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Visualizing the dynamic change 
of ocular Response Analyzer 
waveform using Variational 
Autoencoder in association with 
the peripapillary retinal arteries 
angle
Shotaro Asano1, Ryo Asaoka1,2,3*, takehiro Yamashita  4, Shuichiro Aoki1, 
Masato Matsuura1,5, Yuri fujino  1,2,5, Hiroshi Murata1, Shunsuke nakakura6, 
Yoshitaka nakao7 & Yoshiaki Kiuchi  7

the aim of the current study is to identify possible new ocular Response Analyzer (oRA) waveform 
parameters related to changes of retinal structure/deformation, as measured by the peripapillary retinal 
arteries angle (pRAA), using a generative deep learning method of variational autoencoder (VAe). fifty-
four eyes of 52 subjects were enrolled. The PRAA was calculated from fundus photographs and was 
used to train a VAE model. By analyzing the ORA waveform reconstructed (noise filtered) using VAE, a 
novel ORA waveform parameter (Monot1-2), was introduced, representing the change in monotonicity 
between the first and second applanation peak of the waveform. The variables mostly related to the 
PRAA were identified from a set of 41 variables including age, axial length (AL), keratometry, ORA 
corneal hysteresis, ORA corneal resistant factor, 35 well established ORA waveform parameters, 
and Monot1-2, using a model selection method based on the second-order bias-corrected Akaike 
information criterion. The optimal model for PRAA was the AL and six ORA waveform parameters, 
including Monot1-2. This optimal model was significantly better than the model without Monot1-2 
(p = 0.0031, ANOVA). The current study suggested the value of a generative deep learning approach in 
discovering new useful parameters that may have clinical relevance.

The prevalence of myopia is growing globally1. Myopia is an important risk factor for several ophthalmological 
disorders such as cataract2, glaucoma3, choroidal neovascularization4, and retinal detachment5, because of the 
associated structural changes. For example, the severity of myopic maculopathy increases with increased axial 
length (AL) and with decreased spherical equivalent refractive error (SERE)6.

In myopic eyes, the retina is mechanically stretched around the papillomacular bundle. This retinal deforma-
tion is demonstrated by the circumpapillary retinal nerve fiber layer (cpRNFL) peak angle (defined as the angle 
between the supratemporal and inferotemporal peak of the cpRNFL thickness profile) and by the peripapillary 
retinal arteries angle (PRAA)7–9. The range of individual variability in AL at birth is large10 and longer AL does 
not necessarily mean that the eye is elongated. In fact, even if two eyes have identical AL in adulthood, if they 
had different AL at birth the degree of elongation and the associated retinal stretch during the growth period are 
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different between the two eyes7. Furthermore, we previously reported that AL may increase in adulthood11, in line 
with a previous paper12. In line with this, we previously reported that the correlation between AL and the cpRNFL 
peak angle (r = −0.49) or the PRAA (r = −0.38) was moderate7.

Ocular biomechanical properties can be measured by using the Ocular Response Analyzer (ORA; Reichert 
Inc., Depew, NY, USA) and Corvis Scheimpflug Technology (CST; Oculus, Wetzlar, Germany). By analyzing CST 
biomechanical parameters, we previously reported that the ability to absorb the applied external energy (hyster-
esis) was significantly associated with myopic retinal stretch as estimated by the cpRNFL peak angle13. Another 
study reported that the maximum deformation amplitude as measured by using CST was associated with the 
size of β-zone parapapillary atrophy14. With the ORA, it is possible to evaluate corneal biomechanical properties 
in detail by analyzing the recorded waveform rather than the single parameter of Corneal hysteresis (CH). For 
instance, we have reported that parameters extracted from the ORA waveform were more strongly correlated with 
glaucomatous visual field progression compared to CH15. By using this approach, we recently reported that the 
corneal biomechanical properties described by parameters extracted from the ORA waveform were significantly 
related to myopic retinal deformation16. Currently, in the ORA 37 parameters are shown, which are derived from 
the two ORA response wave peaks, as implemented by the manufacturer. However, in addition to these parame-
ters, it is likely that analysis of the ORA waveform by means of advanced algorithms (e.g., machine learning) may 
be useful to capture further aspects of ocular biomechanics.

In machine learning, including deep learning, discriminative and generative models are used17. Several studies 
suggested the usefulness of a discriminative deep learning approach in Ophthalmology, for example for diag-
nosing glaucoma from a fundus photography18–22 and from optical coherence tomography (OCT)23. Variational 
Autoencoders (VAEs) are a type of deep learning approach that allows powerful generative models of data24,25. 
However, so far the usefulness of generative deep learning in Ophthalmology has not been assessed. VAEs con-
sist of an encoder, a decoder, and a loss function. The input data is first processed using the encoder (a neural 
network), represented as a multidimensional probability density in a latent space, and then reconstructed by the 
decoder (a neural network). VAEs have demonstrated remarkable generative capacity and modeling flexibility, 
especially with imaging data24. Indeed VAEs have been used for various purposes, such as anomaly detection (for 
example, in Electrocardiograms26), clustering, and in particular, noise filtering27. Another feature of the VAEs 
approach is that it enables visualization of the dynamic change of input data by gradually shifting the latent vari-
ables, which may be helpful to understand its characteristics24.

The aim of this study was to assess whether possible changes in ORA waveform associated with changes in 
PRAA could be detected by using new ORA waveform parameters extracted from the ORA waveform by means 
of a VAE approach.

Methods
Study population. The study protocol was approved by the institutional review boards of the University of 
Tokyo Hospital, the University of Hiroshima Hospital, and the Tsukazaki Hospital and adhered to the tenets of 
the Declaration of Helsinki. Informed consent was obtained from each subject.

The sample of eyes included in the current study was the same as in our previous study16. ORA measurements 
were conducted in forty-nine normal eyes from 47 subjects. Inclusion criteria were: 1) no pathological findings by 
slit-lamp microscopy, ophthalmoscopy, and/or OCT; (2) best-corrected visual acuity ≤0.1 LogMAR (logarithm 
of the minimal angle of resolution); and (3) intraocular pressure ≤21 mmHg, as measured by using Goldmann 
applanation tonometry. Exclusion criteria were: (1) known ocular diseases such as glaucoma, staphyloma, and 
optic disc anomalies; (2) systemic diseases such as hypertension and diabetes; (3) the presence of visual field 
defects; and/or (4) a history of refractive or intraocular surgery, including cataract surgery.

Measurements of AL and SERE. The AL was measured by using an optical biometer (OA-2000; Tomey, 
Nagoya, Japan). Three subsequent measurements were taken and the average value was used as AL measure. The 
SERE was measured by using the Topcon KR8800 autorefractometer/keratometer (Topcon, Tokyo, Japan).

peripapillary retinal arteries angle (pRAA). The methodology to measure the PRAA has been reported 
in detail elsewhere16. Briefly, optic disc color fundus photographs were obtained by using either an OCT (OCT-
2000®; Topcon, Tokyo, Japan) or a fundus camera (TRC-50DX®; Topcon). ImageJ software (https://imagej.nih.
gov/ij/; provided by the National Institutes of Health, NIH, Bethesda, MD) was used to draw a 3.4-mm-diameter 
peripapillary scan circle on the obtained fundus photographs, and the PRAA was calculated as the angle between 
the radia crossing the points at the intersection between the 3.4 mm-diameter peripapillary scan circle and the 
supratemporal/infratemporal major retinal arteries (as shown in Fig. 1). Magnification effects of the camera were 
corrected by using the Littmann’s formula28.

Analysis of the oRA waveform. The ORA waveform is recorded by using an electro optical system con-
sisting of a collimated beam of infrared light that is reflected by the surface of the cornea onto a photodetector 
and represents the deformation of cornea (inward and outward movements) in response to a rapid air jet. The 
ORA waveform is composed of two peaks that correspond to the corneal inward and outward applanation events. 
The CH is defined as the difference in the two applanation pressure values and it represents the viscous damping 
of the corneal tissue29. The corneal resistant factor (CRF) is also calculated from the two applanation pressure 
values, but places greater emphasis on the first applanation pressure in order to give more information about 
the elastic properties of the cornea29. By using the ORA software (version 3.01), 37 waveform parameters can be 
obtained from the ORA waveform. The ORA waveform was recorded by using an ORA G3 model with the related 
PC software for waveform analysis. The ORA measurements were carried out three times with at least a 5-minute 
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interval between each measurement, and the average of each obtained values were used in the analysis. All the 
measurement had a quality index of higher than 7.5 as recommended by the manufacturer.

Variational autoencoder. The structure of the VAE model used in this study is shown in Fig. 2. The 
encoder is a 1-layer neural network consisting of 400 units (one for each of the 400 ORA waveform observation 
points). This encoder is connected to 2 hidden layers consisting of 40 and 20 units, and is then represented by 
the mean and logarithmic variance-covariance matrix of a two-dimensional Gaussian probability density in the 
latent space. The decoder reconstructs the 400 units through a further 2 hidden layers and 1 output layer, which 
represents the reconstructed ORA waveform. This VAE model was optimized by maximizing the sum of the neg-
ative reconstruction loss obtained by using the current study’s dataset, which is defined as the Kullback–Leibler 
divergence between the distributions of the differences between the input ORA waveform and reconstructed 
ORA waveform. Then, the reconstructed ORA waveform was analyzed in conjunction with the PRAA.

identification of new oRA waveform parameter(s). By visual analysis of the changes in 
VAE-reconstructed ORA waveforms as a function of the changes in PRAA, we identified the change in mono-
tonicity (the retrogressive movement) between the first and second applanation peaks (Monot1-2) as a possible 
new ORA waveform parameter potentially sensitive to changes in PRAA. More specifically, Monot1-2 was esti-
mated as the total length of retrogressive movement between applanation peak 1 and applanation peak 2 (Fig. 3).

Statistical analysis. The relationships between the PRAA and the 41 variables of age, AL, SERE, CH, CRF, 
35 out of 37 ORA waveform parameters, and the newly proposed parameter Monot1-2 were evaluated by using a 

Figure 1. Measurement of peripapillary retinal arteries angle (PRAA) (left eye). The PRAA was calculated as 
the angle between the radia crossing the points (red dots) at the intersection between the 3.4 mm-diameter 
peripapillary scan circle (yellow) and the supratemporal/infratemporal major retinal arteries. The right eye was 
mirror-imaged.

Figure 2. The VAE model implemented in this study. The input data has 400 dimensions, and this layer 
is connected to 2 hidden layers (light gray circles) with 40 and 20 dimensions, respectively (encoder). The 
encoder is connected to two dimensional gaussian distributions represented by the mean and logarithmic 
variance-covariance matrix in a latent space. The decoder reconstructs the ORA waveform data from the latent 
variables on 400 dimensions through 2 hidden layers with 20 and 40 dimensions respectively. VAE: variational 
autoencoder.
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two-step feature selection approach in view of the high number of variables (41), following our previous study16. 
Two out of 37 ORA waveform parameters (i.e., h11 and h21) were not used as they are proportional to h1 and h2, 
respectively. First, 20 candidate variables were selected using the least absolute shrinkage and selection operator 
(Lasso) regression. Then, model selection was used to identify the optimal model for the PRAA by using the 
second-order bias-corrected Akaike information criterion (AICc) index from 220 different patterns generated 
by using the 20 candidate variables. The Akaike information criterion (AIC) is a statistical measurement used in 
model selection30 and the AICc is a corrected version of the AIC, which is able to provide an accurate estimation 
even when the sample size is small31,32. A decrease in AICc indicates an improvement in the model33 and suggests 
that the variables selected through the model are significant34. It is worth noting that multivariate modeling such 
as the one here used can be useful for detecting patterns and characterizing data because it provides more control 
over potential confounders compared to univariate analysis35. The log-likelihood values of paired models (e.g., 
with vs without Monot1-2, multivariate vs univariate) were compared by using the analysis of variance (ANOVA) 
test.

All statistical analyses were performed by using R (version 3.4.3, http://www.R-project.org/).

Results
The demographic characteristics of participants and of the ocular properties of the studied eyes are shown in 
Table 1.

The change of the reconstructed ORA waveform using VAE associated with the decrease of PRAA is shown in 
Supplementary Video 1. Table 2 shows the summary descriptive statistics of the ORA parameters. Table 3 shows 
the results of univariate and multivariate linear regression between PRAA and the values of age, AL, CH, CRF, 

Figure 3. Measurement of Monot1-2 (left eye). Monot1-2 was estimated as the total length of retrogressive 
movement between applanation peak 1 and applanation peak. Left figure shows an example eye with long AL 
(51 years old, male, AL = 26.4 mm) with small PRAA (132.5°) and large Monot1-2 (37.3), whereas right figure is 
from a non-long eye (73 years old, female, AL = 23.44 mm) with large PRAA (161.3°) and small Monot1-2 (9.3). 
PRAA: peripapillary retinal arteries angle; AL: axial length.

Variables

Total
Hyperopia 
(SERE ≥ 0)

Mild myopia (−3 ≤ 
SERE < 0)

Moderate myopia 
(−6 ≤ SERE < 3)

High myopia (−6 ≥ 
SERE)

Mean ± SD 
(Range)

Mean ± SD 
(Range) Mean ± SD (Range)

Mean ± SD 
(Range) Mean ± SD (Range)

Participants 52 17 17 12 6

Eyes 54 19 17 12 6

Age (y) 51.0 ± 21 
(24–85) 71.0 ± 12 (29–85) 44.4 ± 18 (28–83) 39.4 ± 16 (26–71) 29.0 ± 5 (24–39)

Sex (male/female) 29/25 10/9 8/9 5/7 4/2

Axial length (mm) 24.6 ± 1.7 
(21.5–28.1)

23.4 ± 1.0(21.5–
25.7) 24.0 ± 0.9 (22.6–25.8) 25.9 ± 0.9 

(24.8–27.1) 27.6 ± 0.4 (27.1–28.1)

Spherical equivalent (diopter) −1.91 ± 4.1 
(−12.6 to 4.1)

1.84 ± 1.2 (0 to 
4.1)

−1.24 ± 0.8 (−2.9 to 
−0.1)

−4.41 ± 0.9 (−5.8 
to −3.3)

−10.8 ± 1.5 (−12.6 
to −9.0)

Keratometry (mm) 8.2 ± 0.5(7.4–
9.2) 8.6 ± 0.3 (7.9–9.2) 7.9 ± 0.4 (7.4–8.6) 7.8 ± 0.3 (7.5–8.3) 7.7 ± 0.4 (7.4–8.3)

PRAA (degrees) 134.5 ± 14.8 
(99.3–172.0)

140.4 ± 15.1 
(112.8–172.0)

138.6 ± 14.3 
(99.3–161.5)

123.8 ± 15.8 
(105.6–156.0)

125.2 ± 17.3 
(102.3–149.5)

Table 1. Characteristics. SERE: spherical equivalent refractive error; SD: standard deviation; PRAA: 
peripapillary retinal arteries angle.
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SERE, and ORA waveform parameters. AL and SERE were significantly correlated to the PRAA with univariate 
analysis (coefficient = −3.67, p = 0.0070, and coefficient = 1.70, p = 0.0022, respectively).

The optimal linear model for the PRAA was identified as follows; PRAA = 238.9 – 2.37 (Standard Error: 
SE = 0.99, p = 0.021) × AL – 12.8 (SE = 4.00, p = 0.0069) × Bindex – 0.91 (SE = 0.41, p = 0.33) × aspect2 - 0.16 
(SE = 0.089, p = 0.080) × mslew1 + 0.17 (SE = 0.042, p = 0.0003) × h1 + 0.44 (SE = 0.15, p = 0.0053) × uslope11 
- 0.31 (SE = 0.11, p = 0.0069) × Monot1-2 (AICc = 433.7). The log-likelihood of the optimal model was signif-
icantly higher than that of the model without Monot1-2 (AICc = 435.6, p = 0.0031, ANOVA), and that of the 
univariate AL-only model (AICc = 448.7, p < 0.0001, ANOVA).

Discussion
In the current study, we assessed the dynamic change of the ORA waveform in relation to retinal deformation as 
estimated by PRAA in a sample of 49 eyes from 47 participants, using VAE approach, a deep learning generative 
model. This study highlighted that a novel parameter extracted from the ORA waveform (Monot1-2) may be used 
to generate multivariate models of the PRAA that are more accurate than models without Monot1-2.

Variables Mean ± Standard Deviation (Range)

CH (mmHg) 10.26 ± 1.0 (8.24–12.94)

CRF (mmHg) 9.85 ± 1.3 (7.20–12.33)

Aindex 9.96 ± 0.18 (8.78–10)

Bindex 9.70 ± 0.68 (5.69–10)

p1area 7441.74 ± 1693.32 (3409.38–12026.31)

p2area 5784.99 ± 1335.26 (3482.25–8540.52)

aspect1 26.10 ± 3.27 (17.21–31.98)

aspect2 22.56 ± 4.17 (13.78–30.78)

uslope1 82.54 ± 12.93 (52.51–112.77)

uslope2 81.18 ± 17.74 (42.61–132.66)

dslope1 39.17 ± 5.32 (26.44–51.25)

dslope2 32.69 ± 6.19 (18.98–43.02)

w1 23.73 ± 2.85 (18.67–32.67)

w2 24.14 ± 3.22 (18.67–32.00)

h1 611.54 ± 63.00 (371.00–673.38)

h2 526.29 ± 73.74 (359.63–652.75)

dive1 571.13 ± 61.44 (345.58–640.58)

dive2 478.27 ± 80.03 (278.25–631.67)

path1 16.43 ± 2.49 (10.29–21.26)

path2 18.32 ± 3.13 (13.39–32.33)

mslew1 156.73 ± 29.65 (76.83–213.42)

mslew2 135.12 ± 29.53 (84.00–207.17)

slew1 82.60 ± 12.85 (52.51–112.77)

slew2 81.99 ± 17.44 (47.29–132.66)

Aplhf 0.81 ± 0.23 (0.5–2.17)

p1area1 3697.37 ± 987.61 (1629.58–6567.63)

p2area1 2687.77 ± 702.61 (1457.50–4165.58)

aspect11 29.45 ± 4.42 (19.19–36.73)

aspect21 27.99 ± 5.79 (18.87–46.92)

uslope11 71.97 ± 13.36 (46.74–100.47)

uslope21 73.16 ± 15.18 (42.36–106.00)

dslope11 47.64 ± 7.20 (30.07–60.96)

dslope21 44.45 ± 9.29 (28.92–72.57)

w11 14.18 ± 2.30 (10.67–21.67)

w21 13.20 ± 2.18 (7.33–19.67)

h11 407.69 ± 42.00 (247.33–448.92)

h21 350.86 ± 49.16 (239.75–435.17)

path11 20.80 ± 3.85 (12.02–27.47)

path21 24.48 ± 3.94 (16.65–35.04)

Monot1–2 31.55 ± 25.97 (9.33–186.00)

Quality Index 8.81 ± 0.6 (7.55–9.70)

Table 2. Summary descriptive statistics of ORA parameters. ORA: Ocular Response Analyzer; CH: corneal 
hysteresis; CRF: corneal resistance factor.
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The optimal model for the PRAA in the previous study was as follows: PRAA = 68.6 – 3.0 × AL - 3.1 × 
CRF + 9.5 × Aindex + 1.8 × w2 + 0.40 × slew1, when the new ORA waveform parameter of Monot1-2 was not 
included16. Such waveform parameters represent a quick response of the cornea to external forces and suggest a 
soft cornea36,37. In the current study, eyes with high myopia were added, and the optimal model for PRAA was 
PRAA = 238.9 – 2.37 (Standard Error: SE = 0.99, p = 0.021) × AL – 12.8 (SE = 4.00, p = 0.0069) × Bindex – 
0.91 (SE = 0.41, p = 0.33) × aspect2–0.16 (SE = 0.089, p = 0.080) × mslew1 + 0.17 (SE = 0.042, p = 0.0003) × 
h1 + 0.44 (SE = 0.15, p = 0.0053) × uslope11–0.31 (SE = 0.11, p = 0.0069) × Monot1–2. In the current study, 
AL was negatively associated with PRAA, similarly as in our previous study16. Besides, the ORA waveform 
parameters selected in the current study indicated that decrease in the size of the area of applanation (peak1, 
aspect2, uslope11, and h1), increase in maximum single length of the outside line segments of peak1 (mslew1), 
and increased lability in restoration phase/peak2 (Bindex) were related with smaller PRAA36, which infer quick 
cornea response and soft cornea behavior in line with our previous study16. In addition to these parameters, the 

Variables

Univariate analysis Multivariate analysis

Coefficient
Standard 
Error P Value AICc Coefficient

Standard 
Error P Value

Age 0.16 0.11 0.16 459.1 −0.61 0.34 0.10

AL −3.67 1.30 0.0070* 448.7 −0.32 5.35 0.95

CH −3.33 2.24 0.15 453.4 3.19 5.63 0.58

CRF −3.71 1.82 0.046* 451.5 −3.91 4.40 0.93

SERE 1.70 0.53 0.0022* 448.3 1.95 2.04 0.36

Aindex 4.95 6.44 0.56 452.4 17.16 24.11 0.49

Bindex −5.34 3.25 0.11 452.0 −18.59 13.32 0.19

p1area −0.0026 0.0013 0.06 466.4 0.056 0.056 0.34

p2area −0.00099 0.0017 0.56 469.1 −0.018 0.038 0.64

aspect1 1.48 0.60 0.028* 451.9 −9.25 20.98 0.67

aspect2 −0.54 0.52 0.30 456.9 −5.25 8.68 0.56

uslope1 0.53 0.17 0.0025* 450.9 −9.15 12.86 0.49

uslope2 −0.16 0.13 0.20 459.3 −0.78 1.79 0.67

dslope1 0.57 0.34 0.14 456.1 5.64 6.37 0.39

dslope2 −0.17 0.34 0.62 458.6 2.21 3.92 0.58

w1 0.54 0.77 0.49 456.9 4.29 17.23 0.81

w2 0.79 0.66 0.25 456.1 −1.09 3.59 0.98

h1 0.13 0.031 0.00008* 447.8 0.48 0.68 0.49

h2 −0.027 0.031 0.38 463.0 0.25 0.41 0.56

dive1 0.13 0.033 0.0002* 449.3 −0.35 0.33 0.31

dive2 −0.026 0.029 0.37 463.1 −0.099 0.15 0.52

path1 −0.79 0.93 0.40 456.1 14.21 13.32 0.31

path2 0.054 0.71 0.94 457.4 3.03 8.17 0.72

mslew1 0.16 0.075 0.042* 457.7 −0.14 0.21 0.53

mslew2 −0.016 0.076 0.83 461.8 0.18 0.45 0.70

slew1 0.54 0.17 0.0024* 450.8 10.34 12.71 0.43

slew2 −0.11 0.13 0.41 460.1 0.31 2.10 0.89

Aplhf −0.80 9.06 0.93 452.3 68.33 54.67 0.24

p1area1 0.0039 0.0023 0.097 466.0 −0.094 0.09 0.34

p2area1 −0.0029 0.0031 0.36 467.4 −0.007 0.07 0.92

aspect11 1.17 0.46 0.018* 452.2 −3.66 12.02 0.77

aspect21 −0.10 0.40 0.80 458.5 −4.56 7.33 0.55

uslope11 0.51 0.16 0.0025* 450.9 4.25 1.30 0.75

uslope21 −0.0034 0.14 0.98 460.5 1.91 1.08 0.10

dslope11 0.46 0.28 0.12 456.6 −1.28 3.24 0.70

dslope21 0.046 0.25 0.85 456.5 2.55 2.32 0.29

w11 0.11 0.93 0.91 456.9 −9.31 30.57 0.77

w21 0.36 1.04 0.73 456.5 13.94 10.60 0.21

path11 −0.69 0.61 0.27 456.5 −7.46 10.07 0.47

path21 0.48 0.54 0.38 457.1 −4.25 4.78 0.39

Monot1–2 −0.013 0.089 0.88 461.5 −0.78 0.42 0.09

Table 3. Results of univariate and multivariate linear regression between PRAA and the values of age, AL, CH, 
CRF, SERE, and ORA waveform parameters. *P value <0.05, AL: Axial length; CH: corneal hysteresis; CRF: 
corneal resistance factor; SERE: spherical equivalent refractive error.
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current study showed that larger Monot1-2 was significantly related to smaller PRAA. This might be because eyes 
with smaller energy dissipation might have a greater amount of stored elastic energy during applanation 1 and 2, 
causing an increase in Monot1-2. Thus, results of the current study also seem to suggest eyes with greater myopic 
retinal deformation may demonstrate decreased energy dissipation.

The previous reports show that small energy dissipation of an eye represented by CH is related to rapid pro-
gression of glaucoma38–40. This may be because of similar biomechanical properties of the cornea and sclera41, as 
they are made up of the same types of collagen42. In addition, eyes experience great changes in the intraocular 
pressure even in daily life events, such as postural change43, eye lid blinking44, ocular pulsatility due to ocular 
hemodynamics45, Valsalva maneuver46, and eye movements47. Reduced energy dissipation in the cornea may 
cause higher vulnerability to these stresses41. Furthermore, we recently reported that angioid streaks were sig-
nificantly associated with the corneal biomechanical properties as measured by using CST48. Considering these 
facts, the newly proposed Monot1-2 may also be useful in these diseases, and this should be further investigated 
in a future study.

A limitation of this study is the cross-sectional design. Further validation would be needed by using a lon-
gitudinal research approach, in particular in young population. We investigated the relationship between ORA 
waveform parameters and PRAA; however, subanalyses in association with the severity of myopia were not car-
ried out due to the sample size in the current study. Further investigation is preferable with the larger population.

In conclusion, in this study a new ORA waveform parameter was proposed by analyzing, by using VAE, the 
dynamic change of the ORA waveform in relation to retinal deformation as estimated by PRAA. This was the first 
study to demonstrate the value of generative deep learning models such as the one generated by VAE, in discov-
ering new useful parameters that may be helpful in the clinical setting.

Received: 24 September 2019; Accepted: 31 March 2020;
Published: xx xx xxxx

References
 1. Morgan, I. G., Ohno-Matsui, K. & Saw, S.-M. Myopia. The Lancet 379, 1739–1748 (2012).
 2. Lim, R., Mitchell, P. & Cumming, R. G. Refractive associations with cataract: the blue mountains eye study. Invest Ophthalmol Vis 

Sci 40, 3021–3026 (1999).
 3. Mitchell, P., Hourihan, F., Sandbach, J. & Wang, J. J. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. 

Ophthalmology 106, 2010–2015 (1999).
 4. Ohsugi, H. et al. Axial length changes in highly myopic eyes and influence of myopic macular complications in Japanese adults. PLoS 

One 12, e0180851 (2017).
 5. Fang, X. et al. Optical coherence tomographic characteristics and surgical outcome of eyes with myopic foveoschisis. Eye (Lond) 23, 

1336 (2009).
 6. Zhao, X., et al. Morphological Characteristics and Visual Acuity of Highly Myopic Eyes With Different Severities of Myopic 

Maculopathy. Retina (2018).
 7. Yamashita, T. et al. Relationship between position of peak retinal nerve fiber layer thickness and retinal arteries on sectoral retinal 

nerve fiber layer thickness. Invest Ophthalmol Vis Sci 54, 5481–5488 (2013).
 8. Yoo, Y. C., Lee, C. M. & Park, J. H. Changes in peripapillary retinal nerve fiber layer distribution by axial length. Optom Vis Sci 89, 

4–11 (2012).
 9. Hong, S. W., Ahn, M. D., Kang, S. H. & Im, S. K. Analysis of peripapillary retinal nerve fiber distribution in normal young adults. 

Invest Ophthalmol Vis Sci 51, 3515–3523 (2010).
 10. Axer-Siegel, R. et al. Early structural status of the eyes of healthy term neonates conceived by in vitro fertilization or conceived 

naturally. Invest Ophthalmol Vis Sci 48, 5454–5458 (2007).
 11. Yanagisawa, M. et al. Changes in Axial Length and Progression of Visual Field Damage in Glaucoma. Invest Ophthalmol Vis Sci 59, 

407–417 (2018).
 12. McBrien, N. A. & Adams, D. W. A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational 

group. Refractive and biometric findings. Invest Ophthalmol Vis Sci 38, 321–333 (1997).
 13. Matsuura, M. et al. The relationship between retinal nerve fibre layer thickness profiles and CorvisST tonometry measured 

biomechanical properties in young healthy subjects. Sci Rep 7, 414 (2017).
 14. Jung, Y., Park, H.-Y. L. & Park, C. K. Association between corneal deformation amplitude and posterior pole profiles in primary 

open-angle glaucoma. Ophthalmology 123, 959–964 (2016).
 15. Aoki, S., et al. The Relationship between the Waveform Parameters from the Ocular Response Analyzer and the Progression of 

Glaucoma. Ophthalmology Glaucoma (2018).
 16. Asano, S. et al. Relationship Between the Shift of the Retinal Artery Associated with Myopia and Ocular Response Analyzer 

Waveform Parameters. Transl Vis Sci Technol 8, 15 (2019).
 17. Jebara, T. Discriminative, Generative and Imitative Learning, (Massachusetts Institute of Technology, MA, USA, 2002).
 18. Asaoka, R., et al. Validation of a deep learning model to screen for glaucoma using images from different fundus cameras and data 

augmentation. Ophthalmology Glaucoma (2019).
 19. Shibata, N. et al. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep 8, 

14665 (2018).
 20. Ting, D. S. W. et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using 

retinal images from multiethnic populations with diabetes. JAMA 318, 2211–2223 (2017).
 21. Li, Z. et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. 

Ophthalmology 125, 1199–1206 (2018).
 22. Liu, S. et al. A deep learning-based algorithm identifies glaucomatous discs using monoscopic fundus photographs. Ophthalmology 

Glaucoma 1, 15–22 (2018).
 23. Asano, S., Murata, H., Matsuura, M., Fujino, Y. & Asaoka, R. Early Detection of Glaucomatous Visual Field Progression Using 

Pointwise Linear Regression with Binomial Test in the Central 10 Degrees. Am J Ophthalmol 199, 140–149 (2018).
 24. Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. arXiv 1312, 6114 (2013).
 25. Rezende DJ, Mohamed S & Wierstra D. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. arXiv 

1401(2014).
 26. Chen S, Meng Z & Zhao Q. Electrocardiogram Recognization Based on Variational AutoEncoder, Machine Learning and Biometrics. 

IntechOpen 7634(2018).
 27. Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook, (Springer International Publishing AG, Basel, Switzerland, 2018).

https://doi.org/10.1038/s41598-020-63601-8


8Scientific RepoRtS |         (2020) 10:6592  | https://doi.org/10.1038/s41598-020-63601-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

 28. Littmann, H. Zur Bestimmung der wahren Größe eines Objektes auf dem Hintergrund des lebenden Auges. Klin Monbl Augenheilkd 
180, 286–289 (1982).

 29. Roberts, C.J. & Liu, J. CORNEAL BIOMECHANICS: from theory to practice, (Kugler Publications, Amsterdam, The Netherlands, 
2016).

 30. Akaike, H. Information theory and an extension of the maximum likelihood principle, (Akademiai Kiado, Budapest, 1973).
 31. Burnham, K. P. & Anderson, D. R. Multimodel Inference. Sociol Methods Res 33, 261–304 (2016).
 32. Sugiura, N. Further analysts of the data by akaike’s information criterion and the finite corrections: Further analysts of the data by 

akaike’s. Commun Stat Theory Methods 7, 13–26 (1978).
 33. Mallows, C. L. Some comments on C p. Technometrics 15, 661–675 (1973).
 34. Johnson, D. H. The Insignificance of Statistical Significance Testing. J Wildl Manage 63, 763–772 (1999).
 35. Greenland, S. Modeling and variable selection in epidemiologic analysis. Am J Public Health 79, 340–349 (1989).
 36. Roberts, C. J. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg 40, 862–869 (2014).
 37. Kerautret, J., Colin, J., Touboul, D. & Roberts, C. Biomechanical characteristics of the ectatic cornea. J Cataract Refract Surg 34, 

510–513 (2008).
 38. Congdon, N. G., Broman, A. T., Bandeen-Roche, K., Grover, D. & Quigley, H. A. Central corneal thickness and corneal hysteresis 

associated with glaucoma damage. Am J Ophthalmol 141, 868–875 (2006).
 39. Medeiros, F. A. et al. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology 

120, 1533–1540 (2013).
 40. De Moraes, C. V. G., Hill, V., Tello, C., Liebmann, J. M. & Ritch, R. Lower corneal hysteresis is associated with more rapid 

glaucomatous visual field progression. J Glaucoma 21, 209–213 (2012).
 41. Aoki, S. et al. Development of a Novel Corneal Concavity Shape Parameter and Its Association with Glaucomatous Visual Field 

Progression. Ophthalmology Glaucoma 2, 47–54 (2019).
 42. Harper, A. R. & Summers, J. A. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia 

development. Exp Eye Res 133, 100–111 (2015).
 43. Wang, Y. X., Jiang, R., Wang, N. L., Xu, L. & Jonas, J. B. Acute peripapillary retinal pigment epithelium changes associated with acute 

intraocular pressure elevation. Ophthalmology 122, 2022–2028 (2015).
 44. Ritch, R. A unification hypothesis of pigment dispersion syndrome. Trans Am Ophthalmol Soc 94, 381 (1996).
 45. Singh, K. et al. Measurement of ocular fundus pulsation in healthy subjects using a novel Fourier-domain optical coherence 

tomography. Invest Ophthalmol Vis Sci 52, 8927–8932 (2011).
 46. Kim, Y. W., Girard, M. J., Mari, J. M. & Jeoung, J. W. Anterior displacement of lamina cribrosa during valsalva maneuver in young 

healthy eyes. PLoS One 11, e0159663 (2016).
 47. Wang, X. et al. Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol 

Vis Sci 57, 2452–2462 (2016).
 48. Asano, S. et al. Corneal biomechanical properties are associated with the activity and prognosis of Angioid Streaks. Sci Rep 8, 8130 

(2018).

Acknowledgements
Supported by grants from the Japan Science and Technology Agency (JST)-CREST and Grant 17K11418 from the 
Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author contributions
S.A. and R.A. wrote the main manuscript text and prepared figures. S.A., M.M., Y.F, S.N. and Y.N. collected data. 
S.A., H.M., S.A. and R.A. analyzed and interpreted data. R.A., T.Y, and Y.K concepted study design. All authors 
reviewed the manuscript.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-63601-8.
Correspondence and requests for materials should be addressed to R.A.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-63601-8
https://doi.org/10.1038/s41598-020-63601-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Visualizing the dynamic change of Ocular Response Analyzer waveform using Variational Autoencoder in association with the p ...
	Methods
	Study population. 
	Measurements of AL and SERE. 
	Peripapillary retinal arteries angle (PRAA). 
	Analysis of the ORA waveform. 
	Variational autoencoder. 
	Identification of new ORA waveform parameter(s). 
	Statistical analysis. 

	Results
	Discussion
	Acknowledgements
	Figure 1 Measurement of peripapillary retinal arteries angle (PRAA) (left eye).
	Figure 2 The VAE model implemented in this study.
	Figure 3 Measurement of Monot1-2 (left eye).
	Table 1 Characteristics.
	Table 2 Summary descriptive statistics of ORA parameters.
	Table 3 Results of univariate and multivariate linear regression between PRAA and the values of age, AL, CH, CRF, SERE, and ORA waveform parameters.




