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Predicting circulating biomarker 
response and its impact on the 
survival of advanced melanoma 
patients treated with adjuvant 
therapy
Itziar Irurzun-Arana   1,2 ✉, Eduardo Asín-Prieto   1,2, Salvador Martín-Algarra2,3 & 
Iñaki F. Trocóniz1,2 ✉

Advanced melanoma remains a disease with poor prognosis. Several serologic markers have been 
investigated to help monitoring and prognostication, but to date only lactate dehydrogenase (LDH) has 
been validated as a standard prognostic factor biomarker for this disease by the American Joint 
Committee on Cancer. In this work, we built a semi-mechanistic model to explore the relationship 
between the time course of several circulating biomarkers and overall or progression free survival in 
advanced melanoma patients treated with adjuvant high-dose interferon-α2b. Additionally, due to the 
adverse interferon tolerability, a semi-mechanistic model describing the side effects of the treatment in 
the absolute neutrophil counts is proposed in order to simultaneously analyze the benefits and toxic 
effects of this treatment. The results of our analysis suggest that the relative change from baseline of 
LDH was the most significant predictor of the overall survival of the patients. Unfortunately, there was 
no significant difference in the proportion of patients with elevated serum biomarkers between the 
patients who recurred and those who remained free of disease. Still, we believe that the modelling 
framework presented in this work of circulating biomarkers and adverse effects could constitute an 
additional strategy for disease monitoring in advance melanoma patients.

According to the American Cancer Society, the incidence rate of melanoma has been rising for the last 30 years. 
Although the disease accounts for only about 1% of skin cancers, it is responsible for the death of the vast majority 
of these patients making it the most aggressive neoplasm of the skin1.

Since 1995, immunotherapy based on interferon-α containing regimens has been used as an adjuvant therapy 
to surgery for patients diagnosed of American Joint Committee on Cancer (AJCC) stage IIB, IIC or III melanoma 
after the Eastern Cooperative Oncology Group (ECOG) 1684 trial showed that a high-dose regimen of Interferon 
α-2b (IFN-α b2 ) led to a significant prolongation of progression-free survival and overall survival (PFS and OS, 
respectively) compared to the control group2. Although new therapeutic strategies are emerging for advanced 
melanoma in recent years thanks to the FDA approval of several new immunotherapy and targeted drugs, treat-
ment with IFN-α b2  still constitutes one of the alternatives in the therapeutic arsenal in many hospitals and health 
care centers. However, due to the toxicity and the evidence that only a subgroup of patients can benefit from this 
treatment, acceptance of IFN-α b2  among physicians is limited.

In order to adequately treat melanoma patients, it is important to study those factors related to the progno-
sis and outcome of the disease. As reflected in recent studies, the most important prognostic factors that could 
predict the outcome of melanoma patients include the vertical tumor thickness known as Breslow’s index, the 
presence of ulceration, the mitotic rate, the location of distant metastases, as well as the levels of serum lactate 
dehydrogenase (LDH)1. Other serum biomarker levels that have been proposed as possible prognostic factors 
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are the melanoma-inhibiting activity (MIA) and the calcium binding protein S100B3, but no consensus exists on 
their prognostic capability.

Proper assessment of the predictive capacity of biomarkers longitudinal data should be done in the context 
of mechanistic computational models linking them with clinical outcome. Biomarker trajectories are usually not 
linear and show great variability across individuals. Consequently, a non-linear mixed effects (NLME) modelling 
approach provides a valuable option to handle and model this type of dynamic behaviour. In NLME models, 
individual profiles are characterized by a common structural model with fixed population parameters and a 
statistical model with random effects to allow the parameters to vary within the patient population. In this work, 
longitudinal biomarker data has been described based on semi-mechanistic pharmacokinetic-pharmacodynamic 
(PKPD) type models and linked to the PFS and OS. Recent efforts have shown that this approach is feasible to 
identify robust markers that allow the selection of patients that could obtain a therapeutic benefit from the differ-
ent anticancer treatments and to improve the prediction of their survival4–6.

Therefore, in this study we aim to establish a quantitative treatment-biomarker-survival modelling framework 
using nonlinear mixed effects PKPD modelling to link the survival of advanced melanoma patients with LDH, 
MIA and/or S100B protein kinetics following IFN-α b2  administration. In addition and taking into account the 
toxicity associated to IFN-α b2  administration, neutropenic effects were also described mechanistically7 in the 
current evaluation providing a highly valuable approach in which to evaluate possible predictors of clinical 
response while minimizing adverse effects.

Methods
Patient characteristics and data collection.  In this retrospective study, data related to different bio-
marker levels and patient survival were obtained from the medical records of 48 patients diagnosed with advanced 
melanoma and treated in the University Clinic of Navarra (Pamplona, Spain). The Research Ethics Committee 
from the University of Navarra approved the study protocol and informed consent for study participation was 
obtained from all patients. The protocol was carried out in accordance with the Declaration of Helsinki (Seoul 
2008 version) and local laws and regulations.

Adult patients with histologically documented AJCC stage IIB, IIC, or III primary cutaneous melanoma were 
included in the dataset. All the patients were treated with adjuvant high-dose IFN-α b2  between 2004 and 2013. 
The high-dose regimen followed the Kirkwood scheme2: intravenous administration of 20 MU/m2/day at the 
induction phase (5 days/week during 4 weeks) followed by subcutaneous injections of 10 MU/m2/day during the 
maintenance phase (3 days/week during 48 weeks). Blood samples for drug quantification and tumor assessment 
measurements during treatment were not available.

Table 1 summarizes physiopathological and demographic characteristics of the patients included in the study 
and Table 2 summarizes the main adverse events reported during IFN-α b2  therapy.

Blood samples for measurement of LDH, MIA and protein S100B were collected from each patient before, 
meanwhile and after therapy. For MIA and S100B levels, observations corresponding to 9 and 10 patients of the 
database were not reported, respectively. A total of 954/383/405 LDH/MIA/S100B observations were included in 
the analysis, where each patient contributed a mean of 19/10/10 samples (range 1-57/1-31/1-33).

Data analysis
A population joint sequential modelling approach was used for the development of the treatment-biomarker-survival 
framework8. First, the relationship between treatment and biomarkers dynamics was characterized, and then their 
predicted time profiles were used to characterize the hazard rates and subsequently PFS and OS. For the continuous 
(biomarker levels, and absolute neutrophils counts) and non-continuous (PFS, OS) response data the first-order condi-
tional estimation method with interaction and the Laplacian estimation method were used, respectively, for parameter 
estimation in NONMEM 7.3.

The continuous data of the different biomarkers and the absolute neutrophil counts (ANC) were logarithmi-
cally transformed for the analysis. The developed models share a common architecture constituted by a structural 
model and a statistical component where (i) between-subject variability (BSV) was modeled exponentially and 
(ii) residual variability was described using a proportional or an additive error model on the log-transformed data 
corresponding to the biomarker and ANC levels respectively.

Model selection.  Model selection during model building included comparison of the objective function 
value which is approximately equal to minus twice the log(likelihood) (−2LL) and inspection of graphical diag-
nostics. For application of the −2LL ratio test in the case of comparing nested models, a significance level of 
P < 0.01 was used, corresponding to a decrease in −2LL of at least 6.63 when one extra parameter was added. 
Non-nested models were compared using the Akaike information criteria (AIC)9.

Model evaluation.  Evaluation was performed through simulation-based diagnostics by performing visual 
predictive checks (VPC)10. VPCs evaluate the model’s ability to describe the median tendency and variabil-
ity in the observed data. To this end, the original dataset was simulated 1000 times by sampling new sets of 
individual parameters from the estimated population parameter distributions. Then, 95% prediction intervals 
were derived from the simulation results, and compared with the 5th, 50th and 95th percentiles of the observed 
data. The results of the VPCs can also be normalized by the typical population prediction, creating the so-called 
prediction-corrected VPCs.

Precision of parameter estimates was obtained from the analysis of 500 bootstrap datasets. Briefly, in a boot-
strap analysis, the original dataset is replaced to produce another dataset of the same size but with a different 
combination of individuals. This re-sampled database is then used to re-estimate the population and variability 
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Demographic Characteristics Overall population (N = 48)
Gender (M/F) 25/23
Age at melanoma diagnosis (years) 50 [21–74]
Body weight at first IFN dose (kg) 73 [45–108]
Height (cm) 168.5 [148–188]
BSA (m2) 1.825 [1.37–2.31]
Diagnosis values
   Location of primary lesion
   Face 3
   Trunk 15
   Extremity (Upper/lower) 4/19
   Other 4
   NR 3
Type of melanoma
   Amelanotic melanoma 1
   Superficial spreading melanoma 16
   Acral lentiginous melanoma 2
   Maligna melanoma 14
   Nodular melanoma 15
   Laterality (Right/Left/NR) 11/14/23
   Local recurrence (Yes/No/NR) 05/02/41
Diagnostic - Pathological stage AJCC 2009b
   IB 6
   IIA/IIB 1/6
   III/IIIA/IIIB/IIIC 2/8/9/4
   NR 12
First dose - Pathological stage AJCC 2009b
   IIB 4
   III/IIIA/IIIB/IIIC 10/8/14/7
   NR 5
SLNB
   Yes (Positive cases) 32 (21)
   No 16
History of complete lymphadenectomy
   Yes (Positive cases) 44 (41)
   No 3
   NR 1
Breslow thickness (mm)
   <1 5

   ≥ 1 to <2 10

   ≥ 2 to <4 13

   ≥ 4 12

Clark level
   II 2
   III 12
   IV 22
   V 2
   NR 10
   Ulceration (Yes/No/NR) 8/22/18
   Extracapsular extension (Yes/No/NR) 3/35/10
   Satellite lesions (Yes/No/NR) 3/24/21
   BRAF Mutation (Yes/No/NR) 08/08/32
ECOG performance status (before therapy)
   0 14
   1 21
   NR 13

Table 1.  Demographic characteristics and diagnostic values of the patients*. M: male; F: female; BSA, Body 
Surface area; AJCC, American Joint Committee on Cancer; SLNB, Sentinel Lymph Node Biopsy; ECOG, 
Eastern Cooperative Oncology Group; NR: Not reported. *Continuous variables are expressed as median 
[range] whereas categorical variables are expressed as number of cases.
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parameters of the model. Lastly, median values and 95% confidence intervals of the re-estimated parameter dis-
tribution are calculated.

Software and tools.  Preprocessing of the data, additional simulation exercises and graphical and other sta-
tistical analyses, including predictive checks and bootstrap analyses, were performed with Perl-speaks-NONMEM 
(PsN) software11, Simulx (http://simulx.webpopix.org/), R version 3.4.3 (http://www.R-project.org/) and Rstudio 
version 1.1.456 (http://www.rtudio.com/).

Model for biomarker response.  As above mentioned, NLME models were used to characterize the longitudinal 
LDH, MIA and S100B protein concentrations over time.

As no PK data of interferon therapy were available from the patients, a K-PD modelling approach12 was used 
to study the link between the interferon dosing rate and the biomarker dynamics. A preliminary exploratory 
analysis showed that the decrease in biomarker levels occurred with some delay after treatment administration 
that was handled incorporating a series of transit compartments. Transit of the pharmacodynamic signal elicited 
by interferon through the chain of compartments was characterized by the first order rate constant ktr defined as 

+n MTT( 1)/ , where n is the number of transit compartments and MTT  the mean transit time between 
compartments.

In the absence of treatment, an exponential tumor growth governed by a first-order proliferation rate constant 
(kprol) was defined in the following form:

= ⋅
dTA
dt

k TA (1)prol

where TA (Tumor Activity) represents the unobserved tumor progression dynamics. IFN-α b2  therapy induced 
tumor shrinkage, and hence, the final equation for TA was expressed as a balance between tumor growth and 
drug-induced tumor death:

= ⋅ − ⋅
dTA
dt

k TA f TA (2)prol drug

Different models for drug effects ( fdrug) were explored including linear, Emax and sigmoidal models. The value 
of TA at diagnosis (TA0) was arbitrarily set to 1.

Lastly a turn-over model assuming that the circulating levels of biomarkers are a function of (i) a synthesis 
process governed by TA and the first-order rate constant kin, and (ii) an elimination process controlled by the 
first-order rate constant kout as shown in the expression below:

= ⋅ − ⋅
dBiomarker

dt
k TA k Biomarker (3)

j
in out jj j

where j represents each of the biomarkers (LDH, MIA and S100B). The initial condition for biomarker values was 
estimated as due to tumor progression steady-state condition did not hold.

Each biomarker’s longitudinal data were fitted separately using the model equations described above. 
Afterwards, the kinetics of the three biomarkers was combined in the same analysis to evaluate their contribution 
in the clinical outcome of the patients.

Main adverse events*
Induction 
phase

Maintenance 
phase

Neutropenia 13 6

Thrombocytopenia 2 1

Increased transaminases 12 3

Hepatotoxicity 8 1

Fatigue 9 8

Osteoarticular pain 1 2

Influenza-like symptoms 2 3

Fever 3 1

Headache 4 −

Anorexia 1 5

Depression 3 4

Nausea 2 2

Table 2.  Main adverse events reported during IFN therapy. *Other adverse events reported were: dermal events 
(cellulitis, dermatitis, skin dryness and alopecia), neurological events (anxiety, somnolence, insomnia, dizziness, 
recurrent syncope), weight loss and hyperthyroidism.
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Models for progression-free survival and overall survival.  PFS and OS were modeled as time to event response 
data using parametric survival analyses. Time frame was considered between diagnosis and (i) time at which the 
patient showed disease progression or died and (ii) last recorded time (right censored). Interval censored for the 
case of PFS response was not considered in this evaluation.

Different distributions (exponential, Weibull and Gompertz) were used to describe the hazard rate, hz t( ), 
which is defined as the instantaneous risk of dying/recurring at each time provided that the patient lives/is free of 
disease to that time, with the sole restriction of being no-negative. In contrast to the hazard function, the survival 
function indicates the probability that the event of interest has not yet occurred by time t (the patient is still alive 
or free of disease) and therefore if the hazard function is known, the survival probability is automatically deter-
mined as follows:

S t exp hz t( ) ( ( )) (4)
t

0∫= −

where ∫− hz t( )t
0

 represents the cumulative hazard.
Time-varying covariates, as the predicted time course of the biomarkers, were included in the model as mod-

ulators of hz t( ). Parameters describing hz t( ) has no associated BSV as each patient contributed with a single 
measurement.

The effect of the predicted dynamics for the three biomarkers on hz t( ) were tested alone or in combination to 
explore whether their absolute or relative change from baseline over time were predictive of OS/PFS. For the 
estimation of the parameters linking the survival and the biomarker model, the population parameters from the 
previously selected biomarker model were fixed and the corresponding observed levels were retained together 
with the PFS and OS data (PPP & D method13).

Model for neutropenic adverse effects.  A semi-mechanistic model for myelosupression7 was used to characterize 
the dynamics of the absolute neutrophil circulating counts under IFN-α b2  therapy. Briefly, in this model neutro-
phil development is determined by different physiological processes: (i) a self-renew first-order process of the 
precursor cells (ii) a maturation chain comprising three transit compartments (iii) a homeostatic regulation that 
modulates the proliferation of the precursor cells as a function of the change of ANC relative to the value at base-
line (ANC0), and finally (iv) a first-order elimination of ANC. As said before, no interferon PK data were availa-
ble, and therefore, a K-PD model12 was used to link the dosing rate to drug effects. The model structure is defined 
by the following set of ordinary differential equations:

= − ⋅
dIFNa b

dt
K IFNa b2 2 (5)e

dProl
dt

k Prol E ANC
ANC

k Prol(1 )
(6)PROL DRUG TR

0= ⋅ ⋅ − ⋅






 − ⋅

γ

= ⋅ − ⋅
dTransit

dt
k Prol k Transit1 1 (7)TR TR

= ⋅ − ⋅
dTransit

dt
k Transit k Transit2 1 2 (8)TR TR

= ⋅ − ⋅
dTransit

dt
k Transit k Transit3 2 3 (9)TR TR

= ⋅ − ⋅
dANC

dt
k Transit k ANC3 (10)TR circ

where Ke represents the first-order elimination rate constant of interferon after administration, kPROL is the 
first-order rate of proliferation on precursor cells (Prol), kTR is the first order rate constant governing the transit 
of immature neutrophils between transit compartments, kcirc, is the first-order rate constant of elimination of 
ANC and γ  is the parameter modulating the feedback mechanism. The transit rate was defined as 

= +k n MTT( 1)/TR ANC where MTTANC is the mean maturation time and n is the number of transit compart-
ments, which was three in this model. As no information was gathered from the precursor and immature cells, it 
was assumed that, at baseline, their number of cells were equal to ANC0, and therefore the parameter values for 
kPROL, kTR and kcirc were defined to be equal. Both a linear and a sigmoidal Emax function of the predicted levels of 
IFN-α b2  were evaluated for drug effects (EDRUG), which were assumed to act by reducing the proliferation rate of 
the neutrophils.

In order to reduce the number of parameters to estimate and improve model stability, the parameters reported 
in the original work7 for MTT  and γ  were used, as the authors demonstrated that the estimates of the system 
related parameters showed consistency across different anti-cancer agents. The final parameters to be estimated 
were reduced to ANC0, parameters measuring drug effects and those quantifying random effects.
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Covariate selection.  Covariate model selection was performed using the Stepwise Covariate Model-building 
(SCM) tool in PsN14, which consists on a forward covariate inclusion followed by a backward deletion approach. 
Specifically, this technique consist on creating a full model by combining the covariates identified as significant 
(p < 0.05) and once the full model is established, each potential covariate is individually removed to see if the 
value of -2LL significantly increases (p < 0.01).

Patient characteristics are listed in Table 1. For those covariates that were correlated between them, as it was 
the case for weight, height and body surface area (BSA), only the most relevant covariate with regard to usual dose 
adjustments in the clinic, in this case BSA, was included in the analysis. Therefore, the following patient’s charac-
teristics measured at baseline were explored for inclusion in the model (the covariates were tested in all the model 
parameters): Breslow thickness, presence of ulceration (yes vs. no), age, body surface area, type of melanoma 
(horizontal growth phase vs vertical growth phase) and ECOG performance status. Other a priori important clin-
ical covariates like the presence of BRAF mutation or the mitotic rate were not studied as the number of missing 
data was high. The categorical level of invasion known as the Clark index was neither included in the analysis as 
almost every patient had reported a level of IV.

Covariates were tested for significance following the general model:

∏ ∏ ∑θ θ θ= ⋅ ⋅





+



=

TVP g cov cov( , , ) 1
(11)

n

m

m m ref m

p

cat

ctg

p cat
1

,
1 2

,

where the typical value of a parameter (TVP) was described as a function of m continuous (covm) and p categorical 
covariates (cat) with a total number categories of ctg . θn describes the nth typical parameter value for an individual 
with covariate values equal to the reference values: [ =cov cov( )m m ref,  and cat = 1] where covm ref,  refers to the 
median value across the studied population. g  refers to the different linear and non-linear functions explored for 
the relationship between the values of covm and covm ref, , and θm and θp cat,  are parameters quantifying the magni-
tude of the covariate-parameter relationship.

Results
A total of 30 (62 %) and 21 (43 %) patients completed the induction and the maintenance phase, respectively. In 
total, 17 patients (35 %) had at least one dose reduction during the induction or maintenance phase due to adverse 
events and 25 patients (52 %) had dose delays for the same reason, demonstrating the high toxicity of IFN-α b2  
therapy.

Exploratory analysis.  The median overall survival of the patients in the dataset was 270 weeks. A first 
exploratory analysis of the dataset showed that patients with high LDH, MIA and S100B levels at the end of the 
study have the poorest outcomes as indicated by the Kaplan–Meier curves of OS shown in Fig. 1 and 
Supplementary Figure S1. However, the Kaplan-Meier analysis and log-rank tests corresponding to the PFS 
response did not show significant results (p > 0.01) when stratifying by high and low biomarker values at the time 
of disease progression (Fig. 1 and Supplementary Figure S1 bottom). Other in principle relevant clinical covari-
ates like the Breslow thickness, presence of ulceration, tumor extension (distal, localized or regional) or the value 
of the biomarkers before treatment initiation also showed no significant differences in OS or PFS (p > 0.01) 
(Supplementary Figures S2 and S3 respectively). These findings suggest that a link might exist between biomarker 
dynamics during and after IFN-α b2  treatment and OS and not for PFS.

The raw values for each biomarker are shown in Fig. 2A, where the time course for one individual data and 
its treatment period (induction phase followed by the maintenance phase) has been highlighted. When look-
ing at the whole range of observations, it is difficult to observe a general trend in the data. However, when the 
biomarker profiles are observed individually, a response to the therapy followed by a relapse after the treatment 
period can be detected. In this work, we intended to describe this trend and its link to the OS and PFS data using 
semi-mechanistic computational models.

Biomarker dynamics.  Figure 2B provides a schematic representation of the model which is described by the 
following set of ordinary differential and algebraic equations:

= − ⋅
dIFNa b

dt
k IFNa b2 2 (12)tr

= ⋅ − ⋅
dTR
dt

k IFNa b k TR2 (13)tr tr

= ⋅ − ⋅
dTA
dt

k TA f TA (14)prol drug

= ⋅
+

f k TR
TR TR

_
(15)drug kill max

50
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= ⋅ − ⋅
dBiomarker

dt
k TA k Biomarker (16)

j
in out jj j

The transit compartments included in the model to describe the delayed response to IFN-α b2  might be reflect-
ing the processes involved in the activation of the drug-related immune-modulatory response. Other models 
reflecting different hypothesis, for example including delays in the tumor activity or in the biomarker dynamics 
were also considered, but their performance (evaluated as −2LL value) was worse in comparison with the model 
finally selected. Drug effects were described with an Emax model were TR50 is the predicted pharmacodynamic 
signal generated by the treatment in the transit compartment eliciting half of maximum effect (k _kill max). The rest 
of parameter abbreviations have been defined in Methods.

Parameter estimates and their corresponding BSV are summarized in Table 3. For the sake of parameter iden-
tifiability, the value of TR50 was fixed in the model of LDH and MIA dynamics after performing a sensitivity 
analysis study (data not shown). For S100B tumor marker the population estimate and BSV of MTT were also 
fixed to the values obtained in the model for LDH concentrations. None of the studied covariates had a significant 
effect on the model parameters.

The analysis of the Individual Weighted Residuals (IWRES) vs. time or predicted biomarker values is shown 
in Supplementary Figure S4. Additionally, the three individual fits of a representative patient for each biomarker 
in Fig. 2 and the results of the VPCs represented in Fig. 3A demonstrated good agreement between observed and 
simulated data (only the VPC for LDH is shown).

With respect to parameter precision, none of the 95% confidence intervals for the model parameters reported 
in Table 3 (computed from the bootstrap analysis) included the value of zero, indicating that the data supported 
the degree of complexity of the final model selected. In all the models, kprol and MTT showed a high BSV value 
and a wide range for the confidence interval of the BSV.

Survival model.  Predicted biomarker dynamics over time were linked to the probability of survival as an 
argument of the baseline hazard function, which was best described using an exponential model with constant λ 
in the case of OS and with a Gompertz function in the case of PFS (Supplementary Figure S5). Relative change 
from baseline of LDH (∆LDHrel) was the most significant predictor of OS (p < 0.001), however none of the bio-
marker dynamics significantly improved PFS predictions as previously suggested by the Kaplan-Meier curves 
from Fig. 1 and Supplementary Figure S1. Additionally, none of the studied covariates (see Methods for the infor-
mation about the covariates tested in the model) influenced survival according to the univariate analysis done in 
PsN using the SCM tool and therefore none of them were included in the joint model afterwards.

The final survival model for has the following form:

Figure 1.  Evaluation of the overall survival (OS) and progression-free survival (PFS) of the patients with 
high and low biomarker concentrations at the end of the study. MIA and S100 biomarker Kaplan Meier curves 
showed equivalent results (see supplementary figures).

https://doi.org/10.1038/s41598-020-63441-6
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λ= ⋅ β⋅∆hz t e( ) (17)LDHrel t( )

where the term β⋅∆e LDHrel t( ) describes the change in hz  elicited by the relative change from baseline of LDH for 
each individual i multiplied by the link parameter β. The estimated values for α and β are summarized in Table 3 
and the corresponding VPC for OS is shown in Fig. 3B. We only considered time up to 450 weeks after diagnosis 
to evaluate model performance through VPCs as for longer times only 7 individuals were remaining for a period 
of approximately 225 weeks more.

The predicted median 2-year and 5-year overall survival probability computed was 84.37% and 58.33% respec-
tively, which were very similar to the observed values of 82.4% and 56.39% obtained from the 48 patients in our 
dataset. Additional simulation exercises where the therapy was administered in the same time period to all the 
individuals showed that a 50% decrease in tumor proliferation practically did not affect the 2-year survival rate, 
but increased the 5-year and 10-year rate a 13.7% and 42% respectively (see Supplementary Figure S6).

Model for neutropenic adverse effects.  Table 2 summarizes the main adverse events reported during 
interferon therapy. Due to the fact that neutropenia was one of the most reported and potential life threatening 
toxic effects, we decided to characterize this adverse response using the semi-mechanistic model from7. That 
semi-mechanistic myelosuppression model adequately described the time course of the log-transformed absolute 
neutrophil counts as illustrated by the prediction-corrected VPC from Fig. 4A. The linear drug effect model 

Figure 2.  (A) Raw values (solid circles) of the different biomarker levels over time where the profile of one 
individual has been highlighted in color. The treatment period (induction phase followed by the maintenance 
phase) is shadowed in blue. (B) Schematic representation of the K-PD model proposed for the IFN-α b2  effect 
on LDH, MIA and S100 levels (left) and three individual biomarker profiles (right) where solid circles represent 
biomarker observation values and solid lines indicate the prediction of the model. Parameter abbreviations: 
kprol, first-order tumor proliferation rate; MTT, mean transit time; A50, amount of drug producing 50% of the 
maximum elimination; k _kill max, first-order tumor elimination rate; kin first-order biomarker synthesis rate 
constant; kout, first-order degradation rate constant.
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showed significantly better fitting results compared with the Emax model (p < 0.01). The final model included BSV 
in the ANC baseline parameter (ANC0) and in the elimination rate constant (Ke) of the K-PD model (see Table 3 
for parameter values). None of the studied covariates had a significant effect on the model parameters.

In Fig. 4B the percentage of patients with grade 1, 2, 3 and 4 neutropenia calculated from five hundred sim-
ulated ANC vs time profiles were compared to the corresponding percentages derived from the observations. 
Results show that the model captures well severe grades of neutropenia.

Discussion
A joint model for the dynamics of circulating biomarkers and overall survival has been established and evaluated 
in patients with melanoma during treatment with IFN-α b2 . Additionally, a myelosuppression model was also 
developed to evaluate the adverse effects of the IFN-α b2  therapy in the same cohort of patients. This framework 
enables to convert the individual biomarker levels into personalized predictions of survival while taking toxicity 
into account. All of the investigated biomarkers were significantly related to OS when evaluated one by one, but 
the relative change from baseline of LDH was identified as the most predictive of OS regarding objective function 
values. Although other studies also showed a significant association between LDH and PFS in melanoma15, in our 
analysis none of the tumor marker dynamics significantly improved PFS predictions. Moreover, treatment with 
Interferon is more associated with an improvement in PFS rather than OS but our data did not allow us to char-
acterize this link.

Typical estimate BSV: CV%

Model for biomarker response

LDH

MTT (weeks) 22.3 (12.49–37.318) 59.8 (44.7–113.5)

⋅TR U( 10 )50
6 23.7 (-) —

LDH baseline (U/L) 225 (167.082–261.393) 31.3 (21.45–51.28)
−k weeks( )prol
1 0.0029 (0.00196–0.0053) 58 (51.75–224.27)

k weeks_ ( )kill max
1− 0.0077 (0.0056–0.012) 34 (31.3–128.45)

k weeks( )out
1− 0.321 (0.189–0.822) —

Residual error (%) 0.0521 (0.0376–0.0576) NA*

MIA

MTT (weeks) 33.1 (28.04–36.9) 63.8 (41.6–83)

⋅TR U( 10 )50
6 25.2 (-) —

MIA baseline (ng/mL) 7.53 (5.57–7.85) 45.3 (27–54.8)

k weeks( )prol
1− 0.0028 (0.0022–0.0042) 75.6 (69.2–141)

−k weeks_ ( )kill max
1 0.0058 (0.003–0.0061) 34.6 (25.5–62.4)

−k weeks( )out
1 0.369 (0.288–0.486) —

Residual error (%) 0.248 (0.192–0.296) NA

S100B

MTT (weeks) 22.3 (-) 59.8 (-)

⋅TR U( 10 )50
6 19.9 (16.42–23.64) —

S100B baseline (ng/mL) 0.0503 (0.038–0.0656) 42.4 (36.74–55.95)

k weeks( )prol
1− 0.0023 (0.0017–0.0025) 56.2 (45.8–73.48)

k weeks_ ( )kill max
1− 0.0065 (0.005–0.0072) —

k weeks( )out
1− 1.99 (1.71–2.49) —

Residual error (%) 0.348 (0.3–0.424) NA

OS model

λ 0.00181 (0.0016–0.0026) —

β∆LDHrel 1.1 (0.59–1.9) —

Myelosuppresion model

MTT weeks( )ANC 0.52 —

ANC L(10 / )0
9 3.41 (3.134–3.737) 32.4 (26.3–40)

Slope U( 10 )4⋅ − 0.0425 (0.0392–0.055) —

K weeks( )e
1− 0.389 (0.344–0.566) 52.4 (24.36–70.26)

γ 0.161 —

Residual error ( L10 /9 ) 0.485 (0.465–0.501) —

Table 3.  Final model parameter estimates. *NA: Not Applicable. 90% confidence intervals (in parenthesis) were 
obtained from 500 bootstrap analyses. Estimates of between-subject variability (BSV) are shown as coefficients 
of variation. Parameter names are defined in the text.
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Serum LDH, which is a standardized biomarker routinely monitored in clinic, is also used to categorize 
patients with stage IV melanoma, as increased LDH values are known to be correlated with a poor outcome of the 
patients. However, the link between biomarker values and survival needs to be quantitatively characterized in 
order to allow for more meaningful predictions of patient prognosis. In this work, we add insights in this context 
by providing a treatment-biomarker-survival-toxicity framework where the effectiveness of alternate dosing reg-
imens could be tested based on ∆LDHrel values and neutropenia. Figure 5 conceptualizes the computational 
framework as it shows the individual LDH and ANC profiles and the time course of the hazard rate differentiating 
by an individual who is alive at the last follow-up (patient 36) and an individual who died (patient 26). In this 
figure it can also be appreciated that the effect of the therapy on the ANC was much faster than the decrease in 
LDH. This justifies the differences found between the estimates for the ktr parameter which had a value of 0.039 
weeks-1 for the case of LDH and the Ke of the myelosuppression K-PD model which had a value of 0.389 weeks−1 
(almost 10 times higher).

Figure 3.  Model evaluation: Visual Predictive Checks. (A) Kaplan Meier plot of OS probability. The solid blue 
line represents raw data while the blue shaded area cover the 95% prediction interval calculated from 1000 
simulated studies. (B) VPC of the selected biomarker model. Median (solid line), 5th and 95th percentiles 
(dashed lines) of the observed data. 95% confidence Intervals for median (shaded colored area), 5th and 95th 
percentiles (shaded grey areas) of the simulated data.

Figure 4.  Evaluation of the myelosuppression model for the absolute neutrophil counts (ANC) of the patients. 
(A) Prediction-corrected visual predictive check. Solid circles represent observed ANC, solid lines represent 
the median of the observed data, and dashed lines the 2.5 and 97.5 percentiles of the observations. Shaded areas 
are the 95% confidence intervals based on the simulated data (n = 1000) for the corresponding percentiles. (B) 
Percentage of patient in grade 1,2,3 and 4 neutropenia (grade 1: >1.5 ANC, grade 2: 1–1.5 ANC, grade 3: 0.5–1 
ANC, grade 4: <0.5 ANC). Boxplots summarize the result of the 500 simulations and the red cross represents 
the real percentage values from the dataset.
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The treatment of advanced stage melanoma has evolved immensely in recent years with the success of new 
immunotherapies and targeted drugs16. Nowadays, it is well known that approximately 60% of melanomas harbor 
a mutation in the gene encoding for the serine/threonine protein kinase BRAF, which leaded to the development 
of selective BRAF inhibitors such as vemurafenib and dabrafenib. Although it has been demonstrated that these 
targeted drugs significantly improve PFS and OS in comparison with chemotherapy, the patients receiving this 
treatment rapidly develop resistance16. On the other hand, the FDA-approved checkpoint inhibitors against cyto-
toxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1) enhance the natural antitumor immune 
response of the patients and also lead to improved survival17. However, only a subset of patients respond to 
immune checkpoint inhibitors and resistance mechanisms can also arise among this group of responders. In this 
context, the identification of predictive biomarkers and/or baseline covariates able to select patients most likely to 
benefit from these therapies could be crucial.

In our case, none of the studied baseline covariates (Breslow thickness, tumor extension, presence of ulcer-
ation…) influenced survival. Unexpectedly, this agrees with the result of other statistical analysis made in 
advanced melanoma patient data where the univariate analysis of the gender, age, Breslow thickness, BRAF muta-
tion status and location of primary tumor resulted in no significant association with OS18,19. Still, we find difficult 
to conclude that these covariates do not influence the survival of melanoma patients because we think that part of 
the results obtained were influenced by the small number of patients in the dataset and the missing information 
regarding the covariates of these subjects. Therefore, a better univariate and multivariate baseline covariate analy-
sis is encouraged if more informative datasets are available in the future. Other limitations to highlight regarding 
this work were that no PK and tumor progression measurements were available for the development of the model. 
That is why a K-PD approach was used to link the dosing records with a drug effect in an unobserved variable that 
simulates the disease progression of the patients. This tumor progression was in turn linked to the time course 
of LDH, MIA and S100B serum concentration dynamics that were produced by a first-order rate constant and 
cleared at a first-order elimination rate in healthy subjects.

However, the major obstacle to develop this treatment-biomarker-survival-toxicity framework to monitor 
clinical response in melanoma was the moderate efficacy of IFN-α b2  therapy. Although the 1684 ECOG trial 
probed a significant improvement on the PFS and OS of melanoma patients, subsequent trials showed limited 
efficacy of this treatment as monotherapy, particularly on the OS of the individuals20. Supplementary Table S1 
shows how doubling the dose from the induction or the maintenance phase of the treatment influenced the LDH 

Figure 5.  Individual predicted LDH and ANC profiles (solid lines) by the selected models and the time course 
of the hazard rate (dashed line) differentiating by an individual who is alive at the last follow-up (patient 36) and 
an individual who died (patient 26). Solid points represents the observation values of the patients.
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values, OS and ANC of 1000 simulated individuals for a 1, 2, 5 and 10 year period. The values summarized in this 
table showed that doubling the dose of the induction or maintenance phases doesn’t have much repercussion in 
OS due to the low drug effects, but altering the maintenance phase could provoke a lower neutropenia grade. That 
is the reason why interferon therapy is no longer the standard of care in high risk, resected melanoma in most of 
the developed countries. Nonetheless, the use of IFN-α b2  as a plausible option for patients with stage IIB/IIC 
melanoma and ulcerated primary tumor, and for patients with stage II and III melanoma with ulcerated primary 
tumor in countries with no access to new drugs, has not been ruled out as indicated recently by Spagnolo et al.21. 
In addition, the development of new treatments opens the opportunity to reanalyze the utility of these tumor 
markers as prognostic factors (in fact, LDH has been reported as a clinically significant factor associated with OS 
under targeted and immune therapies18,19) and to follow-up patients during therapy22 re-using parts of the model 
built in this work. More importantly, the modelling effort developed here offers an attractive methodology to 
evaluate not only new treatment alternatives in drug development but also existing ones in the clinic, in order to 
evaluate safety and efficacy of the therapy, identify predictive factors and biomarkers and finally, perform dosing 
optimization in order to improve the clinical outcome of the patients.

Data availability
As NONMEM 7.3 is not an open-source platform, we provide the codes to simulate all the models described in 
this work with the R package Simulx in the Supplementary Material. Any additional dataset or code are available 
from the corresponding author on reasonable request.
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