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Study on the effects of polymer 
modifiers and phloem girdling on 
cotton in cadmium-contaminated 
soil in Xinjiang Province, China
MengJie An, Changzhou Wei  , Kaiyong Wang*, Hua fan & Xiaoli Wang

The effects of two liquid modifiers (polyacrylate compound modifier and organic polymer compound 
modifier) and phloem girdling (stem girdling and branch girdling) on cadmium (Cd) content, Cd 
transport, and photosynthetic parameters of cotton (Xinluzao 60) in Cd-contaminated soil (40 mg kg −1)  
were studied through barrel experiment. The results showed that the distribution ratios of Cd in stem, 
leaves, and bolls, leaf net photosynthetic rate (Pn), leaf stomatal conductance (Gs), leaf transpiration 
rate (Tr), and chlorophyll content were decreased after girdling; and the application of modifiers 
reduced the Cd content and the Cd transported to the shoot, while alleviating photosynthetic damage 
caused by girdling. In general, our results indicated that the inhibition of carbohydrate supply caused 
by girdling reduced the photosynthetic capacity of cotton, while the applications of the two liquid 
modifiers decrease the influence to cotton photosynthesis. Moreover, Cd and modifiers may be 
transported to the shoot through both phloem and xylem.

Cadmium (Cd) is a toxic heavy metal commonly found in agricultural soils1. It is not necessary for plants, but it is 
easily absorbed by plant root and enriched in different tissues and organs2. Therefore, many scholars have studied 
the accumulation of Cd in crops and tried to reduce the uptake of Cd by crops. For example, Sebastian et al.3 found 
that the application of organic acids reduced the accumulation of Cd in plant leaves, while the application of malic 
acid reduced the accumulation of Cd in plant roots. Shi et al.4 found that super absorbent polymer (SAP) immo-
bilized heavy metals in soil, which had a positive effect on maize photosynthesis and growth. Moreover, to reduce 
the accumulation of Cd, it is necessary to understand the mechanism of Cd transport in plants5,6. Mori et al.7  
indicated that the xylem unloading limited the transport of Cd from root to shoots of wild eggplant. Qin et al.8 
found that phloem played a leading role in the transport of Cd from root to leaves. However, there is no conclu-
sive study on the transport of Cd in cotton at present.

Photosynthesis is a biological process in which plants convert light energy into chemical energy that can be 
used in life processes and synthesize organic matter. It is the physiological basis of plant survival and one of the 
most basic physiological processes in plant production9. However, Cd may inhibit photosynthesis of plants10. 
Moradi and Ehsanzadeh11 reported that Cd inhibited chlorophyll synthesis, resulting in a decrease in the amount 
of light-harvesting chlorophyll a/b-binding protein. Paunov et al.12 reported that Cd interfered with the photosyn-
thetic electron-transfer process and decreased the efficiency of energy conversion in photosystem II. Therefore, the 
remediation of Cd pollution has been studied through plant photosynthesis regulation. For example, Liu et al.13  
found that the application of salicylic acid significantly reduced Cd absorption in most Cd-stressed plants and 
restored photosynthetic efficiency. An et al.14 found that the application of liquid modifiers to Cd-contaminated 
soil increased the gas exchange and photosynthetic pigment content of plant leaves.

Cotton (Gossypium hirsutum) is one of the main economic crops in the arid region of northern China, 
and drip irrigation has been widely used in cotton cultivation. Drip irrigation has obvious water-saving and 
yield-increasing features. In addition, it can be combined with fertilization to obviously increase the fertilizer 
efficiency15. Therefore, whether the application of modifiers through drip irrigation also has an obvious effect on 
the remediation of soil heavy metal pollution is worth exploring.

At present, most researches on the remediation of soil heavy metal pollution focus on conventional solid 
materials, but conventional solid materials are not suitable for drip irrigation systems; and the transport and 
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accumulation of Cd in cotton organs have not been determined. Therefore, the study of how liquid polymer 
modifiers affect cotton in Cd-contaminated soils has important implications for avoiding the potential risks of 
heavy metals in arid regions. In this study, the effects of two liquid modifiers (polyacrylate compound modifier 
and organic polymer compound modifier) and phloem girdling (stem girdling and branch girdling) on Cd con-
tent, Cd transport, and photosynthetic parameters of cotton (Xinluzao 60) in Cd-contaminated soil (40 mg kg−1) 
were studied through barrel experiment. This study aimed to clarify the distribution and transformation of Cd in 
cotton, and to explore the remediable mechanism of modifiers. We hypothesized that: (1) the transport pathways 
of Cd and modifiers in cotton were similar; (2) the modifiers affected the transport and accumulation of Cd in 
cotton organs; (3) the modifiers changed the photosynthetic characteristics of cotton leaves.

Results
Effects of girdling and modifier application on Cd content in different organs of cotton. The 
root of cotton had the highest Cd content, followed by leaves, stem, and cotton bolls (Fig. 1). After the application 
of the two modifiers, the contents of Cd in root, stem, leaves, and bolls were decreased compared with CK; among 
them, the decreases of Cd contents in root and bolls were significant. Compared with CK, the Cd contents in root 
for T1 and T2 groups decreased by 12.33% (P < 0.05) and 23.79% (P < 0.05), respectively, whereas those in bolls 
for T1 and T2 groups decreased by 14.48% (P < 0.05) and 12.87% (P < 0.05), respectively. Compared with CK, 
the Cd contents in root for CK-J and CK-G groups increased by 3.76% and 6.48%, respectively, whereas the Cd 
contents in stem, leaves, and bolls all decreased (P < 0.05). Compared with CK-J group, the Cd contents in root, 
leaves, and bolls for T1-J group decreased by 5.71%, 28.84% (P < 0.05), and 8.75% (P < 0.05), respectively, and 
those for T2-J group decreased by 3.87%, 23.59% (P < 0.05) and 9.9% (P < 0.05), respectively. Compared with 
CK-G group, the Cd contents in root, leaves, and bolls for T1-G group decreased by 8.73%, 27.63% (P < 0.05), 
and 5.98%, respectively, and those for T2-J group decreased by 7.61%, 26.11% (P < 0.05), and 5.00%, respectively.

Effects of girdling and modifiers on cadmium transport. The distribution ratio and transport index 
of Cd in different organs of cotton under different treatments were shown in Table 1. Compared with CK, the 
distribution ratios of Cd in root and bolls for T1 group decreased by 1.55% and 3.97%, respectively, whereas 
those in stem and leaves increased by 7.68% (P < 0.05) and 2.45%, respectively; the distribution ratio of Cd in 
root for T2 group decreased by 8.91%, whereas those in stem, leaves, and bolls increased by 18.95% (P < 0.05), 

Figure 1. Cadmium contents in different organs of cotton under different treatments. Means in each group 
followed by the same lowercase letters are not significantly different (P < 0.05) by Duncan’s multiple range test. 
Data are means ± SD (n = 3).

PTI STI DR

Root-stem Stem-leaves Stem-bolls Root Stem Leaves Bolls

CK 0.17 ± 0.01b 2.16 ± 0.11c 0.94 ± 0.05d 59.30 ± 2.97bc 9.94 ± 0.50c 21.43 ± 1.07bc 9.34 ± 0.47ab

T1 0.18 ± 0.01b 2.05 ± 0.10 cd 0.84 ± 0.04e 58.38 ± 2.92c 10.70 ± 0.53b 21.95 ± 1.10b 8.97 ± 0.45abc

T2 0.22 ± 0.01a 2.07 ± 0.10 cd 0.82 ± 0.04e 54.02 ± 2.70c 11.82 ± 0.59a 24.44 ± 1.22a 9.72 ± 0.49a

CK-J 0.11 ± 0.01 cd 2.95 ± 0.15a. 1.32 ± 0.07a 64.30 ± 3.21ab 6.77 ± 0.34e 19.96 ± 1.00 cd 8.97 ± 0.45abc

T1-J 0.10 ± 0.01d 2.25 ± 0.11c 1.30 ± 0.06a 67.88 ± 3.39a 7.06 ± 0.35e 15.90 ± 0.80e 9.17 ± 0.46abc

T2-J 0.11 ± 0.01 cd 2.23 ± 0.11c 1.18 ± 0.06b 67.20 ± 3.36a 7.44 ± 0.37de 16.58 ± 0.83e 8.78 ± 0.44bc

CK-G 0.11 ± 0.01 cd 2.62 ± 0.13b 1.11 ± 0.06bc 66.30 ± 3.32a 7.13 ± 0.36e 18.66 ± 0.93d 7.91 ± 0.40d

T1-G 0.10 ± 0.01d 2.14 ± 0.11c 1.18 ± 0.06b 68.94 ± 3.45a 7.20 ± 0.36e 15.39 ± 0.77e 8.47 ± 0.42 cd

T2-G 0.12 ± 0.01c 1.88 ± 0.09d 1.03 ± 0.05 cd 68.15 ± 3.41a 8.15 ± 0.41d 15.34 ± 0.77e 8.36 ± 0.42 cd

Table 1. Distribution ratios and transport indexes of Cd in cotton organs. Means in each row or column 
followed by the same lowercase letters are not significantly different (P < 0.05) by Duncan’s multiple range test. 
Data are means ± SD (n = 3).
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14.07% (P < 0.05), and 4.14%, respectively. That is, the application of modifiers reduced the Cd content in root 
but increased the Cd content in stem, leaves, and bolls. After stem girdling, the distribution ratio of Cd in root 
for CK-J group increased by 8.43%, whereas those in stem, leaves, and bolls decreased by 31.83% (P < 0.05), 
6.85%, and 3.91%, respectively, compared with CK. Compared with CK-J group, the distribution ratios of Cd in 
root, stem, and bolls for T1-J group increased by 5.57%, 4.18%, and 2.16%, respectively, whereas that in leaves 
decreased by 20.33% (P < 0.05); the distribution ratios of Cd in root and stem for T2-J group increased by 4.52% 
and 9.82%, respectively, whereas those in leaves and bolls decreased by 16.93% (P < 0.05) and 2.14%, respec-
tively. After branch girdling, the distribution ratio of Cd in root for CK-G group increased by 11.80% (P < 0.05), 
whereas those in stem, leaves, and bolls decreased by 28.29% (P < 0.05), 12.89% (P < 0.05), and 15.27% (P < 0.05), 
respectively, compared with CK. Compared with CK-G group, the distribution ratios of Cd in root, stem, and 
bolls for T1-G group increased by 3.98%, 1.06%, and 7.11%, respectively, whereas that in leaves decreased by 
17.56% (P < 0.05); the distribution ratios of Cd in root, stem, and bolls for T2-G group increased by 2.78%, 
14.39% (P < 0.05), and 5.69%, respectively, whereas that in leaves decreased by 17.80% (P < 0.05).

As shown in Table 1, compared with CK, the transport indexes of Cd from root to stem for T1 and T2 groups 
increased by 9.38% and 30.59% (P < 0.05), respectively, whereas those from stem to leaves for T1 and T2 groups 
decreased by 4.86% and 4.10%, respectively; in addition, the transport indexes of Cd from stem to bolls decreased 
by 10.82% (P < 0.05) and 12.45% (P < 0.05), respectively. Compared with CK-J group, the transport indexes of 
Cd from root to stem, from stem to leaves, and from stem to bolls for T1-J group decreased by 1.32%, 23.52% 
(P < 0.05), and 1.93%, respectively, and those from root to stem and from stem to bolls for T2-J group decreased 
by 24.36% (P < 0.05) and 10.89% (P < 0.05), respectively. Compared with CK-G group, the transport indexes 
of Cd from root to stem and from stem to leaves for T1-G group decreased by 2.81% and 18.42% (P < 0.05), 
respectively, whereas that from stem to bolls increased by 5.98%; the transport index of Cd from root to stem for 
T2-G group increased by 11.29%, whereas those from stem to leaves and from stem to bolls decreased by 28.14% 
(P < 0.05) and 7.61%, respectively.

Effect of girdling and modifiers on chlorophyll pigment in cotton leaves. For the groups without 
girdling, the application of modifiers increased the Chla, Chlb, and Car concentrations of cotton leaves (Fig. 2). 
Compared with CK, the Chla, Chlb, and Car concentrations and the Chla/b ratio for T1 group increased by 25.23% 
(P < 0.05), 19.28% (P < 0.05), 5.11%, and 20.67% (P < 0.05), respectively, and those for T2 group increased by 
20.10% (P < 0.05), 18.54% (P < 0.05), 1.05%, and 17.17% (P < 0.05), respectively. The stem girdling and branch 
girdling decreased the Chla, Chlb, and Car concentrations and the Chla/b ratio of leaves, whereas the application 
of modifiers alleviated the damage to photosynthetic pigments. After stem girdling, the Chla, Chlb, and Car 
concentrations and the Chla/b ratio for CK-J group decreased by 7.37%, 5.89%, 1.58%, and 5.53%, respectively, 

Figure 2. The relative changes of photosynthetic pigment contents in cotton leaves under different treatments. 
Means in each group followed by the same lowercase letters are not significantly different (P < 0.05) by Duncan’s 
multiple range test. Data are means ± SD (n = 3).
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compared with CK. Compared with CK-J group, the Chla, Chlb, and Car concentrations and the Chla/b ratio 
for T1-J group increased by 3.41%, 2.60%, 2.17%, and 5.89%, respectively, and those for T2-J group increased 
by 19.46% (P < 0.05), 16.22% (P < 0.05), 2.78%, and 20.33% (P < 0.05), respectively. After branch girdling, the 
Chla, Chlb, and Car concentrations and the Chla/b ratio for CK-G group decreased by 21.99% (P < 0.05), 19.05% 
(P < 0.05), 3.62%, and 17.87% (P < 0.05), respectively, compared with CK. Compared with CK-G group, the Chla, 
Chlb, and Car concentrations for T1-G group increased by 0.87%, 1.42%, and 12.11% (P < 0.05), respectively, 
and the Chla, Chlb, and Car concentrations and the Chla/b ratio for T2-G group increased by 12.41% (P < 0.05), 
10.05% (P < 0.05), 2.13%, and 15.09% (P < 0.05), respectively.

Effect of girdling and modifiers on photosynthesis parameters of cotton leaves. For the groups 
without girdling, the application of modifiers increased the net photosynthesis rate (Pn) of cotton leaves (Fig. 3). 
Compared with CK, the Pn for T1 and T2 groups increased by 14.51% (P < 0.05) and 3.98%, respectively. The 
stem girdling and branch girdling decreased the leaf Pn. The Pn for CK-J and CK-G groups decreased by 4.30% 
and 23.02% (P < 0.05), respectively, compared with CK. The application of modifiers alleviated the decreases 
of Pn caused by girdling. Compared with CK-J group, the Pn for T1-J and T2-J groups increased by 1.19% and 
13.39% (P < 0.05), respectively. Compared with CK-G group, the Pn for T1-G and T2-G groups increased by 
12.14% (P < 0.05) and 22.34% (P < 0.05), respectively.

Modifiers application and girdling treatments significantly affected the stomatal conductance (Gs), intercel-
lular CO2 concentration (Ci), and transpiration rate (Tr) of cotton leaves. For the groups without girdling, the 
application of modifiers increased the Gs and Tr but decreased the Ci (Fig. 3). After stem girdling, the Gs and Tr 
for CK-J group decreased by 26.86% (P < 0.05) and 20.02% (P < 0.05), respectively, whereas the Ci increased by 
3.43% compared with CK; the Gs and Tr for CK-G group decreased by 34.21% (P < 0.05) and 40.96% (P < 0.05), 
respectively, whereas the Ci increased by 16.73% (P < 0.05) compared with CK. The application of modifiers also 
significantly changed the Gs, Ci and Tr of cotton leaves. Among them, compared with CK-J group, the Gs for T1-J 
and T2-J groups increased by 25.03% (P < 0.05) and 42.03% (P < 0.05), respectively, and the Tr for T1-J and T2-J 
groups increased by 1.53% and 45.44% (P < 0.05), respectively; whereas the Ci for T1-J and T2-J groups decreased 
by 0.37% and 8.45%, respectively. Compared with CK-G group, the Gs for T1-G and T2-G groups increased by 
6.71% and 8.38%, respectively, and the Tr for T1-G and T2-G groups increased by 27.13% (P < 0.05) and 34.90% 
(P < 0.05), respectively; whereas the Ci for T1-G and T2-G groups decreased by 15.80% (P < 0.05) and 11.20% 
(P < 0.05), respectively.

Effect of modifiers on microstructure of cotton leaf tissue. The observation of the paraffin sections 
of leaves in CK, T1, and T2 groups showed that leaves are composed of epidermis, palisade tissue, and sponge 

Figure 3. The relative changes of photosynthesis parameters of cotton leaves under different treatments. Means 
in each group followed by the same lowercase letters are not significantly different (P < 0.05) by Duncan’s 
multiple range test. Data are means ± SD (n = 3).
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tissue (Fig. 4). For the control group (CK), leaf tissues were irregularly arranged; some cells contracted, shortened, 
and even curved, and the gap between cells increased. Compared with T1 and T2 groups, the number of sponge 
tissue cells for CK was decreased, the arrangement was loose, the intercellular spaces were increased, and the cells 
were decreased. For T1 and T2 groups, the palisade tissue cells of cotton leaves were long columnar; the cells were 
arranged neatly and tightly, and there were more chloroplasts compared with CK. The rounded sponge tissue cells 
were arranged closely.

Redundancy analysis of cotton physiological characteristics. The effects of modifiers on Cd accu-
mulation and leaf photosynthetic parameters for different groups were analyzed by redundancy analysis (RDA). 
As shown in Fig. 5, PTIroot-stem, DRstem, DRleaves, and DRbolls were clearly distributed on the left side of the RDA1 
axis. PTIroot-stem and DRstem were closely related to the Tr and Gs, whereas DRleaves was closely related to the Pn. 
STIstem-leaves, STIstem-bolls, and DRroot were clearly distributed on the right side of the RDA1 axis. The Ci was closely 
related to DRroot. and PTIroot-stem and DRstem were closely related to T1 and T2 groups. After stem girdling, T1-J 
group was closely related to the Chla/b and Ci, and T2-J group was closely related to the Chla, Chlb, Car, Tr, and 
Gs. After branch girdling, T2-G group was closely related to the Ci.

Discussion
Most heavy metals such as Pb, Cr, and Cu are absorbed and stored in crop root, while Cd, Ni, and Zn, etc. are 
easily transported to the upper part of crops16–18. At present, many plants have been studied in terms of the Cd 
distribution and accumulation8,18, and the ability of xylem to transport Cd into shoots has been considered as a 
major determinant of Cd accumulation in the shoots of many plants7. In addition, the absorption of Cd by pea-
nut and wheat also showed that Cd was mobile in phloem tissue19. According to the previous results, we studied 
the distribution and transport of Cd in cotton organs by girdling, and found that the mobile of Cd in different 
organs of cotton was obvious. For the control group (CK), the root had the highest Cd accumulation, followed by 
leaves, stem, and bolls (Fig. 1). From the distribution ratio, we found that stem girdling significantly reduced the 
accumulation of Cd in stem, and branch girdling not only significantly reduced the accumulation of Cd in stem, 
but also reduced that in leaves and bolls (Table 2). It indicated that Cd was of high mobility in both xylem and 

Figure 4. Effect of Modifiers on Microstructure of Cotton Leaves (eyepiece × objective lens: 10 × 40). EP: 
Epidermis; PT: Palisade tissue; SPT: Sponge tissue. (A) CK, (B) T1 group, (C) T2 group.

Figure 5. RDA analysis of transport and distribution of Cd and photosynthetic parameters of cotton.
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phloem, and stem may play an important role in transport of Cd for the two pathways. This is same as the research 
result by Reid et al.19: Cd was transported through xylem and phloem.

The accumulation and transport of Cd in crops have been regulated through the application of exogenous 
materials in previous studies. For example, Huang et al.20 reported that the application of calcium can reduced the 
Cd accumulation in soybean and wheat roots. Guiwei et al.21 found that the application of polyacrylate polymers 
reduced the bioavailable Cd, which could be employed to enhance productivity of crops in Cd-contaminated 
soils. In this study, the modifiers used are mainly polymer materials. The carboxyl and amide groups of poly-
acrylamides can form coordination bonds with metal ions on the surface of soil particles to form complexes22. 
From transport indexes, we found that the polyacrylate compound modifier significantly reduced the transport 
of Cd from stem to bolls, and the organic polymer compound modifier significantly reduced the transport of 
Cd from root to stem and from stem to bolls (Table 2), indicating that polyacrylate compound modifier mainly 
reduced the mobility of Cd in cotton, and organic polymer compound modifier mainly reduced the absorption of 
Cd by cotton. Moreover, it was found that the application of polyacrylate compound modifier reduced the trans-
port of Cd from stem to leaves after stem girdling and branch girdling, and the application of organic polymer 
compound modifier reduced the transport of Cd from stem to leaves after stem girdling and the transport of Cd 
from stem to bolls after branch girdling (Table 2), indicating that modifiers could be transported to leaves and 
bolls after phloem girdling. According to RDA analysis, without girdling, the application of polyacrylate com-
pound modifier could significantly change the distribution and transport of Cd in cotton organs compared with 
CK, whereas the application of organic polymer compound modifier could significantly change the distribution 
and transport of Cd in cotton organs compared with CK-J and CK-G groups after girdling.

Many studies have found that phloem girdling reduces the net photosynthetic rate (Pn) of plant leaves23. Sala 
et al.24 showed that phloem girdling influenced the rate of photosynthetic assimilation, and Poirier-Pocovi et al.25  
showed that phloem girdling reduced the photosynthesis rate of leaves. Similar findings were also shown in this 
study. After girdling, the Pn, Gs, and Tr all decreased, and only Ci increased, indicating that the decrease of photo-
synthetic rate was mainly caused by non-stomatal factors26. This is consistent with the conclusion of Zhou et al.27.  
Without girdling, the applications of the two modifiers significantly decreased the inhibition from Cd on Pn of 
cotton leaves. For groups with girdling, only T2-J group significantly decreased the inhibition on Pn, but there 
was significant difference in the decreases of Pn among the groups treated with modifiers. The results indicated 
that the modifiers could alleviate the photosynthetic damage caused by girdling. After stem girdling, the Pn for 
the groups treated with organic polymer compound modifier were higher than that of CK (Fig. 3), which indi-
cated that the application of organic polymer compound modifier after stem girdling had a positive effect on Pn. 
This might be due to the application of organic polymer compound modifier decreased intercellular CO2 concen-
tration, but increased stomatal conductance and transpiration rate (Fig. 3).

Consistent with the research results of Tang et al.28, the pigment chlorophyll of cotton leaves was significantly 
decreased by girdling, which helps to determine the compensatory photosynthesis by modifiers (Fig. 2). The 
decreases of Chla, Chlb, and Car concentrations for the groups treated with branch girdling was greater than 
those for the groups treated with stem girdling, and the changes of photosynthetic rates also showed the same 
phenomenon. It indicated that the damage caused by branch girdling was more serious. This may be due to the 
accumulation of carbohydrates in the upper part above the cut after girdling. Photosynthates could not be trans-
ported to the root, thus photosynthesis was inhibited. At this time, the plant might avoid absorbing too much 
light by reducing the content of photosynthetic pigments. This reaction is the feedback regulation according to 
the source-sink relation25. The application of modifiers improved the photosynthesis of leaves because the chloro-
phyll content was significantly increased, and the effect of the application of organic polymer compound modifier 
after stem girdling was more obvious. Moreover, Chla and Chlb play different roles in photosynthesis29. The ratios 
of Chla/b in cotton leaves decreased significantly after girdling, but they were increased after the application of 
modifiers, indicating that after girdling, the application of modifiers increased the number of molecules involved 
in photochemical reaction, which led to the improvement of photosynthesis29. According to the RDA analysis, the 
polyacrylate compound modifier has a greater effect on the protection of pigment chlorophyll of cotton without 
girdling than the organic polymer compound modifier, whereas the organic polymer compound modifier has a 
greater effect on that of cotton with girdling. In addition, Liu et al.30 found that Cd distributed in leaf epidermis, 
spongy tissue, and palisade tissue of crops in Cd-contaminated soils. By observing the microstructure of leaf 
tissues, we found that Cd did not damage the epidermis cells but the palisade tissue cells in mesophyll and sponge 
tissue cells, which would affect chloroplasts. Because Cd was absorbed by cotton root and transported from root 
to shoots, there was no direct contact with epidermis cells. By applying the modifiers, the densities of palisade 
tissue and sponge tissue were adjusted, which promoted the development of mesophyll cells and chloroplasts and 
increased the chlorophyll content. Thus, the photosynthesis of cotton leaves was improved.

Modifiers Properties

Polyacrylate 
compound 
modifier

A compound modifier composed of 
polypropylene and iron sulfate. A colorless 
liquid that features in surface adsorption and 
co-precipitation for metals

Organic polymer 
compound 
modifier

A compound modifier mainly composed 
of polyacrylamide and manganese sulfate. 
A colorless liquid that features in surface 
adsorption, surface complexation, etc.

Table 2. Basic properties of modifiers used.
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Conclusions
This study proved that Cd is of high mobility in both xylem and phloem through girdling. The transport pathways 
of polyacrylate compound modifier and organic polymer compound modifier in cotton were the same as that of 
Cd. Modifies could still be transported to the shoots after phloem girdling, but the effect of modifiers on allevi-
ating Cd stress was not greater than that without girdling. Moreover, on the one hand, the application of the two 
modifiers could stabilize Cd in cotton root and reduce the absorption of Cd; on the other hand, it could alleviate 
the inhibition of photosynthesis caused by phloem girdling.

Materials and Methods
Test site condition. Test soil (Calcaric Fluvisol) was obtained from the Test Station of Agricultural College, 
Shihezi University in Shihezi City, Xinjiang Province, China (86°03′E, 45°19′N). The soil pH was 7.76, soil cati-
on-exchange capacity (CEC) was 16.25 coml kg−1, total nitrogen content was 0.89 g kg−1, organic matter content 
was 13.25 g kg−1, alkali-hydrolyzable nitrogen content was 60 mg kg −1, available phosphorus content was 20 mg kg 
−1, and available potassium content was 250 mg kg−131.

Test program. Two-year continuous remediation of Cd-contaminated soil using polymer modifiers was con-
ducted in 2017 and 2018. On April 5th, 2017, to maintain the original soil profile, soils were packed into plastic 
barrels (length × width × height = 30 cm × 30 cm × 80 cm), and then barrels were buried back into the field. 
Based on previous studies14 and pre-test results, cadmium chloride (CdCl2•2.5H2O) solution was added into 
the barrels and mixed fully with the plough layer. The Cd content in the plough layer reached approximately 
40 mg kg−1 after three weeks. On April 26th, urea (345 kg hm−2) and compound fertilizer (17-17-17) (795 kg 
hm−2) was applied.

A total of nine groups were set in a randomized block design, and two treatments were employed, including: 
(1) the application of modifiers (non-modifier, polyacrylate compound modifier, and organic polymer compound 
modifier (Table 3)); and (2) phloem girdling (non-girdling, stem gridling, and branch girdling) (Table 2). Each 
group had three repetitions. On April 30th, two modifiers (8.48 kg hm−2) were diluted with water and applied 
through drip irrigation. Cotton (Xinluzao 60) was sown on May 2th. After emergence, six seedlings were retained 
in each barrel. The first irrigation was conducted on June 14th. The irrigation cycle was 3 days during the growth 
period, and the irrigation volume was 4,500 m3 hm−2. No fertilizers and modifiers were applied at later stages. 
Cotton was harvested on September 5, 2017. After that, the stalks were pulled out and the field was plowed.

On April 5th, 2018, the Cd content in plough layer reached 32.44 mg kg−1 in the soil without modifiers, 
31.57 mg kg−1 in the soil with polyacrylate compound modifier, and 31.22 mg kg−1 in the soil with organic 
polymer compound modifier. In 2018, no cadmium was applied into the soils, and the amounts of modifiers 
applied (8.48 kg hm−2) and the other managements were the same as those in 2017.

To evaluate the transport pathway of Cd (phloem or xylem), and analyze the effects of modifiers on Cd con-
tent and regulating photosynthesis in cotton, phloem girdling was employed to inhibit the transport of Cd and 
modifiers through phloem in 2018. Phloem girdling was conducted at the cotton flowering boll-setting stage (the 
10th day after manual topping). Girdling sites of stem girdling and branch girdling were located at the main stem 
of cotton (3–5 cm from the ground) and the top fruit branch, respectively. The width of the cut was 1 cm, and the 
depth was up to the xylem. Ten days after girdling, functional leaves from each barrel were randomly selected 
to determine photosynthetic parameters, and three cotton plants were randomly selected from each barrel to 
determine Cd content.

Experimental determination. Measurement of Cd content. Root, stem, leaves, and cotton bolls of cotton 
plants were separated, and then they were dried at 105 °C for 0.5 h and dried to constant at 80 °C. Samples of each 
organ (0.5 g) were acid-digested using sulfuric and nitric acid (1:5, v/v) at 60 °C for 24 h, and treated with HNO3/
HClO4 (5/1, v/v). A Hitachi Z2000 graphite atomic absorption spectrophotometer (PinAAcle900T, PerkinElmer, 
USA) was used for the determination of Cd content31.

Group Phloem girdling Modifier application

CK No girdling /

T1 No girdling Polyacrylate compound 
modifier

T2 No girdling Organic polymer compound 
modifier

CK-J Stem gridling /

T1-J Stem gridling Polyacrylate compound 
modifier

T2-J Stem gridling Organic polymer compound 
modifier

CK-G Branch girdling /

T1-G Branch girdling Polyacrylate compound 
modifier

T2-G Branch girdling Organic polymer compound 
modifier

Table 3. Test design.
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Chlorophyll pigment measurement. Fresh leaves (20 mg) from each group were cut into small pieces. 
Photosynthetic pigments were extracted in 80% (v/v) acetone, and centrifuged. Pellets were used to re-extract the 
pigments until they became colorless. The absorbance was determined at 663.2, 646.5, and 470 nm spectropho-
tometrically. The concentrations of chlorophyll (Chla and Chlb) and carotenoids (Car) were calculated according 
the method of Lichtenthaler32.

Photosynthesis parameters. Net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and 
intracellular CO2 concentration (Ci) were determined with a portable photosynthesis system LI-6400 (LI-COR, 
Lincoln, USA) according to Liu et al.33.

Anatomical type of cotton leaves. In the flowering and boll-setting stage, the leaves at the same position of cotton 
plants in each group were collected and wrapped up using wet gauze. After that, they were put in ice box and taken 
back to the laboratory. Leaves were washed with distilled water, and then, they were blotted with absorbent paper. 
A small piece (about 1 cm × 0.5 cm) was cut with a blade and put into the FAA fixing solution (formaldehyde: 
5 mL, glacial acetic acid: 5 mL, and 70% alcohol: 90 m L) for making paraffin sections. Paraffin sectioning34 was 
conducted using hematoxylin and Canadian neutral gum. The thickness of the slice was 6 to 8 μm, and the slices 
were photographed with a microscope (eyepiece × objective lens: 10 × 40) (DMB: Motic Digital Microscope).

Statistical analysis. The data were processed using Excel 2016 (Microsoft, USA), and one-way analysis of 
variance (ANOVA) was performed using SPSS 23.0 (SPSS Inc., Chicago, IL, USA). Multiple comparisons between 
different groups were conducted using Duncan’s new multiple range method (significance level: α = 0.05). Charts 
were drawn using Origin 8.0 (Origin Lab, Massachusetts, USA).

Calculation formulas in data processing:

=DR(Distribution ratio) Cd uptake in root(stem, leaves)/total Cd uptake of the plant (1)

=PTI(Primary transport index) Cd content in stem/Cd content in root (2)

=STI(Secondary transport index) Cd content in cotton bolls(leaves)/Cd content in stem (3)
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