, much attention has been given to PAs because, in addition 
to serving as refugia for a diversity of species, they play an important role in mitigating the effects of climate 
change42. As a result, the IUCN’s World Commission on Protected Areas (IUCN WCPA) has championed the 
development of methodologies to assess PAs’ management effectiveness (PAME43). Despite this, many PAs are 
still highly threatened by human activities9,44, while changing climatic conditions may exacerbate the extent of 
alien invasion across PAs [e.g.45]. The findings of the present study regarding the spatial distributional patterns 
of selected invasion indices (as predicted under current climate change) provides useful information that can be 
used to support management strategies. Indeed, the high spatial clustering of PAs based on alien woody invasion 
indices in some parts of the country is an indicator of where the prioritization of management and monitoring 
efforts should be focused. Focussing on these areas is further justified by the fact that they are also identified as 
hotspots of invasion (see also ref. 15).

The findings of this study also showed similarities between species abundance and species richness, when 
using invasion indices of the original values and those interpreted from hotspot and coldspot distributions. This 
indicates the co-success of both invasion characteristics (abundance and richness), although this can be curtailed 
when the PAs are “saturated”. An important lesson from this finding is that, management strategies should exer-
cise caution not to assume that intra- and inter-species competitions among alien species in South Africa’s PAs 
may help to reduce their species richness. In fact, based on our findings, it is safe to expect high species richness 
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when there is high abundance of alien plants, at least in the case of South African PAs. This expectation may also 
translate into management strategies in that efforts to reduce species abundance may result in reducing species 
richness too. In the South African context, physical removals of alien plants are a well-known management strat-
egy of alien species. Our results suggest that, by physically removing alien plants, we are not only reducing alien 
abundance but also alien species richness. However, we should also note that the effectiveness of this physical 
removal of alien is not a guarantee of success because the seed bank of alien plants in the soil as well as their 
rhizomes are not affected by physical removals. Some have suggested the use of natural enemies or chemicals to 
control alien invasive species but we vigorously oppose these solutions in PAs. We advocate for the practice of 
periodic physical removals of alien plants in PAs46, assuming that the constant reduction of seedlings, juveniles 
and adults of alien plants would eventually lead to a decrease of the population dynamics of these alien species 
and the increase in native plants. Our suggestion is supported by a recent study that demonstrated that physical 
removals of all alien invasive plants leads to an increase of native plants and pollinators46.

Furthermore, our cluster-outlier analysis revealed that, in some geographic regions, some PAs are dispropor-
tionately richer in alien plants in comparison to their respective neighbouring PAs (HL), and other regions har-
bour disproportionately poorer PAs in alien plants than their neighbouring PAs (LH). These findings have clear 
management implications. Disproportionately-rich PAs in alien plants should be the focus of intensive physical 
removals of alien plants46 as they represent a serious threat not only to their own native biodiversity and habitats 
but also to the neighbouring PAs. They are a threat because not only they most likely share similar environmental 
characteristics with neighbouring PAs, but also geographic proximity is a conducive factor for rapid dispersal of 
alien plants through wind47 or through biotic mediation, e.g. mutualist interactions48. At the same time, PAs that 
are poorer in alien plants but surrounded by richer PAs in alien plants should also be under particular surveil-
lance and monitoring such that early detection programmes of alien plants should be designed for these PAs while 
alien-rich PAs should undergo an intensive physical removal programme.

We acknowledge some limitations of the present study. For example (i) we focused only on PAs that are spa-
tially discontinuous as opposed to contiguous landscapes that consist of different land uses and (ii) the sample 
size of PAs was unbalanced with Nature Reserve in particular being the dominant PAs type in our dataset. These 
limitations were an unavoidable data characteristic, and we believe that the choice of our data analysis such 
as comparison of invasion indices using the Kruskal-Wallis49 statistic is deemed fit to counter these concerns. 
Furthermore, it is important to note that this study does not attempt to determine the effect of biome and PA 
classifications on invasion characteristics. Lastly, the invasion indices used were calculated based on predictions 
under current climate change scenario.

Conclusion
To conclude, we encourage further studies that can better the limitations of this study; e.g. studies geared towards 
understanding the potential drivers of invasion status or patterns using biomes and PA classifications as explan-
atory variables. Such analysis will therefore provide more than the simple analysis of variance (association) 
adopted in this study. Satisfactory prediction potential based on biomes and PA classifications will go a long 
way in designing biome-specific or management-specific of PAs in the context of alien invasion. Additionally, 
this study focused on non-native woody vegetation only; it is vital to expand such studies to encompass other 
lifeforms as more data become available. Finally, there is a need to incorporate remote sensing in plant invasion 
management, since the technique provides an efficient and unbiased method of plant species and habitat dynam-
ics monitoring at multiple scales50.

Material and Methods
Current climate distribution of alien woody species.  Data on the distribution of alien woody spe-
cies were retrieved from15. In summary, using ecological niche modelling (ENM) approach, ref. 15 reconstructed 
species richness maps for 162 alien woody trees and shrubs in South Africa based on 19 bioclimatic variables 
(Supplementary Table S4). These maps were calibrated using >87,000 point occurrence data as well as current 
climate data at a spatial resolution of ~1 km2. These occurrence data are publicly available on Dryad (https://
doi.org/10.5061/dryad.4j0zpc87q)51. To ensure robustness of the species richness map, they combined two 
approaches. First, MaxEnt method [i.e. a presence only data52] was used as it works well with species that have 
fewer occurrence points (i.e. a minimum of 8 occurrence points in their case). Second, they also used an ensemble 
forecasts method (i.e. presence-absence data) comprising three algorithms: generalized linear models, random 
forests, and gradient boosting machine53–56. The resulting species richness map had a grid resolution representing 
1,000 m on the ground, in agreement with the spatial resolution of the climate data that served as inputs in the 
modelling. In the present study, the grid data were converted to polygons on which PAs and biomes distribution 
were overlaid.

Network of Protected Areas and biome data in South Africa.  We obtained spatial data on PAs from 
South Africa Protected Areas Database (SAPAD) of the Department of Environmental Affairs (http://egis.envi-
ronment.gov.za). The database maintains the status of eight formal and less formal PAs on a quarterly basis. We 
used the latest release representing the second quarter of 2018 (see Fig. S1). A quick comparison of the releases 
since the second quarter of 2017 did not show significant differences that would change the results of our analyses. 
In total, 1,453 PAs are included in the present analysis, including state- and privately-owned PAs. A systematic 
management standard governing South Africa’s protected areas is recognized in the National Environmental 
Management: Protected Areas Act of 2003. The most dominant biome types and PA classifications were also 
identified (Table 3; Supplementary Fig. S1).

Also, a spatial coverage showing the biome types and hierarchical sub-divisions of biomes of South Africa 
was downloaded from the South African National Biodiversity Institute’s (SANBI) website (http://pza.sanbi.org/
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vegetation). The data represents the latest available information updated in 2012. Floristic characteristics such as 
dominant life or growth forms and, to a lesser extent, macroclimatic characteristics were used to define biome 
types in South Africa57.

Invasion status indices of PAs.  We used three indices to quantify the invasion status of all 1,453 PAs: 
abundance of invaders (alien woody plants), ratio of invaded area and species richness of invaders. Abundance 
of invaders was estimated as follows: we first employed the ENM technique to get the species richness map for 
the whole country based on the 19 bioclimatic data. Secondly, we overlaid the network of PAs onto the species 
richness map. Finally, we extract the number of species found exclusively within the boundary of PAs. For a PA, 
the ratio of invaded area was computed as the area covered by all alien species divided by the total area of the PA. 
Species richness of invaders simply corresponds to the total count of unique alien species within each PA (see 
Supplementary Table S3 for the summary statistics of all three metrics).

Statistical analyses.  Spatial pattern analysis of alien species.  Spatial analysis was carried out to test the 
spatial pattern (random vs. dispersion vs. clustering) of alien species in PAs based on the invasion status indices 
(ratio of invaded area, species richness of invaders and abundance of invaders). Specifically, we used a global 
spatial autocorrelation and two local spatial pattern indicators including hotspot analysis and cluster–outlier 
analysis. Spatial autocorrelation was tested using the Moran’s I index58 defined in Eq. 1. This statistic assumes that 
spatial processes are consistent across the study area. We applied this specific statistic since there was no prior 
knowledge in South Africa of whether spatial patterns of plant invasions are localized or more generic. As such, 
applying this statistic in our study could provide an indication of whether the assumption of ‘global’ consistency 
holds. According to the Moran’s index, a spatial pattern (autocorrelation) is said to exist between features if a 
feature’s value deviates from the global mean value significantly.

I N
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w x x x x

x x

( )( )

( ) (1)
i j ij i j

i i
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∑ ∑ − −

∑ −

where I is Moran’s I, N is number of protected areas used in the analysis; xi and xj are the values of the invasion 
indices defined above (e.g., species richness) for two protected areas whose spatial separation is being quantified; 
x  is the mean value of interest of all protected areas, wij is the weight of separation distance between two protected 
areas with a weight inversely proportional to separation distance, and W is the sum of all weights. The Moran’s I 
value customarily is transformed to a standard z-score which computes variable of interest (e.g. species richness) 
of a PA relative to the overall mean and standard deviation values of a variable of all PAs. This transformation 
allows for testing the hypothesis of whether or not there is spatial autocorrelation in the variable.

In addition to Moran’s I autocorrelation, we also performed hotspot analysis to compare the invasion status of 
a PA against the status of neighbouring PAs59. The hotspot was quantified using the Getis-Ord Gi* statistic (Eq. 2). 
Similar to Moran’s I spatial autocorrelation, ⁎Gi  is transformed to z-score to determine whether or not the distri-
bution satisfies the hypothesis that there is clustering of protected areas with high and low variable of interest (e.g., 
species richness). A statistically high positive z-score indicates an intense clustering of high values known as 
hotspots, while a statistically negative low z-score shows an intense clustering of low values (coldspots). However, 
high values within a cluster of high values (HH) or low values within a cluster of low values (LL) are indicative of 
the absence of an outlier within a neighbourhood.
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where ⁎Gi  is the Local G-statistic (Getis-Ord), s is the standard deviation of the variable.
The ⁎Gi  statistic uses each spatial feature when quantifying the cluster intensity of a neighbourhood; as a result, 

it tends to homogenise a variable per cluster by concealing isolated instances of variation that may exist within 
clusters. Such isolated occurrences can be identified using cluster–outlier analysis. This cluster–outlier analysis 

Biome types Number of PAs Area (ha) PA Classifications Number of PAs Area (ha)

1. Albany Thicket 77 1071749 1. Forest Nature Reserve 49 169968

2. Azonal Vegetation 320 7026587 2. Forest Wilderness Area 12 274490

3. Forests 117 701462 3. Mountain Catchment Area 16 624567

4. Fynbos 171 315140 4. National Park 21 3978614

5. Grassland 287 883925 5. Nature Reserve 1310 3843717

6. Nama-Karoo 7 21035 6. Protected Environment 24 593216

7. Savannah 467 1471076 7. Special Nature Reserve 1 2

8. Succulent Karoo 7 17800 8. World Heritage Site 20 2024199

Table 3.  Number of protected areas (PAs) corresponding to each biome and PA classifications recognized 
in this study. Note that only one PA is classified as Special Nature Reserve; as a result, this PA was not used in 
statistical analysis comparing invasion status across PA classifications .
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was done in this study using Anselin Local Moran’s I statistic (Eq. 3) which implements the computation in two 
sequential steps. The first step calculates clusters of high and low values similar to hotspot analysis computed 
using ⁎Gi  statistic, but with the target protected area not included in the calculation. The second step compares the 
value of interest (e.g. species richness) of the target feature against the cluster value, and determines if the target 
has a value that is considered an outlier to the cluster.
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I x x
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i j j2
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A positive Ii indicates the value of a protected area (target) is similar to the value of a cluster it is located in, 
while a negative value shows the protected area is an outlier of its surrounding cluster. Like the Getis-Ord and 
the global Moran’s I statistics, Anselin Local Moran’s I statistics is standardized by converting it to a z-score that 
is used to test whether or not a target (a protected area) has a variable of interest (e.g. species richness) that varies 
significantly from the surrounding cluster. All spatial pattern analyses were executed in ArcGIS version 10.6 
(ESRI, Redlands, CA).

Assessing invasion status by biome types and PA classifications.  Analysis of variance was used to assess whether or 
not invasion status varied by biome types and PA classifications. All the three invasion status indicators (species 
abundance, invaded area ratio and species richness) were used in the analysis of variance. Two statistics were 
used for each invasion indicator; these included values of the original variable of invasion indices and the spatial 
pattern statistics (quantified by Getis-Ord Gi and Anselin Local Moran’s I). A histogram-based observation of 
the data particularly those with few protected areas per biome and PAs classification type showed distribution of 
values that deviated from the normal. As a result, a non-parametric approach namely Kruskal-Wallis49 test was 
applied to compare the statistics. Kruskal-Wallis is a rank-based statistic that tests if an independent variable of 
two or more samples or groups of samples differ significantly.

Data availability
The datasets generated for this study are publicly available on Dryad (https://doi.org/10.5061/dryad.4j0zpc87q).
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