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could Vegetation index be Derive 
from Synthetic Aperture Radar? – 
the Linear Relationship between 
interferometric coherence and 
nDVi
Zechao Bai1,2,3, Shibo fang1,2 ✉, Jian Gao4, Yuan Zhang3, Guowang Jin5, Shuqing Wang6, 
Yongchao Zhu1,2 & Jiaxin Xu1,2

Due to many factors in the physical properties of the ground surface, the corresponding interferometric 
coherence values change dynamically over time. Among these factors, the roles of the vegetation and 
its temporal variation have not yet been revealed so far. In this paper, synthetic aperture radar 
(Sentinel-1) data and optical remote sensing (Landsat TM) images over four whole seasons are 
employed to reveal the relationship between the interferometric coherence and the normalized 
difference vegetation index (NDVI) at five sites that have ground deformation due to mining in Henan 
province, China. The result showed: (1) As for the village area with few vegetation cover, the related 
coherence values are significantly higher than that in the farm land area with high densities of 
vegetation in the spring and summer, which indicates that the subsidence by mining in few vegetation 
cover area is easier to be monitored; (2) Linear regression coefficients (R2) between the interfereometric 
coherence values and the NDVI values is 0.62, which indicate the interferometric coherence values and 
the nDVi values change reversely in both farm land and village areas over the year. it suggests months 
between November and March with lower NDVI value are more suitable for deformation detecting. 
Therefore, the interfereometric coherence values can be used to detect the density of vegetation, while 
NDVI values can be reference for elucidating when the traditional differential interferometric synthetic 
aperture radar (DInSAR) could be effectively used.

DInSAR leverages the phase difference between two correlated synthetic aperture radar (SAR) images to accu-
rately detect large scale surface displacements and is widely used for mine deformation monitoring1–4. However, 
as the technique suffers from a number of limitations, including spatial decorrelation, thermal noise, Doppler 
centroid shift, and temporal decorrelation, it is not appropriate in certain situations5–7. Some research address 
the limitations of traditional DInSAR disturbed by the agricultural activities, especially the high density of crop 
vegetation, in the test of the polarimetric InSAR (POLInSAR) technique for its ability to increase interferometric 
coherence8,9. Therefore, it is necessary to elucidate the deformation monitoring conditions under which the tra-
ditional DInSAR can be effectively used.

The coherence is also taken as the main parameter in target classification10,11, forest change detection12–14, and 
lake study15,16. The extent of temporal changes in the scatterers is a key factor affecting interferometric coher-
ence11,17. In DInSAR deformation measurements, the interferometric coherence is used for selecting the sta-
ble scatterers to achieve better accuracy5. Compared with other scatterers, vegetation has a larger impact on 
SAR image coherence. In the seasons when vegetation is growing, the temporal decorrelation phenomena is 
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particularly complicated13,18. SAR observations at different points during the crop-growing season are sensitive to 
growth stages, biomass development, plant height, soil moisture, and inundation frequency and duration19,20. The 
coherence degradation is particularly obvious in the condition of dense vegetation cover in summer. However, 
there are few studies focusing on interferometric coherence variations in the whole life cycle of vegetation grow-
ing and withering fluctuations as well as the relationship between interferometric coherence and vegetation den-
sity or coverage.

The objective of this work is to analyze the temporal changes of the coherence in SAR images and NDVI vari-
ation of optical remote sensing images within one year, to reveals the relationship between SAR image coherence 
and the vegetation density. The interferogram and interferometric coherence of a representative set of Sentinel-1A 
satellite images were computed via temporal evolution charts from June 2015 to May 2016, and multi-temporal 
NDVIs were obtained from a time series Landsat 8 satellite images from July 2015 to May 2016. The correlation 
analysis was performed to quantify the relationship between the multi-temporal interferometric coherence and 
NDVI throughout the year in mine deformation area.

Results
Study Area. The area of interest in this study is located in Jiaozuo, where is 55 km north of Zhengzhou city 
(the capital city of Henan) in China (Fig. 1). It belongs to warm temperate zone, semi-humid monsoon climate. 
The main crops grown in this region are spring wheat and summer corn (Fig. 2). Within the area, four spe-
cific areas of farm land and one village are selected for investigation because they have been affected by mine 
deformation.

Multi-temporal differential interferograms. DInSAR is based on the interferometric processing of SAR 
images. The differential interferograms are obtained by the DInSAR method, which used an external digital eleva-
tion model (DEM) to remove the topographic effects from the interferogram formed with two SAR images. The 
interferogram reflects the changes in the geometric properties of ground targets while differential interferogram 
primarily includes the information pertaining to surface deformation. Combining adjacent SAR images into a 
consecutive pairs in DInSAR processing is a good way to obtain time series differential interferograms for gener-
ation deformation information.

The 20 differential interferograms of adjacent SAR images along with the corresponding coherence maps were 
obtained via the DInSAR technique (Figs. 3 and 7). These were derived from a total of 21 images that are avail-
able between the months of June 2015 and May 2016. The time between the SAR images range from 12 to 60 d, 
although the time interval between most of the images is 12 d. It is also important to note the baseline has some 
influence on the coherence. Due to the high accuracy of the Sentinel-1A satellite orbit, most are within 100 m, 
although the spatial baseline of one image is as long as 162 m. In this study, the influence of the spatial baseline is 

Figure 1. Map of the study area in Henan province. The study area is flat with an average elevation of 90 meters. 
Optical view of Farm land A, Farm land B, Farm land C, Farm land D and Village A test regions (© Google 
Earth). Figure done with the ArcMAP 10.3 (https://desktop.arcgis.com/en/arcmap/) and the GMT 5.4 (http://
gmt.soest.hawaii.edu/projects/gmt).
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ignored. Multi-temporal differential interferograms are a good representation of the deformation in the mining 
area and the multi-temporal coherence maps provide a good representation of the changes in the surface features.

Figure 3 shows the time series differential interferograms of the farm land and village. A total of 11 groups of 
interferograms were computed in autumn and winter (August 2015 to January 2016). More obvious deformation 
fringes appear in the area of Village A from August 2015 to September 2015. The phase fringes are clear and one 
deformation fringe can be seen (deformation is about 2.8 cm). The differential interferograms can effectively iden-
tify the location and extent of deformation. In contrast, the deformation fringes are fuzzy in the farm land areas. 
The farm land and village have the highest coherence in the winter, which facilitate the accurate calculation of the 
deformation. There are five sets of interferograms, calculated in the spring time (January 2016 to May 2016). Even 
with a 60-day interference period (January 2016 to March 2016), good fringe clarity is maintained and up to two 
deformation fringes can be seen (deformation is about 5.6 cm). The number of fringes in the village area enable 
effective visual recognition.

Multi-temporal NDVI values and interferometric coherence. The multi-temporal statistical distri-
bution of the NDVI values in both farm land and village are discussed. Due to the influence of cloud, only 7 
images can be used to calculate NDVI. The changes of the NVDI in the farm land and village over one year are 
shown in Fig. 4a. It has the lowest NDVI values ≈ 0.32–0.35 in October. From July to September, the NDVI essen-
tially remains at the same level (NDVI value ≈ 0.61–0.81). In general, as shown in this figure, the NVDI values in 
the village area are obviously lower than those in the farm land.

The 20 coherence of adjacent SAR images were obtained. Figure 4b shows the coherence changes of two surface 
types in one year. The coherence values are small in summer and spring. As a contrast, it obviously increases in late 
autumn, while reaches to the highest value (coherence magnitude ≈ 0.97 in the farm land and coherence magnitude 
≈ 0.97 in the village) in winter. A comparison between the two types of land surface shows that the coherence value 

Figure 2. Field photos of the typical ground targets in the spring season. (a) The low structure houses are 
distributed in the village. (b) The wheat is planted in spring, while the corn is planted in summer. The picture is 
the wheat in the spring.

Figure 3. Adjacent images differential interferograms of five study areas in the data set (from October 27, 2015 
to May 30, 2016). Horizontal axis is the master image date. Vertical axis is the feature type of the study area. The 
remaining differential interferograms are in Additional Information Fig. 7.
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of the farm land area is markedly lower than that in the village area in the spring and summer. However, the coher-
ence in the autumn and winter remains the same. Therefore these results indicate that the multi-temporal interfero-
metric analysis of the coherence can contribute to the detection of vegetation generally21.

We conduct a comparison of the coherence and NDVI values for the five coral subsidence areas derived from 
the data of Sentinel-1A and Landsat 8. As shown in Fig. 4c, different surface categories have different coherence 
values and NDVI values. In general, the correlation between the coherence and NDVI is negative for both 
farm land and the village. In other words, the higher the NDVI value is, the lower the coherence of the interfero-
gram is. The lowest value of NDVI (≈0.32) appears in mid-October, when corns are ripened and leaves wither. 
Once corns are harvested, the farm land become bare land and the coherence will reach to the highest value 
(coherence magnitude ≈ 0.97) in mid-November. These indicate the NDVI and coherence values have hysteresis 
in the same area. In December, the NDVI values began to increase when people plant wheat. As the wheat seed-
lings have little effect on the C-band electromagnetic wave, the SAR images still have high coherence. From 
summer to autumn (March to September), leaves turn green and crops grow, which induce high NDVI and low 
coherence in this stage. In August, the NDVI value reaches its maximum point (NDVI value ≈ 0.81) while the 
coherence value reaches its minimum point (coherence magnitude ≈ 0.40).

When NDVI and coherence are combined with the differential interferograms shown in Fig. 3, it is found 
that the NDVI value is high and the coherence value is low in the summer and autumn (i.e. from March to 
September). During this time, it is not possible to visually determine the location and range of deformation in 
the farm land areas. In contrast, the location and extent of deformation could be visually identified in the village 
area, although the deformation fringes are blurred. In winter and spring (October to February), the NDVI value 
is low and the coherence value is high. In this period, the deformation could be easily visually recognized in both 
the farm land and village area with clear deformation fringes. As shown in Fig. 4c, both the coherence and NDVI 
of the farm land and village have seasonal characteristics. The appearance of the farm land change when crops are 
planted in spring, while the appearance of the village change due to the growth of trees and flowers in the spring 
and summer.

Upon analysis, a correlation is identified between the interferometric coherence and the NDVI values. We 
find there is a linear relationships between the interferometric coherence and the NDVI values at the five sites. 
Figure 4d shows the linear fitting between the NVDI and coherence. A total of thirty NDVI values are selected 
and those with the closest coherence are used in the comparison. The points represented by the black squares in 

Figure 4. (a) Temporal evolution of the NDVI for the farm land and village; (b) Temporal evolution of 
coherence in the farm land and village; (c) Comparison of the interferometric coherence and NDVI in 
farm land and the village; (d) Linear fit between the NDVI and coherence. There are thirty NDVI values in total 
and the data closest to the coherence are selected for comparison.
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the figure are used in the linear regression (red line). Since only seven images can be used calculate NDVI values, 
the correlation coefficient (R2) between the coherence and NDVI is approximately 0.62, which indicates general 
agreement between these two distinct measurements.

Discussion
We focus on what types of deformation can be monitored by DInSAR technology. The coherence is an impor-
tant concept that provides a good indication of the phase stability of the scatters5,18. Within the region of our 
reseach, the village area exhibits higher coherence than the farm land area (Fig. 4b). In Fig. 3, the differential 
interferograms have clear phase fringes. The climate in the study area is warm temperate semi-humid monsoon. 
Vegetation typically grows in spring, becomes luxuriant in summer, declines in autumn, and vanishes in winter. 
Thus, the coherence of typical ground targets can exhibit obvious seasonal variation, which is consistent with the 
results of previous studies conducted in other areas15,22.

The interferometric coherence maps reflect changes in the physical properties of ground targets. Vegetated 
areas are usually characterized by volume scattering, which determines low coherence (even for short temporal 
baseline) due to changes in plant growing stage and movement of stalks and/or leaves caused by wind14,23. The 
NDVI reflects the contrast between different spectral areas. When sunlight strikes vegetation, the chlorophyll 
in the leaves of the plant strongly absorbs the red portion of the electromagnetic spectrum while the internal 
structure of the leaves strongly reflects near-infrared light. As shown in Fig. 4c, the NDVI is extremely high due 
to the rapid growth of crops in the study areas. The interferograms that are only 12 d apart show poor coherence 
in the summer. Thus, the NDVI values can be reference for elucidating when the traditional DInSAR could be 
effectively used.

The interferometric coherence and NDVI values are also affected by factors such as crop type, crop phenology 
status and irrigation levels. In the study, interferometric coherence and NDVI values exhibit an opposite fluctua-
tion in the farm land and the villages (Fig. 4c). Upon analysis, although the mechanisms associated to the calcu-
lation of NDVI and coherence are different, they have a negative correlation. Relationships between the 
interferometric coherence and the NDVI values are observed for the five sites (with coefficient of determination 
R2 is 0.62). It indicated that the interferometric coherence can be used as a proxy to fill gaps in NDVI time-series 

Figure 5. The baseline between 21 Sentinel-1A images. The time interval of the images is mainly 12 days 
between June 2015 and May 2016. The detailed Sentinel-1A image parameters are shown in Table 2.

Figure 6. The flow for interferometric coherence and NDVI comparison.

https://doi.org/10.1038/s41598-020-63560-0
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(gaps produced by NDVI unavailability due to cloud cover) for agricultural applications. Coherence can be an 
important supplementary data, when cloud cover prevents the creation of sufficiently large series NDVI, such as 
identify a crop type (classification applications), detect agricultural activity (no crop identification needed) or 
crop yield monitoring.

A total of 24 Landsat 8 images were obtained for this area. However, only 7 of those images which cloud cov-
erage below 11% between the months of June 2015 and June 2016 were used in this study, which was 7 phases of 
NDVI values in Fig. 4a. These 7 phases NDVI values were not sufficient to cover neither the different values of 
NDVI nor the four growing season in the whole year, which induced nearly all the NDVI values concentrate on 
up-left and bottom- right in Fig. 4d. Further works need to use full four season’s optical images to analyze the rela-
tionship between the coherence variation and vegetation indexes, as well as on assessing the influence of different 
bands (X band, C band and L band) and different spatial baseline data on coherence.

Image 
Number Acquisition Date

Cloudiness 
(%) Path

Spatial 
resolution

1 10 June 2015 23.52 124 30 m

2 26 June 2015 72.36 124 30 m

3 12 July 2015 23.33 124 30 m

4* 28 July 2015 6.16 124 30 m

5* 13 August 2015 10.45 124 30 m

6 29 August 2015 13.79 124 30 m

7* 14 September 2015 0.18 124 30 m

8 30 September 2015 76.15 124 30 m

9* 16 October 2015 8.09 124 30 m

10* 1 November 2015 0.13 124 30 m

11 17 November 2015 100 124 30 m

12* 3 December 2015 0.13 124 30 m

13 19 December 2015 99.97 124 30 m

14 4 January 2016 97.92 124 30 m

15 20 January 2016 98.60 124 30 m

16 5 February 2016 45.03 124 30 m

17 21 February 2016 98.33 124 30 m

18 8 March 2016 85.74 124 30 m

19 24 March 2016 34.25 124 30 m

20 9 April 2016 75.17 124 30 m

21 25 April 2016 89.43 124 30 m

22* 11 May 2016 3.06 124 30 m

23 27 May 2016 39.56 124 30 m

24 12 June 2016 86.83 124 30 m

Table 1. Landset 8 images data set-font bold and marked * images were used in this study.

Figure 7. Adjacent images differential interferograms of five study areas in the data set (from June 17, 2015 to 
October 27, 2015). Horizontal axis is the master image date. Vertical axis is the feature type of the study area.

https://doi.org/10.1038/s41598-020-63560-0
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Materials and Methods
SAR data. The Sentinel-1 constellation provides the European Space Agency (ESA) with complete and updated 
data in the C band (5.6 cm) for global environmental monitoring purposes24. All Sentinel-1 data products are distrib-
uted in the single look complex (SLC) format and are available in several acquisition modes, including dual polari-
zation (VV + VH or HH + HV) and single polarization (HH or VV) in strip map (SM) mode and interferometric 
wide (IW) and extra-wide swath (EW) modes. In the current study, the IW swath mode was used in which the 
images are recorded in a 250 km × 250 km area at a 5 m × 20 m spatial resolution. This mode includes three sub-
swaths, namely, IW1, IW2, and IW3, which correspond to cyclical antenna deviations recorded by means of the 
terrain observation with progressive scans SAR (TOPSAR) technique25,26. The high temporal and spatial resolution 
data provided by Sentinel-1 is well suited to the application described in this study.

The data set consisted of 21 images from ascending orbit 113 (Fig. 5) between June 2015 and May 2016. The 
data was provided in zero-Doppler slant-range geometry and consist of complex samples that preserved the phase 
information.

In this study, the interferometric coherence and differential interferograms of the multi-temporal series of 
Sentinel-1A radar images were obtained by the two-pass DInSAR method3, which used an external digital eleva-
tion model (DEM) to remove the topographic effects from the interferogram formed with two SAR images. The 
main steps of the DInSAR technique are depicted in Fig. 6, including SAR image co-registration and resampling, 
coherence estimation, formation of the interferogram, separation of the deformation information, and determi-
nation of the mine area27–29. DEM from the Shuttle Radar Topography Mission (SRTM), with 3 arc-sec resolution, 
was applied for topographic phase removal.

optical data. The optical data used in this research was obtained from Landsat 8, which is an American earth 
observation satellite that was launched on February 11, 2013. The operational land imager (OLI) in Landsat 8 is an 
improvement on previous generations and provides images spanning nine spectral bands, the resolutions of which 
are shown in Table 1 to cloud coverage below 11% between the months of June 2015 and June 2016 were used in this 
study. In addition, Sentinel-2 and China’s GF-1 were also collected. From June 2015 to May 2016, Sentinel-2 and 
GF-1 had different cloud coverage levels in the study area and could not be used to calculate effective NDVI.

Optical data collected by satellites is influenced by the atmospheric conditions between the satellite and the 
surface of the Earth, which can degrade the quality of the optical images30,31. In order to obtain the actual spectral 
characteristics of ground features, the ENVI quick atmospheric correction module32 was used to remove the 
effects of the atmosphere in the images.

There are two steps in the processing method adopted in this study (Fig. 6). The first step is to create 
multi-temporal interferometric coherence maps and differential interferograms. The mining areas were detected via 
multi-temporal differential interferograms. Subsequently, a statistical comparison of the coherence of the different 
mining areas was conducted to determine the corresponding correlation. The second step is to calculate the NDVI 
in the area corresponding to the location of the mine identified via the DInSAR method. A statistical comparison of 
the multi-temporal NDVI was conducted to detect the areas of plant growth. A correlation analysis was performed 
between the multi-temporal interferometric coherence and the NDVI with regard to the temporal variability of the 

Image 
Number Acquisition Date

Spatial 
Baseline (m)

Temporal 
Baseline (Day)

1 17 June 2015 0 0

2 29 June 2015 −162 12

3 11 July 2015 112 12

4 23 July 2015 −123 12

5 16 August 2015 124 24

6 28 August 2015 −5 12

7 9 September 2015 −62 12

8 21 September 2015 −37 12

9 3 October 2015 13 12

10 15 October 2015 89 12

11 27 October 2015 81 12

12 20 November 2015 146 24

13 2 December 2015 9 12

14 December 2015 28 12

15 26 December 2015 64 12

16 7 January 2016 27 12

17 7 March 2016 −80 60

18 31 March 2016 −70 24

19 12 April 2016 −25 12

20 6 May 2016 87 24

21 30 May 2016 −35 24

Table 2. Sentinel-1A image parameters.

https://doi.org/10.1038/s41598-020-63560-0


8Scientific RepoRtS |         (2020) 10:6749  | https://doi.org/10.1038/s41598-020-63560-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

vegetation. In addition, in order to confirm the accuracy of the coherence and NDVI, the standard deviations of the 
coherence values and the NDVI values were calculated for the five areas containing farm land.

Vegetation indices. The vegetation indices obtained from the optical images provide important information 
regarding its structure and composition33,34. It is well known that when sunlight strikes vegetation, the chlorophyll 
in the leaves of the plant strongly absorbs the red portion of the electromagnetic spectrum (from 0.4 to 0.7 μm) 
while the internal structure of the leaves strongly reflects near-infrared light (from 0.7 to 1.1 μm)35. The contrast 
between the different spectral areas can be used to estimate the greenness of the vegetation as follows:

=
−
+

NDVI NIR RED
NIR RED

The NDVI is a continuum of pixel values ranging from minus one (−1) to plus one (+1). In general, negative 
values indicate no vegetation while positive values indicate the presence of vegetation. Values close to +1 indicate 
the highest possible density of green leaves.

Multi-temporal SAR images. In interferometry, an interferogram can be obtained by multiplying the com-
plex information in one image by the complex conjugate information of a second image to form an interferogram, 
and a differential interferogram can be obtained by removing the reference DEM and replacing it with precise 
orbital data36.

In terms of how they are used, interferograms and coherence maps respectively reflect changes in the geomet-
ric and physical properties of ground targets while differential interferograms primarily include information 
pertaining to surface deformation. Note that a pair of images is required when the objective is to monitor 
deformation. However, the loss of InSAR coherence prevents the measurement of ground surface deformation. 
Temporal decorrelation is a major factor affecting coherence, although this can be mitigated by choosing an 
image pair with a short baseline and a test area with minimal vegetation37,38.

The interferometric coherence is a cross-correlation product calculated from two co-registered complex SAR 
images over a small window of pixels39,40, which can be mathematically represented as follows:

γ =
⁎

⁎ ⁎
E s s

E s s E s s
( )

( ) ( )
1 2

1 1 2 2

where s1 and s2 are pixel values, the superscript * denotes the conjugate complex, and E(•) represents the expected 
value.
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