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Analysing the phenotype 
development of soybean plants 
using low-cost 3D reconstruction
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Zhenbang Hu3, Hongwei Jiang3, Dawei Xin3, Zhanguo Zhang1, Yang Li1, Zhaoming Qi3, 
chunyan Liu3, Xiaoxia Wu3 & Qingshan chen3 ✉

With the development of digital agriculture, 3D reconstruction technology has been widely used to 
analyse crop phenotypes. To date, most research on 3D reconstruction of field crops has been limited 
to analysis of population characteristics. Therefore, in this study, we propose a method based on low-
cost 3D reconstruction technology to analyse the phenotype development during the whole growth 
period. Based on the phenotypic parameters extracted from the 3D reconstruction model, we identified 
the “phenotypic fingerprint” of the relevant phenotypes throughout the whole growth period of 
soybean plants and completed analysis of the plant growth patterns using a logistic growth model. The 
phenotypic fingerprint showed that, before the R3 period, the growth of the five varieties was similar. 
After the R5 period, the differences among the five cultivars gradually increased. This result indicates 
that the phenotypic fingerprint can accurately reveal the patterns of phenotypic changes. The logistic 
growth model of soybean plants revealed the time points of maximum growth rate of the five soybean 
varieties, and this information can provide a basis for developing guidelines for water and fertiliser 
application to crops. These findings will provide effective guidance for breeding and field management 
of soybean and other crops.

With the development of agricultural digitalisation and precision, “virtual plants” have become a hot research 
topic in the field of agriculture1. A virtual plant is the virtual visualisation of the objective plant morphological 
structure by 3D reconstruction, which can be done using many methods.

Virtual plants are developed by digital agriculture, computer graphics, and 3D reconstruction technology; 
because crop morphological structure is reproduced in 3D form, virtual plants can resolve the issue of parame-
ter extraction caused by the low resolution of 2D images2,3. Virtual plants are of great significance to crop yield 
prediction4, resource and environment analysis5, and crop cultivation guidance6. Additionally, virtual plants have 
become extremely important for precision analysis of crop phenotypes7,8, analysis of plant-type characteristics9, 
computer-aided design of morphological structure10–12, and collaborative analysis of crop growth structure and 
function13,14.

Soybean is an important food and oil crop worldwide, and is the main source of high-quality human protein15. 
It can be predicted that, with increasing human populations and land degradation, demand for soybeans will also 
increase. Currently, the development of high-throughput gene sequencing technology has enabled the full discov-
ery of genes that regulate important soybean traits16. However, because of the complexity of soybean plants, there 
have been few studies on the extraction of phenotypic parameters and analysis of growth patterns based on virtual 
plant models. The most common method is still the traditional manual measurement, which is destructive.

However, research on soybean plant growth morphology plays an important guiding role for analysing the 
growth patterns of soybean, rational seed selection, breeding, interplanting, and improving soybean yield17. 
Therefore, the accurate extraction of plant dynamic phenotypic parameters using virtual plants and the realisation 
of the design breeding mode, which combines molecular breeding with phenotypic breeding approaches, have 
become key problems to improve soybean yield.
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The combination of information technology and agricultural virtual reality technology provides an important 
method for obtaining virtual plants. Currently, the methods used to obtain virtual plants through 3D reconstruc-
tion are roughly divided into rule-based18, image-based vision19–21, 3D scanner22, and 3D digitiser23 methods. 
Using a rule-based method to conduct crop 3D reconstruction and visualisation can clearly reveal crop growth 
patterns. However, 3D reconstruction based on 3D scanner and 3D digitiser methods has some disadvantages, 
such as requiring a large amount of cloud data, time-consuming processing, and expensive equipment. However, 
in this paper, the low-cost 3D reconstruction technology both reconstructs and performs parameter extraction of 
soybean plants during the whole growth period, and can also be easily used by some breeders to promote progress 
in crop phenotypic breeding.

In this paper, a method based on a low-cost 3D reconstruction technology is proposed to analyse the pheno-
typic changes of soybean during the whole growth period. The method includes two parts: 3D reconstruction and 
phenotypic analysis. 3D reconstruction was mainly used to obtain the morphological sequence of soybean plant 
images in specific growth periods with the digital image acquisition platform by circular photography; then, the 
3D models of soybean plants were obtained with image-based 3D reconstruction technology. The main purpose 
of the phenotypic analysis was to analyse the phenotypic changes of soybean during the whole growth period by 
drawing a “phenotypic fingerprint” map. This method uses a combination of phenotype data and morphological 
model visualisation technology, which provides technical support for the design breeding mode, which combines 
molecular breeding with phenotypic breeding. The results will further help people understand the characteristics 
of soybean morphological structure, and the relationship between phenotype and field management. Precision 
analysis of soybean phenotypes also provides a powerful tool for field management, innovative soybean genetic 
breeding, and soybean plant type selection.

Materials and Methods
Experimental material. The field experiment was conducted at the soybean experimental base of Northeast 
Agricultural University of China ( ° °′ ′N44 04 , E125 42 ). The soil type of the experiment was black soil. Five varieties 
(DN251, DN252, DN253, HN48, and HN51) were selected as experimental materials.

The experimental materials were divided into barrel and field planting materials. Barrel planting materials 
were planted in resin barrels with a height of 31 cm and a diameter of 27.5 cm. Multiple drainage holes were 
included at the bottom of the resin barrel to facilitate plant root respiration. The barrel planting materials were 
placed in the field environment about 20 cm underground, and the distribution location is shown in Fig. 1. 
According to the experimental design, a total of 15 barrels of experimental materials were obtained, and five 
barrels of plants were randomly selected for indoor 3D reconstruction. The field materials were planted in the 
test area with a ridge length of 500 cm and ridge spacing of 60 cm. Five treatments were set up by random block 
method. Each treatment was repeated three times, totalling 15 plots and 45 ridges. The experimental field was 
managed the same as the conventional field.

Platform and methods. Because of the ongoing development of 3D reconstruction technology, this paper 
proposes 3D reconstruction and phenotype extraction technology for plants that can reconstruct plant models 
with 3D reconstruction technology and soybean plant morphological sequence images. The flow chart of the 
whole 3D reconstruction process is shown in Fig. 2a. First, the morphological sequence images of soybean plants 
during specific growth periods were obtained through the digital image acquisition platform. Then, the morpho-
logical sequence images were preprocessed. Finally, 3D reconstruction was performed by camera calibration, 
feature extraction; then, the corresponding phenotypic parameter extraction and application were completed.

Digital image acquisition platform. The digital image acquisition platform was built on the principle of 
multi-vision stereo vision24, and was mainly composed of a digital camera, rotary table, servo stepper motors, 
lead-straight sliding rail, sensors, a control panel, supplementary light, and background cloth (Fig. 2b).

Two stepper motors drive the rotary table to rotate automatically through the synchronous belt, and the other 
stepper motor controls the height of the digital camera on the lead-straight slide rail to adapt to different plant 
heights in different growth periods. The main working principle of the platform is to construct a multi-view ste-
reo vision system with digital cameras at different angles. Using circular photography, the platform takes photos 
of the target plants in the range of 10°–25°, and combines them with an automatic turntable and calibration pad 
(Fig. 2c). Sixty photos can be obtained through four groups of circular rotations shooting at different angles, and 
the original image obtained by the digital image acquisition platform is shown in Fig. 3a. This method effectively 
improves the problem of mutual occlusion between soybean leaves; then, the morphological sequence images of 
the target plant are obtained for 3D reconstruction25.

Figure 1. Distribution map of field experimental plots.
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Digital image preprocessing. The image quality obtained by the digital image acquisition platform directly deter-
mines the 3D reconstruction accuracy. However, during image shooting and transmission, image quality is often 
affected by various noise sources because of factors associated with artificial shooting and equipment, and this has 
a negative impact on the subsequent image processing (such as image recognition and segmentation) and camera 
calibration if the signal-to-noise ratio of the image is large26.

Therefore, to improve the accuracy of camera calibration and 3D reconstruction, it is necessary to denoise the 
image. Filtering and smoothing are used to eliminate image noise. Based on analysis of the actual soybean plant 
morphological sequence images, it was concluded that most of the image pollution noise was Gaussian white 
noise. Therefore, the threshold denoising method based on wavelet transform was selected to denoise the soybean 
plant morphological sequence images27. The background segmentation of the image was identified using the blue 
screen matching technology28. The plant image obtained using the preprocessing method is shown in Fig. 3b.

Camera calibration. The parameters for calibration differ among different cameras. Therefore, it is very 
important to select a calibration template that can improve accuracy and robustness. In this study, a calibration 

Figure 2. Process of soybean plant 3D reconstruction. (a) The technical flow chart of soybean plant 3D 
reconstruction. (b) The digital image acquisition platform (1, power supply; 2, stepping motor; 3, controller; 
4, relay; 5, rotating disk). (c) The basic principle of multimodal photography. (d) The 3D reconstruction 
calibration template. (e) The main view of a 3D reconstructed soybean plant with calibrated canopy and plant 
height. (f) The overhead view with the plant length and width calibrated.
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template generated by 3D software object modeler29 was selected for camera calibration. The calibration template 
was composed of 15 sets of patterns, each of which contained four points and was arranged in a large radial circle 
(Fig. 2d). The points on the calibration template are easily recognised, which prevents the more complex calcula-
tion problems of multi-frame structure motion technology30.

Camera calibration is a basic and key step in the early stage of 3D reconstruction that can lays the foundation 
for stereo image matching during 3D reconstruction. Camera calibration is used to determine the status of the 
internal structure (the internal parameters) and the relationship between the camera and the location of the 
scene (the external parameters) when the camera takes pictures. The accuracy of parameters directly affects 3D 
reconstruction accuracy31.

In the classical pinhole camera model, the relationship between the points in the image and the actual coor-
dinates can be represented by the world coordinate, camera coordinate, image coordinate, and pixel coordinate 
systems. Any point in space and its projection on the camera image plane must meet the following projection 
formula:

s m K R t M[ ] (1)⋅ = ⋅

In the formula, s is any scale factor and m(u, v, 1)T is the coordinate of point n in the image coordinate system. 
M(x, y, z,1)T is the coordinate of point n in the world coordinate system. [R · t] is the camera external parameter 
matrix. R an t  are, respectively, the rotation matrix and conversion parameters in the process of transformation 
from world coordinate system to camera coordinate system. K  is the internal parameter matrix of the camera, 

which mainly includes fx, .., u0, v0, fx, and fy, which are units of pixel length. The expression =
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u v( , )0 0  is the coordinate of the principal point.
However, in practical applications, the lens will show some geometric distortion. The existence of image 

geometric distortion both affects the visual effect of the image and also increases the difficulty of subsequent 
image processing; therefore, it is very important to select a suitable distortion model32. The most common method 
is decomposing geometric distortion into radial distortion, tangential distortion, and prism components. The cor-
rection model of lens distortion is as follows:
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δ = −x y x x( , ) (4)x u

δ = −x y y y( , ) (5)uy

In formulas (2) and (3), δ x y( , )x  and δ x y( , )y  represent the distortion values, respectively. The first part is radial 
distortion, the second part is centrifugal distortion, and the third part is thin prism distortion. k k p p s, , , ,1 2 1 2 1 
and s2 are the distortion coefficients. However, it has been shown that the total error of non-radial distortion is 
only 1/7–1/8 of that of radial distortion33. Tsai also proposed that tangential distortion can be neglected for most 
computer vision applications34.

Therefore, the radial distortion correction model is as follows:

= + −u u k u u r( ) (6)d 1 0
2

Figure 3. A 3D reconstructed model of soybean DN252 during the whole growth period. (a) The original 
image obtained through the digital image acquisition platform. (b) The image obtained by image preprocessing. 
(c) The result of 3D reconstruction. (d) A 3D model with colour texture.
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= + −v v k v v r( ) (7)d 1 0
2

= +r x y (8)n n
2 2 2

In the formula, x y( , )n n  is the idealised coordinate, u v( , ) is the corrected coordinate, u v( , )d d  is the image point 
with radial distortion, and k1 is the radial distortion coefficient.

In this study, a precision estimation method of camera parameters based on the RANSAC algorithm was 
adopted. This method has strong robustness under the conditions of substantial noise and incorrect point 
matches. The RANSAC algorithm, proposed by Fishler and Bolles in 1981, is simple but powerful technology 
that is widely used in the field of computer vision for model parameter estimation tasks35, such as camera param-
eter estimation36,37, motion estimation38,39, image registration40,41, projection reconstruction42, and ellipse extrac-
tion43. During camera calibration, 15 photos were taken for each group of calibration templates (with and without 
plants). Then, the camera was calibrated based on the RANSAC calibration algorithm proposed by Lv44 and 
Zhou45. Finally, the corresponding internal and external parameter matrices of the camera at different angles were 
obtained by detecting the feature points on the calibration template.

reconstruction method. For 3D reconstruction, feature point detection and stereo feature matching are 
important steps. In this study, the SURF algorithm was used to extract image features and the RANSAC algo-
rithm was used to achieve stereo feature point matching; then, a 3D point cloud model was obtained46. Because 
the surface reconstruction method based on the Poisson equation combines the advantages of global fitting sur-
face reconstruction methods and local fitting surface reconstruction methods, it has better elasticity for data 
noise processing. Therefore, in this study, a surface reconstruction method based on the Poisson equation was 
used to more accurately obtain and optimise corner points, and find the matching points of corner features. 
Consequently, the precise surface of the reconstructed object was obtained47,48.

The steps of Poisson surface reconstruction are as follows:

Define octree. When the initial 3D point cloud of a soybean plant was obtained from the soybean plant pic-
tures, it was necessary to reconstruct the surface of the 3D point cloud. In this study, octree structure was adopted 
to infer the spatial description of the 3D point cloud of soybean plants. From the initial node, each node extended 
into eight sub-nodes, and the corresponding spatial cube of the node was divided into eight parts; this was con-
ducted until the number of layers specified in the 3D reconstruction was satisfied. The root node of the initial 3D 
point cloud in this paper was a boundary box around the surface that was reconstructed49,50. Therefore, octree was 
used to divide point clouds, and the data structure of each layer of octree nodes was established.

Set the space function. The Poisson equation is expressed as follows:

ϕ∇ = f (9)2

In the formula, F is a real or complex equation in space. In this paper, f  refers to the 3D surface of soybean 
plants. If the f x( ) of a point is equal to 0, then the point is on the surface; if >f x( ) 0 or <f x( ) 0, then the point 
is not on the surface.

The basic purpose of the Poisson equation is to solve implicit function ϕ based on the domain A and vector 
field 

→
V . The solution is used to make an optimal gradient of the implicit function approximate to the vector field 

→
V  as follows:

∫ ϕ∇ −
→
V dAmin (10)A

2

Therefore, the main task of 3D reconstruction of soybean plants based on Poisson equation is to accurately 
calculate its gradient based on the sample points in the point cloud to approximate the implicit function of vector 
field 

→
V  as accurately as possible. Consequently, the Poisson equation was solved as follows:

ϕ∇ =
→
V (11)

Create a vector field. For each node ∈o O in the octree, o here refers to the node in the octree structure, 
and O refers to the octree. Therefore, the node function equation can be defined as:

≡




− ⋅
⋅



 ⋅

Fo F q o c
o w o w

1
(12)3

In the formula, ⋅o c refers to the centre of node o, and ⋅o w refers to the width of node o.
The basis function F can be obtained by n-dimensional convolution of formula (13). The larger the value, the 

better the reconstruction effect. However, the time and complexity of the algorithm correspondingly increase:

 (13)
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The expression of the basis function F is as follows:

= ⁎F x y z B x B y B z( , , ) ( ( ) ( ) ( )) (14)n

Point cloud data obtained based on multiple superpositions of the Poisson equation tend to be inconsistent in 
density and dispersion. Therefore, in this study, the weighted coefficient of the nearest neighbour node was used 
for calculation. Using this method, the precision of high point cloud data can be improved, and the approximate 
vector of the indicated function gradient field can be defined as:

∑ ∑ α
→

≡ .
→

∈ ∈
V q Fo q s N( ) ( )

(15)s So NgbrD s
o s

( )
,

NgbrD s( ) is the eight nodes with depth D, and is the weighted coefficient of interpolation. Based on the 
requirement of the second-order smoothness of soybean plants in the process of 3D reconstruction, the method 
of cubic spline interpolation was used to calculate the weighted coefficient.

Solve the poisson equation. There are many methods that are used to solve the Poisson equation. In this 
paper, the Gauss–Seidel iteration method was selected to solve the Poisson equation47.

If the coefficient matrix A of system =Ax b is non-singular and ≠ = aii i n0( 1, 2, , ), then:
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The formula of the Gauss–Seidel iteration method can be expressed in the following form if A is divided into 
= − −A D L U and each of D L U, ,  are similar to Jacobian iteration:

= + + =+ − +
X D LX UX b i( ), ( 0, 1, ) (16)i i i( 1) 1 ( 1) ( )

Then, both sides are multiplied by matrix D:

− = + =+ · · ·D L X UX b i )( ) , ( 0, 1, (17)i i( 1) ( )

Finally, both sides are multiplied by matrix − −D L( ) 1:

= − + − =+ − − · · ·X D L UX D L b i )( ) ( ) , ( 0, 1, (18)i i( 1) 1 ( ) 1

In the formula, − −D L U( ) 1  is called the Gauss–Seidel matrix.

Extract the isosurface. If the equation of a surface function in space is F x y z( , , ), then the isosurface equa-
tion needed in the process of 3D reconstruction based on Poisson’s equation is =F x y z V( , , ) . This equation 
represents the surface when the space surface function F x y z( , , ) is equal to a given value (that is, the surface is 
composed of Ω = =x y z F x y z V{( , , ): ( , , ) }).

In this experiment, the moving tetrahedron algorithm, which is similar to the moving cube method, was used. 
This method can effectively avoid the shortcomings of the moving cube method, and more accurately reflects the 
detailed texture of soybean plants51. The soybean plants reconstructed based on the Poisson equation are shown 
in Fig. 3c–d.

Extraction and analysis of dynamic plant phenotypes. Definition and extraction of dynamic plant 
phenotypes based on 3D models. The extraction of dynamic phenotypic parameters of soybean plants based 
on 3D models is key for researching morphological changes of soybean plants. In this study, the parameters of 
soybean plant length, plant width, plant height, canopy height, canopy area, plant volume, and plant type were 
calibrated according to Qiu52.

Soybean plant height was defined as the distance from cotyledon node to growing point, and canopy height 
was the distance from cotyledon node to the highest point of the plant (Fig. 2e). The minimum circumscribed 
rectangle of the ground projection of the 3D model canopy is shown in Fig. 2f. The length of the minimum 
circumscribed rectangle was defined as the plant length and the width as the plant width. The product of plant 
length and width was defined as the canopy area. The product of plant width, plant length, and canopy height was 
defined as the plant volume.

The phenotypes of the plant 3D point cloud model, which included plant height, plant length, plant width, 
and canopy height, can be automatically obtained by the point cloud classin point cloud tools for MATLAB 
(https://www.geo.tuwien.ac.at/downloads/pg/pctools/publish/pointCloudSelect/html/pointCloudSelect.html) 
and pcshow function in MATLAB.

Plant phenotype analysis based on 3D models. To improve the accuracy of the 3D reconstruction technology, 
the same standards were adopted to manually measure the plant. The Pearson correlation analysis was used to 
analyse the accuracy of the parameters plant length, plant width, canopy height, plant height, canopy area, and 
plant volume. Simultaneously, the radar charts of the plants were drawn according to the phenotypic parameters, 
and quantitative analysis of the phenotypic parameters was carried out.

https://doi.org/10.1038/s41598-020-63720-2
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Because the phenotypic parameters of soybean during the whole growth period can be obtained based on 
this method, the plant growth model and growth rate model can be analysed by logistic model. Compared with 
other parametric growth models, a logistic growth curve analysis was conducted using a 3-parametric model in 
this study53. The parameter estimations of the logistic model (Eq. 19) were implemented by gradient descent (sgd 
package and glm function based on R language)54. The specific analysis formula was as follows:

=
+ − −( )

N t K

e
)( )

1 1 (19)
K
N

rt
0

In the formula, N(t) refers to the value of target phenotype at time t, t refers to the days after seedling emer-
gence, N0 refers to the initial value of target phenotype, K refers to the environmental capacity and is also the level 
asymptotic value of target traits, and r refers to the maximal growth rate.

The growth rate model can be used to analyse the growth ability of crops, and can also help analyse the growth 
of crops under increasing population sizes and promote precision management of a certain variety of crops in 
the field.

The growth rate analysis model of soybean based on the logistic growth curve is as follows:
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, the growth rate has reached the maximum. Consequently, the time to reach the maximum 
growth rate can be accurately calculated.

Results
Morphological changes of soybean plants based on 3D reconstruction models. In this study, 
3D morphological reconstruction of DN251, DN252, DN253, HN48, and HN51 soybean cultivars in the growth 
periods of V3, V4, R1, R2, R3, R5, R6, R7, and R8 were inferred by low-cost 3D reconstruction technology.

Figure 4 shows the main view (Fig. 4a) and top view (Fig. 4b) of the 3D reconstruction models of the soybean 
DN252 plant. This clearly reflects the whole process of soybean development. Figure 4 shows that the 3D models 
obtained based on the low-cost 3D reconstruction technology truly reflected the colour and texture character-
istics of soybean plants. Therefore, this method facilitates high-quality 3D reconstruction and morphological 
visualisation of soybean plants and can more realistically reveal the morphology and growth state of plants.

Accuracy analysis of 3D models. Comparison of plant phenotypes between field- and barrel-planted soy-
bean. In this study, three barrels of each variety were planted and scattered in the middle of their respective test 
areas (see Fig. 1). These materials were used to explain whether there were significant differences between the 
phenotypes of barrel plants and those of other plants in the field. Figure 5a depicts the box plot and t test results of 
plant height differences between barrel and field planting of DN251; although the plant height of barrel-planted 
plants was significantly lower than that of the field-planted plants at each stage of soybean development, the 
overall difference was not significant. This conclusion was verified by the subsequent t-test; that is, there was no 
significant difference in plant height between barrel and field planting.

This result was also verified for plant height phenotype of other varieties (Fig. 5b). Analysis of differences 
between plant length (Fig. 5c), plant width (Fig. 5d), and canopy height (Fig. 5e) of barrel- and field-planted 
plants was also similar to that of plant height (in this analysis, when alpha is 0.1, the difference may be significant, 
but the probability of this occurring is very low). It was concluded that there was no significant difference in plant 
height, plant length, plant width, and canopy height between the barrel- and field-planted plants.

We studied and observed the growth of the plants in the field with the phenotype obtained by the 
barrel-planting method after treatment (porous bottom and the barrels buried 20 cm below ground). Therefore, 

Figure 4. Morphological changes of soybean plants during the different growth and development stages based 
on the 3D model of the DN252 plant. (a) The front view. (b) The top view. V3, V4, R1, R2, R3, R5, R6, R7, and 
R8 refer to the stages in sequence55.
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it was possible to study and observe the growth of field plants using the phenotypic data obtained from the 
barrel-planted plants (multiple drainage holes at the bottom and the barrels buried 20 cm below ground).

Accuracy analysis of 3D models. To verify the accuracy of the 3D models obtained by our method, correlation 
analysis was conducted between the plant length, plant width, canopy height, and plant height extracted based on 
DN252 3D models and the manually measured values. The Pearson correlation coefficients were used to evaluate 
the reconstruction effect (Fig. 6). The correlation coefficients of plant length, plant width, canopy height, and 
plant height extracted from the models with the manually measured values were 0.992 (Fig. 6a), 0.990 (Fig. 6b), 
0.989 (Fig. 6c), and 0.996 (Fig. 6d), respectively. In summary, the correlation coefficients were higher than 0.98, 
which showed that the accuracy of the models obtained by 3D reconstruction based on morphological sequence 
images was higher. Even for soybean plants with complex growth structure around the R5 stage, morphological 
visualisation and parameter extraction can be effectively inferred. Therefore, the data extracted based on this 
method can be fully used for plant phenotype analysis.

Analysis of dynamic phenotype changes of soybean plants based on 3D models. “Phenotypic 
fingerprint” analysis of soybean plants based on 3D models. Phenotypic parameters obtained from the 3D recon-
struction models can be used to draw radar charts, which reflect plant morphological changes (Figs. 7, 8). As each 
sub-graph looks like a human’s fingerprint, they are called “phenotypic fingerprints”.

The concept of a phenotypic fingerprint is new for phenotypic analysis and phenotypic breeding. The greatest 
advantage of phenotypic fingerprinting is that it integrates and displays multi-dimensional data, and accurately 
reveals quantitative phenotypic variation with internal connections. Moreover, phenotypic fingerprinting can 
also be used for plant morphological structure analysis and plant type selection. Consequently, this approach can 
provide data support for breeding, cultivation, resource, and environment analysis, especially for quantitative trait 
locus research. The phenotypic data extracted from the 3D models can be seen in Supplementary File 1.

Phenotypic fingerprint drawings (Figs. 7–8) were constructed for the five soybean varieties. Figure 7 is the 
phenotypic fingerprint formed by the sequence of the growth periods and can be used to analyse the differences 
of phenotypic parameters of different soybean varieties in the same period. In the V3, V4, R1, R2, and R3 periods, 

Figure 5. Comparison of plant phenotypes between field- and barrel-planted soybean. (a) A box plot of DN251 
plant height in different planting patterns (field- or barrel-planted); the value above or below each group refers 
to the p-value of the t-test between field- and barrel-planted phenotypes. b–e depict heat maps of plant height, 
plant length, plant width, and canopy height, respectively. The colour of each square in every heat map denotes 
the p-value of the t-test between the field- and barrel-planted plants for the corresponding phenotype.
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the growth of plant length, plant width, canopy height, and plant height of the five soybean varieties were similar 
(Fig. 7a–e). However, from the beginning of the R5 period, the differences of growth among the five cultivars 
gradually increased. Among the four traits, plant height and canopy height grew faster than plant length and 
plant width (Fig. 7f). In the R6 and R7 periods, the growth differences of the five varieties almost reached the 
maximum. The R6 and R7 stages represent the full seed period, and most nutrients have been taken up by the 
time the plant reaches the R6 stage. Therefore, these growth differences may be a target for the field management 
of different varieties, such as disease diagnosis and degree of fertilisation needed (Fig. 7g–h). In the mature R8 
stage, plant length and plant width significantly shrunk because of the influence of plant leaves, whereas plant 
height and canopy height only slightly changed (Fig. 7i).

Figure 8 shows the variation of different phenotypic parameters of a single variety during the whole growth 
period. According to Fig. 8, the growth periods corresponding to the maximum values of plant length, plant 
width, canopy height, and plant height of DN251 were R7, R7, R6 and R7, respectively. The growth periods cor-
responding to the maximum values of plant length, plant width, canopy height, and plant height of DN252 were 
R6, R5, R6, and R6, respectively. The growth periods corresponding to the maximum values of plant length, plant 
width, canopy height, and plant height of DN253 were R7, R6, R6, and R6, respectively. However, the growth 
periods corresponding to the maximum values of plant length, plant width, canopy height, and plant height of 
HN48 were R7, R7, R5, and R5, respectively. The growth periods corresponding to the maximum values of plant 
length, plant width, canopy height, and plant height of HN51 were R7, R7, R6, and R6, respectively. Therefore, 
the above results can be used to analyse the differences among different varieties and the phenotypic changes of 
the same variety in different growth stages. The results also provide timing information for field management and 
important phenotypic extraction.

Dynamic change analysis of plant growth based on 3D models. The dynamic changes of plant height, plant length, 
plant width, canopy height, canopy area, and plant volume of different soybean varieties during the whole growth 
period are shown in Fig. 9. At the early stages of growth, all phenotypes showed a significant upward trend. When 
the plant hit maturity, the plant height and canopy height slightly decreased. According to the division standard 
of growth periods of soybean plants55, the time interval of phenotypic determination in different growth periods 
is long. Based on the measurement standards shown in Fig. 2e,f, the plant phenotype parameters were closely 
related to plant leaves. As plants grew and the leaves fell off, there was a significant declining trend for the values 
of these four traits after reaching maturity.

However, the dynamic changes of canopy area and plant volume can also be obtained in the line chart. The 
maximum growth period of canopy area and plant volume of DN251 and HN51 was R7. The maximum growth 
period of canopy area and plant volume of DN252 and DN253 was R6. The maximum growth periods of canopy 
area and plant volume of HN48 were R7 and R5, respectively (Table 1).

Figure 6. Accuracy analysis of phenotype extraction values based on 3D model and manual measurement 
values. a–d, respectively, represent accuracy analysis of plant length, plant width, canopy height, and plant 
height phenotypic quantification values based on 3D model and manual measurement values, of which the 
sample size N of the four phenotypic indicators was 45.
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Figure 7. Radar charts of soybean plants based on growth and development stages. Each radar chart is made 
up of four features (plant height, plant length, plant width, and canopy height) of the five candidate soybean 
varieties (DN251, DN252, DN253, HN48, and HN51). (a–f) Phenotypic fingerprints of soybean plants based on 
different growth and development stages. Each sub-graph may be called a growth stage phenotypic fingerprint.

Figure 8. Radar charts of plants based on soybean varieties. Each radar chart is made up of four features (plant 
height, plant length, plant width, and canopy height) and nine growth and development stages in sequence (V3, 
V4, R1, R2, R3, R5, R6, R7, and R8). (a–e) Phenotypic fingerprints of soybean plants based on different soybean 
varieties (DN251, DN252, DN253, HN48, and HN51). Each sub-graph may be called a variety phenotypic 
fingerprint.
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Analysis of plant logistic growth curve based on 3D models. Figure 10 shows the logistic growth curve of soybean 
plant phenotypes during the whole growth period based on 3D models. For plant height, the time it took for the 
five varieties to reach the highest growth point differed. DN252, DN253, and HN48 all reached their highest 
values (49.628 cm, 52.681 cm, and 49.994 cm, respectively) about 86 days after seedling emergence. DN251 and 
HN51 reached their highest values (77.814 cm and 85.290 cm, respectively) about 107 days after seedling emer-
gence (Fig. 10a). For plant length, all five varieties (DN251, DN252, DN253, HN48, and HN51) reached their 
highest values (62.528 cm, 58.466 cm, 58.511 cm, 52.075 cm, and 63.948 cm, respectively) about 131 days after 
seedling emergence. The variation in plant length was similar between DN251 and HN51 (Fig. 10b).

The changes in plant width of DN251 and HN51 were the most similar among the five cultivars, and the 
time required for the two cultivars to reach the highest value was longer than that of the other three cultivars. 

Figure 9. Line charts for different phenotypic traits of soybean plants. Each sub-graph shows changes of a 
specific trait for each of the five soybean varieties (DN251, DN252, DN253, HN48, and HN51). The phenotypes 
include plant height (a), plant length (b), plant width (c), canopy height (d), canopy area (e), and plant volume 
(f).

Variety Plant Length
Plant 
Width

Canopy 
Height Plant Height

Canopy 
Area

Plant 
Volume

DN251 R7 R7 R6 R7 R7 R7

DN252 R6 R5 R6 R6 R6 R6

DN253 R7 R6 R6 R6 R6 R6

HN48 R7 R7 R5 R5 R7 R5

HN51 R7 R7 R6 R7 R7 R7

Table 1. Statistics of the maximum growth period of corresponding phenotypes of different varieties.
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The maximum plant width values of DN251, DN252, DN253, HN48, and HN51 were 57.668 cm, 46.502 cm, 
46.618 cm, 46.197 cm, and 58.703 cm, respectively (Fig. 10c). For canopy height, the change trend of canopy 
height was similar to that of plant height. The five varieties all reached their highest growth point around 107 
days after seedling emergence. The maximum canopy height values of the five cultivars (DN251, DN252, DN253, 
HN48, and HN51) were 88.856 cm, 65.799 cm, 65.104 cm, 64.036 cm, and 92.118 cm, respectively (Fig. 10d).

Because canopy area and plant volume are affected by plant length and plant width during the growth period, 
the dynamic change of canopy area and plant volume is a comprehensive result. Compared with the other four 
varieties, the canopy area of HN51 substantially differed, and the highest value of canopy area reached 3753 cm2. 
The maximum canopy area of DN251, DN252, DN253, and HN48 did not significantly differ (3605.848 cm2, 
2467.031 cm2, 2313.884 cm2, and 2405.695 cm2, respectively; Fig. 10e). However, the differences in plant volume 
among the five varieties were obvious. The peak time points of DN252, DN253, and HN48 were earlier than those 
of DN251 and HN51. Moreover, the maximum values of DN252, DN253, and HN48 were 162.328 dm3, 150.643 
dm3, and 124.156 dm3, respectively. The maximum plant volume values of DN251 and HN51 (292.840 dm3 and 
318.713 dm3, respectively) were significantly different from those of the other three varieties (Fig. 10f). In con-
clusion, the logistic growth curve fitting based on the quantitative phenotypic parameters of the 3D models can 
clearly reveal the differences in phenotypes among different varieties.

Figure 11 shows the growth rate curves of soybean plant phenotypes during the whole growth period. For 
plant height, the growth rate of DN252 was almost always higher than that of the other four varieties about 
30 days after seedling emergence. About 37 days after emergence, the growth rate of plant height reached its 

Figure 10. Logistic growth curves for different phenotypic traits of soybean plants. Each sub-graph shows 
changes of logistic growth curves of a single trait for all five soybean varieties (DN251, DN252, DN253, HN48, 
and HN51). The phenotypic traits include plant height (a), plant length (b), plant width (c), canopy height (d), 
canopy area (e), and plant volume (f).
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maximum. The growth rate of HN51 was close to that of DN251, DN253, and HN48 in the early stage. However, 
the growth rate of HN51 was significantly higher than that of the other four varieties from about 32 days after 
emergence, and the growth rate of HN51 reached the highest value at about 52 days. The time for HN51 and 
DN251 to reach the maximum growth rate was similar. This is an important finding for field management of dif-
ferent varieties (Fig. 11a). For plant length, the growth rates of the five cultivars greatly differed. However, the five 
cultivars reached the maximum growth rate within 33–50 days after seedling emergence. The maximum growth 
rate of plant length of HN51 was higher than that of the other four varieties. The maximum growth rate of DN253 
was the lowest, and there were substantial differences between DN253 and the other four varieties (Fig. 11b). For 
plant width, the growth rate of DN252 was higher than that of the other four varieties within 43 days after seed-
ling emergence and reached the highest growth rate at around 34 days. The growth rates of the other four cultivars 
were similar within 27 days after seedling emergence; after this time point, the growth rates of DN251 and HN51 
greatly increased, and reached the highest growth rate in about 48 days. However, DN253 and HN48 also reached 
the highest growth rate at about 40 days after seedling emergence (Fig. 11c).

For canopy height, the five varieties (DN251, DN252, DN253, HN48, and HN51) reached the highest growth 
rate at 49, 43, 47, 40, and 50 days after seedling emergence, respectively. The growth rate of canopy height of HN51 
was also higher than that of the other four cultivars (Fig. 11d). For canopy area, DN251 and DN252 reached the 
maximum growth rate at approximately 48 and 45 days, respectively. HN48 was the first to reach the highest 
growth rate at about 35 days after seedling emergence, whereas HN51 reached the highest growth rate at about 
65 days after seedling emergence (Fig. 11e). For plant volume, the growth rate of early plant volume was lower, 
because it was affected by multi-phenotype interactions. DN251, DN252, DN253, HN48, and HN51 reached 
their highest growths rate at around 68, 54, 60, 50, and 69 days after seedling emergence, respectively (Fig. 11f).

In conclusion, the phenotypic growth rates of DN251 and HN51 were similar. The growth rate differences 
between different phenotypes also indicated differences in morphological changes, such as differences in effec-
tive photosynthetic area and plant volume, among varieties during the whole growth period. Analysing the 

Figure 11. Growth rate curves for different phenotypic traits of soybean plants. Each sub-graph shows changes 
of growth rate curves of a single phenotypic for all five soybean varieties (DN251, DN252, DN253, HN48, and 
HN51). The phenotypes include plant height (a), plant length (b), plant width (c), canopy height (d), canopy 
area (e), and plant volume (f).
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phenotypic parameters extracted from the 3D models provides unique insight that can be used for precision 
agriculture of different varieties.

Discussion
With the continuous development of computer graphics and 3D reconstruction technology, research on 3D 
reconstruction of various crops has also made great progress56. However, because of the complexity of soybean 
plant types, research on the 3D reconstruction of soybean plants at home and abroad has mainly focused on the 
3D reconstruction of soybean plants at the seedling stage57 and of their leaves58. In the seedling stage, there are 
few soybean plant leaves and the growth structure is simple. Therefore, 3D reconstruction of plants at the seedling 
stage is easier to accomplish. In this study, our low-cost 3D reconstruction technology successfully achieved 3D 
morphological reconstruction of soybean plants throughout their life. Moreover, the morphological changes of 
soybean plants and extraction of plant phenotypic parameters during the whole growth period were completed 
based on the 3D models. The 3D reconstruction models both record the morphological structure of a soybean 
plant during the critical periods of its life and are non-destructive. This technology provides a foundation that 
breeders can use to conduct virtual breeding based on forecasted future meteorological conditions.

Currently, the 3D reconstruction of most field crops is limited to the analysis of population characteristics, 
which is of great significance to the analysis of population-scale crop information59–61. However, population anal-
ysis cannot accurately extract crop phenotypes and has little significance for quantitative analysis of the morpho-
logical changes of specific phenotypes. In this paper, the proposed low-cost crop 3D reconstruction technology 
can indirectly facilitate plant reconstruction and phenotype parameter extraction in the field, and the growth of 
field plants was described and analysed through barrel plants in the field.

The 3D models obtained by 3D reconstruction can permanently preserve the plant morphology of specific 
varieties in a specific environment, which provides theoretical and data support for the design breeding mode, 
which combines molecular breeding with phenotypic breeding.

In the field of crop 3D reconstruction, precision 3D point clouds, as an important data set for analysis, are 
crucial for successful extraction of crop morphological features62–64. 3D point clouds have been obtained by many 
methods, such as laser radars65, ultrasonic sensors66, scanners22, and digitisers67. Compared with these technolo-
gies, the proposed method for 3D reconstruction is more economical and efficient, and more realistically restores 
the colour and morphological structure of plants. Therefore, this method is better able to extract quantitative 
characteristic parameters of soybean plants. Accurate and effective characteristic parameters, such as LAI, leaf 
inclination, and stem diameter, were even obtained for soybean plants with severe leaf occlusion in the R5 and R6 
stages. In the future, more morphological parameters should be extracted. These parameters can also be extracted 
from point cloud data with similar accuracy.

In the process of crop growth, plant structure greatly influences yield when the photosynthetic and 
non-photosynthetic systems of the population reach relative stability68. To improve crop yield, it is necessary to 
achieve the most stable state between environmental factors and plant structure. To date, most of the research 
data on the selection of crop plant types were manually obtained69. Therefore, the extraction of plant parameters 
based on 3D models and deep learning can effectively avoid the damage caused by manual measurement. Plant 
type selection models can be divided into classification and clustering models. The classification selection model 
selects plant type using classification criteria70, whereas the cluster selection model selects phenotypic characters 
with obvious differences among multiple lines as the alternative phenotypic types. Field strain investigation can 
then be carried out according to these selected phenotypes. Subsequently, the selection of phenotypes can be 
completed by measuring the differences between phenotypes or hierarchical clustering analysis.

Similarly, the problem of food shortage caused by the rapidly increasing human population is becoming 
increasingly serious. It has become a great challenge for modern agriculture to improve crop yield through tra-
ditional crop management approaches. The key to increasing yield is to combine the extraction of precise crop 
phenotypes with traditional management. Knowledge regarding precise phenotypes of soybean at specific growth 
stages, such as plant height, plant length, plant width, plant volume, and canopy area, can help facilitate optimal 
management of agriculture, such as by optimising planting density according to plant volume. The combination 
of crop 3D models and planting density can undoubtedly help provide novel approaches to optimal management 
of agriculture. With the continuous development of high-throughput plant phenotypic analysis technology, more 
plant phenotypic information will inevitably be obtained and can be integrated to improve crop management.

conclusion
With the development of “precision farming”, the low-cost 3D reconstruction technology proposed in this study 
can be used to reconstruct the whole growth period of soybean plants. The 3D reconstruction models can show 
the morphological changes of soybean plants during the whole growth period. Furthermore, several phenotypic 
parameters, including plant height, plant length, plant width, canopy height, canopy area, and plant volume, 
were extracted based on the 3D models. The Pearson correlation coefficients between the phenotypic parameter 
values extracted from the 3D models and the manually measured values were higher than 0.98. Therefore, it can 
be concluded that the reconstruction accuracy of the platform was high. Based on the 3D models, growth model 
development, growth rate analysis, and “phenotypic fingerprint” analysis of different soybean varieties during the 
whole growth period were completed. The phenotypic fingerprint comprehensively showed variation of different 
phenotypes among varieties during the whole growth period. According to the logistic growth model of soybean 
plants, the corresponding time points of the maximum growth rate of the five soybean varieties were determined. 
These findings both provide technical and theoretical support for the design breeding mode that combines gen-
otypic and phenotypic information, and also provides effective guidance that can enhance crop breeding and 
growth management. Moreover, this method provided a 3D reconstruction and parameter extraction during the 
whole growth period of soybean plants, but can also be applied to other crops, such as corn and wheat.
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