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Predicting miRNA-disease 
association from heterogeneous 
information network with GraRep 
embedding model
Bo-Ya Ji1,2, Zhu-Hong You1,2*, Li Cheng1*, Ji-Ren Zhou1, Daniyal Alghazzawi   3 & Li-Ping Li1

In recent years, accumulating evidences have shown that microRNA (miRNA) plays an important 
role in the exploration and treatment of diseases, so detection of the associations between miRNA 
and disease has been drawn more and more attentions. However, traditional experimental methods 
have the limitations of high cost and time- consuming, a computational method can help us more 
systematically and effectively predict the potential miRNA-disease associations. In this work, we 
proposed a novel network embedding-based heterogeneous information integration method to predict 
miRNA-disease associations. More specifically, a heterogeneous information network is constructed 
by combining the known associations among lncRNA, drug, protein, disease, and miRNA. After that, 
the network embedding method Learning Graph Representations with Global Structural Information 
(GraRep) is employed to learn embeddings of nodes in heterogeneous information network. In this way, 
the embedding representations of miRNA and disease are integrated with the attribute information of 
miRNA and disease (e.g. miRNA sequence information and disease semantic similarity) to represent 
miRNA-disease association pairs. Finally, the Random Forest (RF) classifier is used for predicting 
potential miRNA-disease associations. Under the 5-fold cross validation, our method obtained 85.11% 
prediction accuracy with 80.41% sensitivity at the AUC of 91.25%. In addition, in case studies of three 
major Human diseases, 45 (Colon Neoplasms), 42 (Breast Neoplasms) and 44 (Esophageal Neoplasms) 
of top-50 predicted miRNAs are respectively verified by other miRNA-disease association databases. 
In conclusion, the experimental results suggest that our method can be a powerful and useful tool for 
predicting potential miRNA-disease associations.

As a small non-coding RNA (~22nt), MicroRNA (miRNA) plays a lot of critical managerial roles in cells. It is 
estimated that 1–4% of the genes in the human genome are miRNAs, with individual miRNAs regulating as 
many as 200 mRNAs1. miRNA usually binds to the 3′untranslation regions (UTRs) of the target mRNA through 
sequence-specific base pairs to inhibit the expression of target mRNA2–5. Because of this property, miRNAs 
can affect various biological processes and participate in a series of important processes in the life process6–10. 
In conclusion, it has been proved that miRNA plays a crucial role in biological processes. Understanding the 
molecular mechanism of disease is an important goal of biomedical researches. In this post-genome era, more 
and more contributions made by advanced high-throughput genome technologies are marching toward this 
goal. A lot of evidence indicates that miRNA plays a vital role in the development and progression of Human 
diseases1,11–16. For example, miR-195 expression levels are reduced in patients with Alzheimer’s disease (AD). 
Besides, over-expression of this miRNA can down-regulate the production of the AD amyloid-β17. Moreover, the 
expression of breast cancer patients’ serum miR-103 levels is significantly higher than that of healthy controls18. 
Therefore, we can believe that miRNA mutations, miRNA biogenic dysfunction, and miRNA’s target disorders 
may be associated with a variety of diseases, such as lung cancer19, lymphoma20, breast cancer21. However, to our 
knowledge, compared with a large number of cataloged miRNAs, systematic miRNA-disease association pre-
diction methods are still insufficient. At the same time, the process of traditional laboratory experiments is very 
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expensive and high time-consuming, so it is obvious that the computational method provides a new direction for 
large-scale miRNA-disease association prediction.

In recent years, a number of computational methods have been proposed to predict the associations between 
miRNA and disease. These methods can be classified according to their different strategies. For example, You 
et al.22 proposed a novel miRNA-disease association prediction model called PBMDA. This model constructs a 
heterogeneous graph composed of three interrelated subgraphs and then Depth-First-Search (DFS) algorithm is 
used to predict miRNA-disease associations. Chen et al.23 proposed a new bipartite network projection model for 
predicting potential associations between miRNA and disease (BNPMDA) based on miRNA functional similar-
ity, disease semantic similarity, and the known human miRNA-disease associations. Zheng et al.24 developed a 
machine learning-based model for miRNA-disease association prediction (MLMDA). This method uses a deep 
auto-encoder neural network (AE), disease semantic similarity, miRNA sequence information, miRNA func-
tional similarity and Gaussian association spectrum kernel similarity information to predict potential associa-
tions between miRNA and disease. Chen et al.25 established a model called WBSMDA. One of the advantages of 
this model is that it can be applied to diseases that are not associated with any miRNA, thus breaking through 
the limitations of most previous methods. You et al.26 put forward a new calculation method for the prediction 
of potential associations between miRNA and disease based on a personalized recommendation (PRMDA). In 
their study, a similarity network was widely used, taking into account the relevant miRNA and disease infor-
mation for each miRNA-disease pair, thus recommending a high-priority potential miRNA-disease association. 
Jiang et al.27 proposed a calculation method to predict potential miRNA-disease associations by prioritizing the 
human microRNAome for diseases. It is a logical extension of earlier network-based approaches for predicting 
or prioritizing disease-associated protein-coding genes. They built a functionally-associated miRNA network 
and a human phenome-microRNAome network to examine whether functionally related miRNAs tended to be 
associated with diseases with similar phenotypes and prioritize miRNAs for human diseases. Shi et al.28 proposed 
a calculation method for miRNA and disease relationship prediction based on random walk analysis. They made 
a hierarchical clustering analysis on binary miRNA-disease networks to determine the miRNA-disease synergis-
tic control module. Finally, the method yielded a good result, and provided a new perspective for predicting the 
relationship between miRNA and disease.

In this study, a network embedding-based heterogeneous information integration method is proposed to 
predict the potential associations between miRNA and disease. Firstly, a heterogeneous information network 
is established by combining the known associations between protein, miRNA, lncRNA, disease, and drug as 
shown in Fig. 1. After that, the network embedding method GraRep is adopted to learn the behavior information 
of miRNA and disease node in the network. As one of the network representation learning (NRL) models, the 
GraRep method can learn graph representations of the miRNA and disease nodes with global structural informa-
tion. Secondly, the miRNA and disease nodes were converted to a vector by integrating the attribute information 
of the node itself (miRNA sequence information and disease semantic similarity) and the behavior information 
of them in the network to represent miRNA-disease pairs. Thirdly, 16427 known miRNA and disease pairs, which 
obtained from HMDD29 database, are used as positive samples and the same number of unrelated miRNA and 
disease pairs are randomly selected as negative samples, the two kinds of samples are combined to form the train-
ing samples. Finally, the prediction models are constructed based on the training samples by using the random 
forest, Fig. 2 shows the flowchart of our method. The model was evaluated through the 5-fold cross validation, 
and it performs well with high accuracy. To further test the effect of our method, we also conducted case studies 

Figure 1.  The heterogeneous information network.
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of three major Human diseases. Our experiments prove that the network embedding method has great potential 
and provides a new direction for the prediction of miRNA and disease associations.

Materials and Methods
Heterogeneous information network construction.  To systematically and comprehensively build the 
network of heterogeneous information, some known associations between miRNAs, lncRNAs, proteins, diseases, 
and drugs from multiple databases were downloaded. The source and version of the raw data are shown below: 
The miRNA-lncRNA association pairs are downloaded from the lncRNASNP2 database of Miao et al.30. The 
miRNA-protein association pairs are downloaded from the miRTarBase update 2018 database of Chou et al.31. 
The lncRNA-disease association pairs are downloaded from the lncRNASNP2 and LncRNADisease database of 
Miao et al.30 and Chen et al.32. The drug-disease association pairs are downloaded from the comparative toxi-
cogenomics database: update 2019 of Davis et al.33. The lncRNA-protein association pairs are downloaded from 
the LncRNA2Target v2.0 database of Cheng et al.34. The drug-protein association pairs are downloaded from 
the DrugBank 5.0 database of Wishart et al.35. The protein-protein association pairs are downloaded from the 
STRING database in 2017 of Szklarczyk et al.36. The protein-disease association pairs are downloaded from the 
DisGeNET database of Piñero et al.37. The miRNA-disease association pairs are downloaded from the HMDD 
v3.0 database of Huang et al.29. After that, a series of operations such as unifying identifiers, de-redundancy, sim-
plifying and deleting irrelevant items are conducted. The detailed data of the final experiment is shown in Table 1. 
In addition, we also classify and sort the above associations. Finally, we get different nodes as shown in Table 2.

Numerical miRNA sequence information.  The sequences of miRNA are downloaded from miRbase38, 
to represent the attribute information of the miRNA node. To make the experiment less complicated, we select 
the 3-mer method and encode the miRNA sequence into a 64-dimensional feature vector, where each component 
represents the frequency of the occurrence of a 3-mer in the sequence (e.g. UGC, AUC, GUA).

Figure 2.  Flowchart of our method to predict potential miRNA-disease associations.

Association type Database
Number of 
associations

miRNA-lncRNA lncRNASNP230 8374

miRNA-protein miRTarBase: updata 201831 4944

lncRNA-disease LncRNADisease32,

lncRNASNP230 1264

drug-disease CTD: updata 201933 18416

lncRNA-protein LncRNA2Target v2.034 690

drug-protein DrugBank v5.035 11107

protein-protein STRING: in 201736 19237

protein-disease DisGeNET37 25087

Total N/A 105546

Table 1.  The associations in the heterogeneous information network.
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Disease semantic similarity.  The Medical Subject Heading (MeSH) database is a strict disease classifica-
tion system, which can be used to effectively study the relationship between different diseases. Through this sys-
tem, we can represent each disease with the Directed Acyclic Graph (DAG) achieved by MeSH of it. For example, 
for disease A, we can represent it as DAG(A) = (A, T(A), E(A)), where T(A) denotes all nodes in the DAG(A) that 
contain the disease A, E(A) indicating all disease link relationships in DAG(A)39. An example of gastrointestinal 
neoplasms’ DAG is shown in Fig. 3 below:

Therefore, we can select the disease semantic similarity calculated by DAG as the attribute information of 
disease according to the earlier method39. The semantic value of a disease D can be calculated as follows:
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where ∆ is the semantic contribution factor and T(D) represents D and its all ancestor nodes. Observed results 
show that the two similar DAG ratios have higher disease similarity and the semantic similarity for disease di and 
dj are defined as follows:
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Stacked autoencoder.  For the purpose of reducing the noise in the attribute information and normalizing 
it in a uniform dimension, we use a stacked autoencoder (SAE) to transform the original feature space into an 
appropriate subspace. SAE mainly consists of the following two steps: 1, the encoder projects x from the input 
layer to the hidden layer h through a mapping function f. 2, The decoder maps h in the hidden layer to y in the 
output layer through a mapping function g.

S Wx ph f(x): ( ) (4)f= = +

S W x qy g(h): ( ) (5)g= = ′ +

In this study, the ReLU function was selected as the activation function:

Node Amount

Protein 1649

Disease 2062

LncRNA 769

Drug 1025

MiRNA 1023

Total 6528

Table 2.  The nodes in the heterogeneous information network.

Figure 3.  Construction of gastrointestinal neoplasms’ DAG.
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GraRep algorithms.  Recently, many Network Representation Learning (NRL) methods have been proposed 
to learn vector representations of vertices in a network. GraRep40 is one of these methods. It factorizes different 
k-order proximity matrices and concatenates the embeddings learned from each proximity matrix. Specifically, 
GraRep takes into consideration the special relation matrix and extends the skip-gram model to capture the high 
order proximity of a network. It defines the k-step neighbors (k ≥ 1), and nodes that share a common k-step 
neighbor in the network should have similar and potential representations. Formally, the k-step representation of 
the learning node is composed of three steps. The first step is to obtain the k-step transition probability matrix Ak 
for each k = 1, 2, … K. The second step is to use SVD method to factor the logarithmic probability matrix Xk to 
obtain each k step representation:

Fold ACC.(%) Prec.(%) Sen.(%) MCC(%) Spec.(%) AUC(%)

0 85.29 89.00 80.52 70.89 90.05 91.32

1 85.23 89.17 80.19 70.81 90.26 91.24

2 84.57 88.51 79.46 69.51 89.68 90.66

3 85.54 88.68 81.50 71.32 89.59 91.51

4 84.92 88.41 80.38 70.13 89.46 91.53

Average 85.11 ± 0.37 88.75 ± 0.32 80.41 ± 0.73 70.53 ± 0.71 89.81 ± 0.33 91.25 ± 0.35

Table 4.  The performance of our method under 5-fold cross validation.

Table 3.  The GraRep Overall Algorithm.

https://doi.org/10.1038/s41598-020-63735-9


6Scientific Reports |         (2020) 10:6658  | https://doi.org/10.1038/s41598-020-63735-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑=X U (V ) (7)k k k Tk

where both U and V are orthonormal matrices and ∑ is a diagonal matrix that consists of an ordered list of singu-
lar values. The third step is to connect all k step representations, which can be represented as the following matrix:

= …W W W W W[ , , , ] (8)k1 2 3

More detailed algorithmic process participation can be seen in Table 3.

Node representation.  The miRNA and disease nodes are represented by their intrinsic attribute infor-
mation and behavior information with other nodes in the heterogeneous information network. The attribute 
information is respectively numerical miRNA sequence information and disease semantic similarity. In addition, 
in this paper, a network embedding method GraRep is used to obtain the behavior information of nodes in the 
entire network, before combining with their own attribute information. Their relationship with other nodes can 
be regarded as a functional representation based on the idea of collaborative filtering. Finally, they are converted 
into 128-dimensional vectors to represent known miRNA-disease associations.

Figure 4.  The ROC curves of our method in miRNA-disease association prediction under 5-fold cross 
validation.

Figure 5.  The PR curves of our method in miRNA-disease association prediction under 5-fold cross validation.

Feature Acc.(%) Prec.(%) Sen.(%) MCC(%) Spec.(%) AUC(%)

Attribute 79.77 ± 0.42 78.77 ± 0.61 81.52 ± 0.47 59.59 ± 0.83 78.03 ± 0.82 86.60 ± 0.37

Behavior 85.00 ± 0.28 88.42 ± 0.29 80.54 ± 0.86 70.27 ± 0.50 89.45 ± 0.39 91.18 ± 0.32

Both 85.11 ± 0.37 88.75 ± 0.32 80.41 ± 0.73 70.53 ± 0.71 89.81 ± 0.33 91.25 ± 0.35

Table 5.  Comparison of our method with different feature combinations.
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Result and Discussion
Evaluate the performance of our method under the 5-fold cross validation.  5-fold cross vali-
dation was used to evaluate the performance of our study, which randomly divided all data sets into five equal 
parts. In each validation, one part is used as the test set and the other four parts as the training set, so that test 
and training data do not overlap each other to ensure unbiased comparisons. The detailed result information of 
the proposed method is shown in Table 4. It can be seen from Table 4 that our proposed method exhibited the 
outcomes of average accuracy (Acc.), precision (Prec.), sensitivity (Sen.), matthews correlation coefficient (MCC), 
specificity (Spec.) and the areas under the ROC curve (AUC) of 85.11%, 88.75%, 80.41%, 70.53%, 89.81% and 
91.25%, respectively.

The receiver operating characteristic (ROC) curve is a functional image describing sensitivity. Here, its hori-
zontal axis represents the False Positive Rate (FPR), which represents the ratio of all negative examples in the 
partitioning example to all negative cases (1-Specificity), where the larger the FPR and the more positive negative 
classes in the positive class are predicted. Besides, its vertical axis represents the True Positive Rate (TPR), which 
is used to represent the positive class coverage (Sensitivity). The larger the TPR and the more positive classes in 
the positive class are predicted. The AUC value indicates the areas under the ROC curve and it ranges from 0.1 
to 1. AUC can be used as a numerical value to directly evaluate the quality of the classifier. We can see from Fig. 4 
that the average AUC value obtained by our method is 0.9125. The Precision-Recall (PR) curve is another way 
to evaluate the performance of our method. It shows a trade-off between precision and sensitivity for all possible 

Figure 6.  Comparison of our method with different features under 5-fold cross validation.

Classifier ACC.(%) Prec.(%) Sen.(%) MCC.(%) Spec.(%) AUC.(%)

DecisionTree 81.82 ± 0.23 83.59 ± 0.41 79.18 ± 0.11 63.72 ± 0.47 84.45 ± 0.47 81.82 ± 0.23

KNN 84.62 ± 0.47 84.23 ± 0.37 85.18 ± 0.86 69.24 ± 0.94 84.06 ± 0.42 89.90 ± 0.39

Naive Bayes 81.79 ± 0.67 81.02 ± 0.85 83.04 ± 0.51 63.61 ± 1.34 80.54 ± 1.01 87.81 ± 0.55

RandomForest 85.11 ± 0.37 88.75 ± 0.32 80.41 ± 0.73 70.53 ± 0.71 89.81 ± 0.33 91.25 ± 0.35

Table 6.  Comparison of our method with different classifiers.

Figure 7.  Comparison with Random Forest, DecisionTree, KNN, and Naive Bayes classifier under 5-fold cross 
validation.

https://doi.org/10.1038/s41598-020-63735-9


8Scientific Reports |         (2020) 10:6658  | https://doi.org/10.1038/s41598-020-63735-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

miRNA Evidence miRNA Evidence

hsa-mir-186-5p dbDemc hsa-mir-129-5p dbDemc

hsa-mir-16-5p dbDemc hsa-mir-503-5p dbDemc

hsa-mir-485-5p dbDemc hsa-mir-136-5p dbDemc

hsa-mir-497-5p dbDemc hsa-mir-324-5p dbDemc

hsa-mir-206 dbDemc;miR2Disease hsa-mir-10a-5p dbDemc

hsa-mir-33b-5p dbDemc hsa-mir-199a-5p dbDemc

hsa-mir-19b-3p dbDemc hsa-mir-199b-5p dbDemc

hsa-mir-198 dbDemc;miR2Disease hsa-mir-451a dbDemc

hsa-mir-361-5p dbDemc hsa-mir-29c-5p dbDemc

hsa-mir-185-5p dbDemc hsa-mir-181a-2-3p dbDemc

hsa-mir-154-5p dbDemc hsa-mir-184 dbDemc;miR2Disease

hsa-mir-26b-5p dbDemc hsa-mir-99b-5p dbDemc

hsa-mir-638 dbDemc;miR2Disease hsa-mir-144-5p dbDemc

hsa-mir-34c-5p dbDemc hsa-mir-128-1-5p dbDemc

hsa-mir-122-5p dbDemc hsa-mir-92a-2-5p dbDemc

hsa-mir-449b-5p dbDemc hsa-mir-337-5p dbDemc

hsa-mir-590-5p dbDemc hsa-mir-423-5p dbDemc

hsa-mir-139-5p dbDemc hsa-mir-663a dbDemc

hsa-mir-340-5p dbDemc hsa-mir-99a-5p Unconfirmed

hsa-mir-542-5p dbDemc;miR2Disease hsa-mir-378a-5p dbDemc

hsa-mir-211-5p dbDemc hsa-mir-575 dbDemc

hsa-mir-153-3p Unconfirmed hsa-mir-373-5p Unconfirmed

hsa-mir-149-5p dbDemc hsa-mir-214-5p dbDemc

hsa-mir-499a-5p Unconfirmed hsa-mir-217-5p Unconfirmed

hsa-mir-183-5p dbDemc hsa-mir-452-5p dbDemc

Table 7.  Predicted the top 50 miRNAs associated with colon neoplasms. The first column recorded the top 
1–25 associated miRNAs. The second column recorded the top 26–50 associated miRNAs.

miRNA Evidence miRNA Evidence

hsa-mir-182-5p dbDemc hsa-mir-181d-5p dbDemc

hsa-mir-186-5p dbDemc hsa-mir-449a dbDemc

hsa-mir-30e-5p dbDemc hsa-mir-140-5p dbDemc

hsa-mir-107 dbDemc hsa-mir-590-5p dbDemc

hsa-mir-16-5p dbDemc hsa-mir-29b-3p dbDemc

hsa-mir-195-5p dbDemc hsa-mir-134-5p dbDemc

hsa-mir-103a-3p dbDemc hsa-mir-24-3p dbDemc

hsa-mir-15b-5p dbDemc hsa-let-7e-5p dbDemc

hsa-mir-206 dbDemc hsa-mir-125a-5p dbDemc

hsa-mir-30a-5p dbDemc hsa-mir-153-3p dbDemc

hsa-mir-18a-5p dbDemc hsa-mir-149-5p dbDemc

hsa-mir-135a-5p dbDemc hsa-mir-221-5p Unconfirmed

hsa-mir-33a-5p dbDemc hsa-mir-152-5p Unconfirmed

hsa-mir-17-5p dbDemc hsa-mir-204-5p dbDemc

hsa-mir-19b-3p dbDemc hsa-let-7f-5p dbDemc

hsa-mir-20b-5p dbDemc hsa-let-7d-5p dbDemc

hsa-mir-106a-5p dbDemc hsa-mir-504-5p dbDemc

hsa-mir-7-5p dbDemc hsa-mir-129-5p dbDemc

hsa-mir-26a-5p dbDemc hsa-mir-144-5p Unconfirmed

hsa-mir-9-5p dbDemc hsa-mir-324-5p dbDemc

hsa-mir-181b-5p dbDemc hsa-mir-191-5p dbDemc

hsa-mir-181a-5p dbDemc hsa-mir-199a-5p dbDemc

hsa-mir-1271-5 Unconfirmed hsa-mir-29a-5p Unconfirmed

hsa-mir-122-5p dbDemc hsa-mir-125b-2-3p dbDemc

hsa-mir-181c-5p dbDemc hsa-mir-127-5p Unconfirmed

Table 8.  Predicted the top 50 miRNAs associated with esophageal neoplasms. The first column recorded the top 
1–25 associated miRNAs. The second column recorded the top 26–50 associated miRNAs.
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thresholds. From Fig. 5, we can see the PR curve corresponding to our method and the mean of the area under the 
precision-recall curve (AUPR) value is 0.9215. This once again proves that the good performance of our method.

Comparison of our method with different feature combinations.  As we stated above, we use two 
different pieces of information to represent miRNA and disease in the entire network. Therefore, for the purpose 
of further testing the influence of various types of feature combinations on the classification results, we use attrib-
ute information, behavior information and attribute information plus behavior information to represent nodes 
respectively before conducting 5-fold cross-validation experiments. As the results of the final experiment shown 
in Table 5 and Fig. 6, there is a better performance in classification when we consider the attribute and behavior 
information simultaneously.

Comparison of our method with different classifiers.  To further test the influence of the classifier in 
our model, we compared the performance of the four classifiers of Random Forest41, Decision Tree42, KNN43, and 
Naive Bayes44 under 5-fold cross validation. During the comparison experiment, we kept the same experimental 
environment, same training set and test set, and only changed the type of classifier. Similarly, we still use the six 
parameters: accuracy (Acc.), precision (Prec.), sensitivity (Sen.), matthews correlation coefficient (MCC), speci-
ficity (Spec.), and the areas under the ROC curve (AUC) as evaluation indicators. In the result, the Random Forest 
model yields average Acc., Prec., Sen., MCC, Spec. and AUC of 85.11 ± 0.37%, 88.75 ± 0.32%, 80.41 ± 0.73%, 
70.53 ± 0.71%, 89.81 ± 0.33% and 91.25 ± 0.35%. Table 6 and Fig. 7 show the final comparison results. It can be 
seen that the Random Forest classifier has better performance and robustness than other classifiers, especially in 
the accuracy and AUC that can more represent the performance of the model, although our model is not as good 
as KNN and Naïve Bayes model are in sensitivy. In short, Random Forest is a better classifier for our model.

Case studies.  In order to further test the prediction accuracy of our method, three Human diseases are 
selected for case studies. They are Colon neoplasms, Breast neoplasms, and Esophageal neoplasms, which are 
closely related to human health. We utilized the known miRNA-disease associations in HMDD V3.029 as the 
training set. The embedding representations of miRNA and disease are integrated with the attribute informa-
tion of them (e.g. miRNA sequence information and disease semantic similarity) to represent these known 
miRNA-disease association pairs so that the input miRNAs and diseases can be identified by the classifier. Finally, 
the prediction model is constructed based on the training set by using random forest. After that, we constructed 
the test set for each investigated disease. The test set contains miRNAs in the heterogeneous information network 
and corresponding disease association pairs. In particular, the miRNA-disease association pairs already existing 
in the training set were deleted in the test set, including the disease-related miRNAs listed in Tables 7–9. Similarly, 

miRNA Evidence miRNA Evidence

hsa-mir-186-5p dbDemc hsa-mir-508-5p dbDemc

hsa-mir-539-5p dbDemc hsa-mir-525-5p Unconfirmed

hsa-mir-216a-5p dbDemc hsa-mir-431-5p dbDemc

hsa-mir-330-5p dbDemc hsa-mir-532-5p dbDemc

hsa-mir-154-5p dbDemc hsa-mir-483-5p dbDemc

hsa-mir-543 dbDemc hsa-mir-519a-5p Unconfirmed

hsa-mir-181d-5p dbDemc hsa-mir-581 dbDemc

hsa-mir-4262 Unconfirmed hsa-mir-744-5p dbDemc

hsa-mir-449b-5p dbDemc hsa-mir-362-5p dbDemc

hsa-mir-384 dbDemc hsa-mir-432-5p dbDemc

hsa-mir-211-5p dbDemc hsa-mir-511-5p dbDemc

hsa-mir-4458 dbDemc hsa-mir-513b-5p dbDemc

hsa-mir-504-5p dbDemc hsa-mir-513c-5p dbDemc

hsa-mir-28-5p dbDemc hsa-mir-583 dbDemc

hsa-mir-1271-5p dbDemc hsa-mir-628-5p dbDemc

hsa-mir-136-5p dbDemc hsa-mir-939-5p dbDemc

hsa-mir-300 dbDemc hsa-mir-885-5p Unconfirmed

hsa-mir-99b-5p dbDemc hsa-mir-1973 Unconfirmed

hsa-mir-337-5p dbDemc hsa-mir-369-5p dbDemc

hsa-mir-518b Unconfirmed hsa-mir-612 Unconfirmed

hsa-mir-637 dbDemc;miR2Disease hsa-mir-665 dbDemc

hsa-mir-217-5p Unconfirmed hsa-mir-943 dbDemc

hsa-mir-517a-3p dbDemc hsa-mir-490-5p dbDemc

hsa-mir-646 dbDemc hsa-mir-188-5p dbDemc

hsa-mir-671-5p dbDemc hsa-mir-942-5p dbDemc

Table 9.  Predicted the top 50 miRNAs associated with breast neoplasms. The first column recorded the top 
1–25 associated miRNAs. The second column recorded the top 26–50 associated miRNAs.
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after converting the test set into the combination of embedding representations and attribute information, we use 
the prediction model to make predictions. After the completion of the prediction, the top 50 predicted miRNAs 
are selected and validated using two other miRNA-disease association databases, dbDEMC45 and miR2Disease46.

Colon neoplasms is a common malignant tumor in the gastrointestinal tract. As the most common part of 
colorectal cancer, it has an incidence rate which is second only to gastric and esophageal cancer. At the same time, 
as one of the most famous tumors, it plays a vital role in gene and cell growth. Moreover, since the early perfor-
mance of colon neoplasms is not obvious, many patients have reached the late stage of its discovery so that they 
missed the best treatment opportunity47. More seriously, more and more studies have shown that patients with 
colon neoplasms disease are on the increase year by year48. In addition, the associations between miRNA and 
colon neoplasms has been discovered and confirmed by more and more experimental researchers, which proves 
once again that miRNA plays an important role in colon neoplasms. Therefore, there is an urgent need to predict 
the potential miRNA associated with colon neoplasms. For example, miR-143 and miR-145 are both confirmed 
to continue to be downregulated during colon neoplasms production12. In addition, miR-17 and miR-106a, which 
have been deleted in colon neoplasms and shown to use E2F1 as a target mRNA and inhibit the growth of colon 
neoplasms49. Therefore, we selected colon neoplasms as a case study to further test the accuracy of our method 
for the purpose of predicting potential miRNA-disease associations. According to dbDEMC and miR2Disease’s 
evidence, 45 of the top 50 predicted miRNAs are successfully confirmed (see Table 7). For example, the associa-
tion between hsa-miR-206 and colon neoplasms has been confirmed by previous literature50. This method found 
that hsa-miR-206 can participate in the targeting and regulation of SLC44A1 and KLF13, thus participate in the 
occurrence and metastasis of colon cancer.

Esophageal neoplasms is another epidemic cancer, which is a deadly disease and one of the most common 
digestive tract tumors51. Its prevalence is due to the current poor eating habits. At present, research on it is still 
rare in the world. The most common symptom of patients with esophageal neoplasms is dysphagia, which can 
lead to pain, vomiting, weight loss, etc52. The most common method currently used for this disease is chemo-
therapy. Where appropriate, chemotherapy allows patients to achieve the longest remission period and prolong 
the survival of some patients. Some studies have shown that miRNAs can be considered as effective prognostic 
biomarkers for esophageal neoplasms53. Therefore, case studies of Esophageal Neoplasms were conducted on our 
method to select the most likely-associated miRNAs. According to dbDEMC and miR2Disease’s evidence, 44 of 
the top 50 predicted miRNAs were verified (see Table 8). For example, the association between hsa-miR-182-5p 
and esophageal neoplasms has been confirmed by previous method54. This method identified two new tumor 
suppressor miRNA, including miR-182-5p and miR-455-5p, of which has-miR-182-5p was confirmed to be asso-
ciated with esophageal cancer.

Breast neoplasms is a kind of malignant tumor formed by the uncontrolled growth of abnormal breast cells55. 
Each year, more than 211,000 cases of invasive breast cancer are diagnosed in the United States56. In most cases, 
breast cancer occurs in women, but it can also occur in men. More than 1,600 cases of male breast cancer are diag-
nosed each year. Breast cancer in women remains a major medical problem with major public health and social 
implications. At present, breast cancer has posed a threat to women’s physical and mental health57. In addition, 
numerous experiments have proved that many miRNAs are related to breast neoplasms. Case studies of Breast 
Neoplasms were conducted on our method to select the most likely-associated miRNAs. According to dbDEMC 
and miR2Disease’s evidence, 42 of the top 50 predicted miRNAs were verified (see Table 9).

Conclusions
Prediction of the associations between miRNA and disease can not only help us better understand the impor-
tant role of miRNA in the generation and development of diseases, but also greatly promote the diagnosis and 
treatment of diseases. In this article, we proposed a new method to predict the potential associations between 
miRNA and disease by extracting the embedding representation of miRNAs and diseases from the heterogene-
ous information network. After that, we used the GraRep method to get the behavior information of miRNAs 
and disease in the network before combining their attribute information to represent miRNA and disease nodes, 
respectively. Then, we put the final data set into the Random Forest classifier for training and prediction. The 
final experimental results show that our method performs well and it is better than the methods of using only 
attribute information and methods using only behavior information. In addition, the results of the case study also 
prove that our method can predict the potential miRNA-disease associations well and the associated miRNA of 
a given disease. Therefore, we believe that the proposed method will be a useful and efficient tool for predicting 
miRNA-disease associations in the future. Besides, the working code explored in this article is available at https://
github.com/jiboya123/working-code.git.
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