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High functionality of DnA barcodes 
and revealed cases of cryptic 
diversity in Korean curved-horn 
moths (Lepidoptera: Gelechioidea)
Sora Kim  1*, Yerim Lee1, Marko Mutanen2, Jinbae Seung1 & Seunghwan Lee1*

curved-horn moths or gelechioid moths (Lepidoptera: Gelechioidea) represent one of the most diverse 
lepidopteran groups. Due to the large number of species, generally small size of adults and subtle 
morphological differences, their confident identification requires tenacious and long-term dedication 
on their diversity. over the past decade, DnA barcoding has repeatedly been used to elucidate 
boundaries of species in many large and difficult groups. Here, we conducted a test of DNA barcoding 
with the diverse fauna of Korean Gelechioidea with very little prior information of coi gene region 
from the area. Altogether 509 specimens representing 154 morphospecies were included in the study. 
the species assignments of all three tested species delimitation methods (ABGD, bptp and ptp) were 
consistent with morphological identifications for 117 species (75.97%). A threshold of 2.5% genetic 
divergence was observed to differentiate the morphological species efficiently. Careful morphological 
examination of morphospecies exceeding 2.5% intraspecific variability prove cryptic diversity in 
three species (Neoblastobasis biceratala, Evippe albidoesella and Promalactis atriplagata). one 
morphospecies, Promalactis odaiensis, showed high intraspecific divergence while consisted of only a 
single MotU. overall, DnA barcoding was shown to provide a powerful tool to discriminate species of 
Korean Gelechioidea and reveal cases of cryptic diversity.

Curved-horn moths (Gelechioidea) is among the most species-rich superfamilies of the insect order Lepidoptera, 
containing 15–21 families1–3. They are generally regarded as ‘micro-moths’, and their life histories are greatly 
diverse as they occupy wide range of both terrestrial and aquatic habitats. The larvae may be external and internal 
feeders and larvae include concealers, case-bearers, twirlers, gall-makers and miners of vascular plants, mosses, 
lichens, seeds, dead plant materials and dung. Some species are scavengers or even predators4. The superfam-
ily has a worldwide distribution, comprising more than 18,000 described species2. Typically, their adults have 
well-developed labial palps gently bent upward, giving an appearance of ‘curved horn’. Species include many of 
agricultural, forestry and quarantine pests causing widespread damage around the world. The larvae of many spe-
cies, such as Phthorimaea operculella (potato tuber moth), Scrobipalpa aptatella (tabacco stem borer) and Endrosis 
sarcitrella (white-shouldered house moth) cause serious damage to crops and stored grains by mining the leaves 
or burrowing into the seeds or fruits. Because of their usually tiny body size, indistinct appearance and cryptic 
behavior of adults, their identification to the species level is often difficult based on morphology.

Over the past decade, DNA barcoding has developed to serve as an efficient troubleshooter in precise and 
fast identification of species, discoveries of cryptic species and surveys of biodiversity in a wide variety animal 
taxa and some other eukaryote groups5–16. In particular, DNA barcoding has contributed a lot to the inventories 
of diversity of the Lepidoptera (butterflies and moths), one of the megadiverse insect groups comprising more 
than 157,000 described species. Most studies of Lepidoptera have focused on West Palearctic17–21, Neartic22 and 
Neotropical faunas23–25, while rich Asian fauna has remained poorly investigated26–28.

Korean Peninsula is located at a temperate zone in Eastern Eurasia, extending southwards for about 1,100 km 
from continental Asia into the Pacific Ocean. It surrounded by the East Sea to the East and the Yellow Sea to 
the west, by connecting the two bodies of water29. Its nature is characterized by relatively warm climate, strong 
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seasonal changes and rich biological diversity, with approximately 50,000 biological species including over 2,300 
endemic species. Also, as about 80% of the land area consists of mountains, altitudinal changes are noticeable.

We aimed to test the utility of DNA barcoding in species identification on a large dataset from 154 mor-
phospecies of Gelechioidea occurring in Korea. The Gelechioidea was selected to serve as a model group as the 
species are usually dull-coloured and small, their identification is time-consuming, they include a number of 
morphologically complex groups and they are likely to include cryptic diversity. Comprehensive DNA barcode 
reference library of them is expected to be highly useful in their identification in the future. We hope our barcod-
ing study on Korean Gelechioidea could serve as a model for large-scale systematic investigations of microlepi-
dopteran diversity in Asia, which so far has remained poorly studied with molecular tools. Additionally, we aimed 
to focus on detecting potential cases of cryptic species and testing the efficacy of DNA barcoding with difficult 
species complexes. Finally, we applied several algorithm-based species delimitation methods and searched for the 
optimal divergence threshold value for species delimitation.

Material and Methods
Specimen collection and morphospecies identification. Altogether 509 individuals were collected 
from 85 locations of 10 administrative districts in Korea during 2009–2017 (Fig. 1, Supplementary Table S1 
online). The collection was performed mostly using light collecting (mercury vapor lamp, 220 V/ 400 W) or 
bucket light trap (black light lamp, 20 W). Before DNA isolation, all specimens were mounted, examined and 
photographed for identification under microscope (DM 4000B, Leica Microsystems, Wetzlar, Germany) with a 
software application, 18.3 Three Shot Color (Diagnostic Instruments, Sterling Heights, MI, USA). Slides of gen-
italia of vouchers of all species for identification were made by the first author. The classification follows recent 
phylogenetic works3,30. All specimens with vouchers are deposited in the College of Agriculture and Life Sciences, 
Seoul National University (CALS SNU) and Korea National Arboretum (KNA), Republic of Korea.

DNA extraction, polymerase chain reaction and sequencing. Genomic DNA was extracted by 
grinding up usually legs or head or whole body except abdomen of dried specimens using DNeasy Blood and 
Tissue kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocols. The primer pair LCO1490 and 
HCO219831 amplified the standard 667 bp invertebrate barcode near the 5’ end of the mtCOI gene. Amplification 
was performed in a PCR reaction mix (AccuPower PCR PreMix (Bioneer, Daejeon, Republic of Korea) for a vol-
ume of 20 µL containing DNA polymerase, 250 µm of dNTP for each sample, a tracking dye and reaction buffer 
with 1.5 mM MgCl2. The thermal cycling program consisted of initial denaturation at 95 °C for 2 min, followed 
by 40 cycles of denaturation at 95 °C for 30 s, annealing at 45–55 °C for 30 s, extension at 72 °C for 1 min, and a 
final extension at 72 °C for 10 min. PCR products were checked in 1.2% agarose gels and purified by QIAquick 
PCR purification kit (QIAGEN, Hilden, Germany) following the manufacturer’s protocol. Purified samples were 
sequenced at BIONICS, Inc. (Seongdong-Gu, Seoul, Republic of Korea).

Sequence analysis and genetic divergence and haplotyping. A total of 509 sequences for 154 mor-
phospecies were generated as novel data in the present study (Supplementary Table S1 online). Raw sequences 
were assembled and edited using SeqManTMII (version 5.01, 2001; DNA-starTM). During the alignment, severely 
contaminated or very short sequences were excluded to minimize the risk of any kind of confusion and errors. 
Sequence data were combined using SequenceMatrix windows ver. 1.7.832. The sequences were deposited in 
GenBank (MK210635 to MK211143) (Supplementary Table S1 online). We implemented Kimura-2 parameter 
(K2P) model to calculate intra and interspecific pairwise genetic distances because it is computationally fast 
and, represents the most widely used as a substitution model (www.bold.org). Haplotype data were generated in 
DnaSP5.1033 to identify the unique haplotypes.

Barcode tree analysis, species delimitation. Neighbor-Joining (NJ) and Maximum Likelihood (ML) 
analyses were implemented to test the reciprocal monophyletic criteria for species delimitation. The NJ tree was 
constructed using MEGA 7.034 under K2P model. ML analysis tree was carried out in the CIPRES supercomput-
ing portal with RAxML-HPCv.8 on XSEDE tool35.

To estimate the number of molecular operational taxonomic units (MOTUs) from the Gelechioidea 
dataset, we performed three species delimitation methods, Automatic Barcode Gap Discovery (ABGD)36, 
Poisson-Tree-Processes (PTP)37 and Bayesian implementation of the PTP (bPTP).

ABGD analysis for MOTU detection was conducted under JC69, K2P and p-distance substitution models. 
The ABGD analyzed data based on genetic distance for MOTUs picking and conducted on the web interface 
(http://wwwabi.snv.jussieu.fr/public/abgd/), with default setting, by K2P, Jukes-Cantor (JC69) and p distance 
model with relative gap width (X = 1.5). P value indicates partition with prior maximal distance. The PTP is a 
coalescent-based species delimitation method only requires a phylogenetic input tree, and the bPTP is an updated 
version of the PTP by adding Bayesian support (BS) values to delimited species on the input tree. It uses coales-
cence theory and assumes that intra- and interspecific substitutions follow two distinct Poisson processes and that 
intraspecific substitutions are significantly fewer than interspecific substitutions38,39. For both analyses, a ML tree 
was generated as input trees. The web server at (http://species.h-its.org/) was used to run the analyses. Moreover, 
to investigate a threshold for evaluating the number of MOTUs within Gelechioidea, we examined the maximum 
intraspecific distance within each of the 154 morphospecies with multiple samples.
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Results
Morphological identification. Based on the morphological examination, the 509 specimens ana-
lyzed in this study were assigned to 154 morphospecies in 64 genera and 13 higher taxa (see Supplementary 
Table S2 online). The following 12 families were represented: Autostichidae, Batrachedridae, Blastobasidae, 
Coleophoridae, Cosmopterigidae, Depressariidae, Gelechiidae, Lecithoceridae, Lypusidae, Oecophoridae, 
Stathmopodidae and Xyloryctidae. Additionally, subfamily Aeolanthinae of unknown family, was also included.

DnA barcode based identification. Haplotype data analysis revealed 332 distinct haplotypes (see 
Supplementary Fig. S1 online). Mean K2P genetic divergence (MGD) across all specimens was 0.1340. The 
MGD increased hierarchically from within species (mean = 0.0077), to within congeners (mean = 0.0963), and 
within families (mean = 0.1164) (Table 1). K2P genetic divergence values between species within families sam-
pled by more than one species (Autostichidae, Blastobasidae, Coleophoridae, Cosmopterigidae, Depressariidae, 
Gelechiidae, Lecithoceridae, Oecophoridae, Stathmopodidae and Xyloryctidae) are provided in Table 2. 
Batrachedridae, Lypusidae and Aeolanthinae are not included here as they each were represented by only one 
species. Overall, the K2P genetic divergence among the congeneric species was on average approximately 12 times 
greater than that among individuals of the same species.

Figure 1. Map with 85 localities for 509 specimens during 2009–2017. Pie charts show the proportion of each 
family at respective locations. The abbreviations used here for administrative districts in Korea are as follows: 
GG, Gyeonggi-do; GW, Gangweon-do; CB, Chungcheongbuk-do; CN, Chungcheongnam-do; JB, Jeonlabuk-do; 
JN, Jeonlanam-do; GB, Gyeongsangbuk-do; GN, Gyeongsangnam-do; JJ, Jeju-do. (A map was prepared in 
ArcGIS 10.1.(www.esri.com).).
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MotUs estimation. The species delimitation methods of ABGD, PTP and bPTP yielded 152, 156 and 213 
MOTUs, respectively (Fig. 2). In the ML tree, color bars indicate delineated MOTUs by different methods (Fig. 2). 
Altogether 117 MOTUs were recovered by each three method, equaling to 75.97% overlap with the morphologi-
cal delineation of species (Fig. 2). For original ML tree, see Supplementary Fig. S2 online.

ABGD analysis under each JC69, K2P and p-distance substitution model produced 120 MOTUs with 
P = 0.021544, and 152 MOTUs with P = 0.0010–0.0215, 0.0010–0.0215 and 0.0129–0.0010, respectively (see 
Supplementary Table S3 online). Three morphospecies, Neoblastobasis biceratala, Promalactis atriplagata 
and Evippe albidoesella, were each divided into two MOTUs by ABGD. Conversely, in three cases were 2–4 
morphospecies observed to share a single MOTU: Autosticha modicella and A. opaca; Agonopterix sp1 and 
Agonopterix sp2; Chorivalva unisaccula, Chorivalva sp1, Chorivalva sp2 and C. grandialata.

PTP analysis resulted in 156 MOTUs in the dataset. Compared with ABGD, additional MOTUs were 
observed in six species, Evippe albidoesella, Aroga mesostrepta, Promalactis atriplagata, Faristenia jumbongae, 
Neoblastobasis biceratala and Atrijuglans hetaohei, whereas Autosticha modicella and A. opaca as well as a mor-
phospecies quartet Chorivalva unisaccula, Chorivalva sp1, Chorivalva sp2 and C. grandialata, were each recovered 
under a single MOTU by PTP.

bPTP discovered 213 MOTUs, which is a clearly higher number than that of other species delimitation meth-
ods. Additional MOTU was found in 37 morphospecies (see Supplementary Table S4 online). In common to the 
two other methods, three species, Neoblastobasis biceratala, Evippe albidoesella and Promalactis atriplagata, were 
each split into multiple MOTUs. Like in PTP, the morphospecies pair Autosticha modicella and A. opaca and the 
morphospecies quartet Chorivalva unisaccula, Chorivalva sp1 and Chorivalva sp2 and C. grandialata were each 
assigned under a single MOTU.

Detection of cryptic species. Altogether 37 morphospecies were detected to consist of more than one 
MOTU by at least one delimitation method. These morphospecies were initially considered potentially to include 
cryptic species. Since bPTP tends to split MOTUs much more readily than the other methods, only the splits 
detected by at least two out of three delimitation methods were subjected to further morphological investiga-
tion for cryptic diversity. Six morphospecies, Neoblastobasis biceratala, Aroga mesostrepta, Evippe albidoesella, 
Faristenia jumbongae, Promalactis atriplagata and Atrijuglans hetaohei, fulfilled these conditions.

In the results of the analysis to investigate a threshold for evaluating the number of MOTUs within 
Gelechioidea, the maximum intraspecific divergence was less than 2.5% in all except four (2.5%) morphospecies 
(Fig. 3). Of six species to be focused for cryptic diversity, A. mesostrepta, F. jumbongae and A. hetaohei, showed 
less than 2.5% maximum intraspecific divergence (2.29%, 2.30% and 2.46% respectively), whereas N. bicerat-
ala, E. albidoesella and P. atriplagata, showed clearly higher values of maximum intraspecific divergence (3.88%, 
4.33% and 3.25% respectively). Next, we present the results of the latter three species in light of subsequent 
in-depth morphological examination.

Species of over 2.5% maximum intraspecific divergence with multiple MOTUs. The 13 analyzed specimens of 
N. biceratala (Blastobasidae) formed three distinct lineages in ML (Fig. 2) and NJ trees (Fig. 4a). The intraclade 
divergence was less than 2% in each cluster (0.00–0.15, 0.00–0.45 and 0.15, respectively) (Fig. 4a). The group 
1 was divided into two subgroups showing a minimum divergence of 2.76 to 3.87% to the group 2, while the 

Comparisons K2P Mean Genetic Distance (MGD) %

overall 13.40

within species 0.77

within congeners 9.63

within families 11.64

Table 1. Mean K2P genetic distance in accordance with different taxonomic levels within Gelechioidea.

Comparisons (10) Mean (%) Min.(%) Max. (%)

Autostichiidae 9.06 0.00 11.50

Blastobasidae 9.85 6.41 13.26

Coleophoridae 8.18 4.33 12.56

Cosmopterigidae 11.44 2.77 14.54

Depressariidae 12.47 2.73 21.54

Gelechiidae 12.30 0.00 19.09

Lecithoceridae 16.41 9.14 20.12

Oecophoridae 11.89 5.93 16.18

Stathmopodidae 13.16 3.39 17.51

Xyloryctidae 11.61 9.77 14.01

Table 2. K2P genetic divergence between species within each family. Batrachedridae, Lypusidae and 
Aeolanthinae are not included here as they each are represented by one species only.

https://doi.org/10.1038/s41598-020-63385-x
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subgroups of the group 1 differed only by 0.00–1.36 from each other. The specimens of the group 2 of N. bicerat-
ala were collected from a very different ecological environment. Specimens of the group 1 were collected from 
high-altitude mountain areas (Mt. Jungmi, Mt. Nam and Youngdae forest), whereas those of group 2 were col-
lected from low-altitude area, including urban environments (Gongju-si). According to a taxonomic revision of 
the Neoblastobasis40, N. biceratala, is distinguished from congeneric species by the presence of a developed dorsal 
plate in valvae of the male genitalia. Those plates were well-observed in both two groups (Figs. 4a, 1–2). However, 
a minor morphological difference between the two groups was detected in female adults. The scape of antennae 
and the 1st segment of flagellum are broadly dilated and protruding respectively in the group 1, while the scape of 
antennae is shorter and the 1st segment of flagellum is not protruding in the group 2 (Fig. 5a-b).

E. albidoesella (Gelechiidae) was represented by five specimens collected from two locations. The specimens 
from these two locations were assigned to different MOTUs and formed two distinct clades in ML (Fig. 2) and 
NJ trees (Fig. 4c). The second clade was represented by a singular E. albidoesella_Y93. The divergence between 
two clades ranged from 4.17 to 4.33, representing the highest intraspecific divergence within the entire dataset 
(Fig. 3). In a taxonomic key of genus Evippe41, E. albidoesella, is differentiated by the presence of a white triangular 
traverse fascia in the forewings and a round apex of cucullus of male genitalia. Those characters were detected in 
both groups (Figs. 4b, 3–4). Additionally, a distinct difference between the clades was observed: the midleg in the 
group 1 has a single spur on mid-tibia posteriorly, whereas that is absent in the group 2 (Fig. 5c-d).

P. atriplagata (Oecophoridae) with four analyzed specimens showed a putative cryptic species as being repre-
sented by two MOTUs in the all delimitation methods (Table 3). These splits were also supported by ML and NJ. 
The interclade divergences between the two groups was 3.25%, whereas no intraclade variability was observed. 
Moreover, the two specimens of the group 1 were collected from mountain region with natural forests, Mt. 
Jeombong and Mt. Taehwa, whereas the two specimens of the group 2 were collected from a lowland urban site. P. 
atriplagata, is distinguished from congeneric species by its distinct wing pattern and genitalic characters42. Those 
taxonomic key characters, which are a distinct fuscous apical marking in the wing pattern and the elongated and 

Figure 2. Maximum likelihood tree (ML) on the COI dataset including 509 individuals, with the results of 
three different species delimitation approaches in addition to morphology (see legend).

https://doi.org/10.1038/s41598-020-63385-x
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coiled ductus bursae of female genitalia, were well observed in both groups (Figs. 4c, 5–6). According to an orig-
inal description and the subsequent revisions42,43, the 3rd segment of labial palpus is 2/3 length of the 2nd segment 
with yellowish orange outer surfaces. These features were found in the specimens of group 1 (Fig. 5e) but, were 
not present in the group 2. The 3rd segment of labial palpus is almost same length as the 2nd segment and is cov-
ered dark brown scales with white apical tips (Fig. 5f).

Species of over 2.5% maximum intraspecific divergence with a single MOTU. Promalactis odaiensis with max-
imum intraspecific divergence as high as 3.07% showed only a single MOTU in the all delimitation methods 
(Table 4). In total, 14 distinct haplotypes (H1-H14), roughly assigned to 5 regions, were observed (Figs. 6a, 6b). 
No haplotype sharing was present between the regions (Fig. 6b). We could not find any morphological differences 
between the specimens.

Cases with low genetic divergence between morphospecies. Two morphospecies, Autosticha opaca and A. modi-
cella (Autostichiidae), showed low genetic divergence to each other, ranging from 0.0% to 0.45% (Table 5). In NJ 
and ML trees (Fig. 7a), the single specimen of A. opaca was phylogenetically nested within A. modicella. Three 
species delimitation methods, ABGD, PTP and bPTP, provided the same result.

Four morphospecies, Chorivalva grandialata, C. unisaccula, C. sp2 and C. sp3, altogether including seven 
specimens (Gelechiidae), were intermixed in NJ and ML trees (Fig. 7b) with low genetic divergence (0.0–1.98%) 
between the morphospecies. All species delimitation methods assigned these four morphospecies into a single 
MOTU.

Discussion
In this study, we tested the utility of DNA barcode in species identification within the Korean Gelechioidea. 
Our results showed that the species delimitation methods of ABGD, PTP and bPTP yielded 152, 156 and 213 
MOTUs, respectively. Number of MOTUs discovered by bPTP was clearly higher than in the other two species 
delimitation methods. The bPTP method tends to be more sensitive to split sequences into more MOTU than 
most other delimitation methods. Largely resulting from this difference, only 117 (75.97%) of 154 morphospecies 
could be identified by each delimitation method. We also investigated the optimal delimitation threshold value 
for evaluating the number of MOTUs based on maximum intraspecific distance among all 154 morphospecies. 

Figure 3. Maximum intraspecific divergences (%) based on Kimura-2-parameter (K2P) for 509 
morphospecies.

https://doi.org/10.1038/s41598-020-63385-x
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The results suggest that the value 2.5% could serve as an efficient proxy for preliminary species delimitation 
within Gelechioidea. Putative cryptic diversity was detected in three morphospecies (Neoblastobasis biceratala, 
Evippe albidoesella and Promalactis atriplagata). Each of them is characterized by high intraspecific variability and 
multiple MOTUs. Ecological differences were also observed in two cases. In N. biceratala and P. atriplagata, the 
groups collected from urban sites showed morphological differences to the specimens collected from mountain 
areas. It can be assumed that geographic isolation with high substitution rate in COI could have led to allopatric 
speciation without significant morphological differentiation. Of them, Evippe is very small and Holarctic genus41, 
most species distributed within Asian area. Only two species, E. albidoesella and E. syrictis, have been recorded 
from Korea, of which E. albidoesella has frequently been collected and is known from most areas of the Korean 

Figure 4. Neighbor-joining tree of COI gene of three morphospecies having higher intraspecific divergence 
(a) Neoblastobasis biceratala (Blastobasidae); (b) Evippe albidoesella (Gelechiidae); (c) Promalactis atriplagata 
(Oecophoridae). Numbers on the branches are intraclade distances and numbers under the branches are 
bootstrap percentages (%) from NJ and ML.

https://doi.org/10.1038/s41598-020-63385-x
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Peninsula. Additional taxonomic scrutiny and denser sampling is necessary to further elucidate the taxonomic 
relationship of these taxa.

Unexpectedly, Promalactis odaiensis was observed having high intraspecific variability in COI, albeit under a 
single MOTU. In the haplotype results, 14 populations were categorized into 5 regions in Korea with the genetic 
divergence ranged from 0.00 to 3.07%. Given that the P. odaiensis is endemic to eastern Asian area42,44, the species 
may show higher genetic diversity in the COI gene. We could suggest that cryptic species should be determined 
through an integrative analysis comparing the morphology and MOTUs estimation, when the intraspecific max-
imum genetic divergence exceeds 2.5% in the Gelechioidea.

Our study revealed also cases of mitonuclear discordance, i.e. contradiction between morphology and DNA 
barcoding. One such group, Autosticha opaca and A. modicella, showed low intra-genetic divergence and a single 
MOTU between species in all methods, while being distinguished from each other by morphology. In the tax-
onomic revision of the group45, A. opaca could not be distinguished from A. modicella by external appearance 
alone, but only by a very small difference in the genitalia. We could verify this as we observed differences in length 
and width of ostium bursae and ductus bursae between the two morphospecies (Figs. 7a, 1–2).

Another group of potential cryptic diversity is Chorivalva complex of species. Chorivalva is a small and a 
little-known genus of Gelechiidae that is widely distributed in the East Palearctic region. Only three species, 
distinguished by genital characters, have been recorded41. Applying the available taxonomic key, specimens 

Figure 5. Morphological differences of putative cryptic species. (a) N. biceratala with group 1 (S333); (b) N. 
biceratala with group 2 (S35); (c) E. albidoesella with group 1(Y82); (d) E. albidoesella with group 2 (Y93); (e) P. 
atriplagata with group 1(Y143); (f) P. atriplagata with group 2 (S243). The dotted line indicates the 2nd segment 
of labial palpus.

Family Species

Max. gen. 
divergence 
(%)

MOTUs

ABGD PTP bPTP

Blastobasidae Neoblastobasis biceratala 3.88 2 2 3

Gelechiidae Evippe albidoesella 4.33 2 2 2

Oecophoridae Promalactis atriplagata 3.25 2 2 2

Table 3. Species having higher intraspecific distance and multiple MOTUs.

https://doi.org/10.1038/s41598-020-63385-x
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Chorivalva were divided into four morphospecies, Chorivalva unisaccula, C. grandialata, C. sp2 and C. sp3. 
(Figs. 7b, 3–7). However, the three delimitation methods, ABGD, PTP and bPTP, all assigned all of them within a 
single MOTU with low overall divergence. The mitonuclear discordance observed in Chorivalva and Autosticha 

Figure 6. Maximum likelihood tree of COI gene of 14 haplotypes having higher intraspecific divergence 
and a single MOTU. (a) 14 haplotypes of Promalactis odaiensis (Oecophoridae). Numbers on the branches 
are intraclade distances and numbers under the branches are bootstrap percentages (%) from NJ and ML;(b) 
median joining network about 14 haplotypes of 22 COI sequences of P. odaiensis. The pie size is proportional to 
the haplotype frequency (each color indicate the localities).

Family Species

Max. gen. 
divergence 
(%)

MOTUs

ABGD PTP bPTP

Oecophoridae Promalactis odaiensis 3.07 1 1 1

Table 4. Species having higher intraspecific divergence but only a single MOTU.
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Family Species 1 Species 2
Gen. divergence 
(%)

Autostichiidae Autosticha opaca Autosticha modicella 0–0.45

Gelechiidae Chorivalva grandialata Chorivalva unisaccula 1.21

Gelechiidae Chorivalva grandialata Chorivalva sp.2 1.06–1.98

Gelechiidae Chorivalva grandialata Chorivalva sp.3 0

Gelechiidae Chorivalva unisaccula Chorivalva sp.2 0.15–1.67

Gelechiidae Chorivalva unisaccula Chorivalva sp.3 1.21

Gelechiidae Chorivalva sp.2 Chorivalva sp.3 1.06–1.98

Table 5. Species having low genetic divergence between morphospecies pair.

Figure 7. Neighbor-joining tree of COI gene of two groups showing low genetic divergences between 
morphospecies pair. (a) Autosticha modicella and A. opaca; (b) Chorivalva complex species. Numbers on the 
branches are intraclade distances and numbers under the branches are bootstrap percentages (%) from NJ and 
ML.
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could have resulted from incomplete lineage sorting of ancestral mitochondrial DNA polymorphisms, introgres-
sion of mitochondrial DNA, possibly mediated by Wolbachia infection46. Alternatively, the detected differences 
represent intraspecific variability. Multiple molecular markers, including nuclear ones, and more comprehensive 
sampling will likely be required to resolve this incongruence between morphology and DNA barcoding.

Some genera of Gelechioidea (e.g. Parastenolechia, Parachronistis) appear paraphyletic in our trees. 
Traditionally, the generic classifications of these genera have been inferred based on their morphological similar-
ity, without any rigorous phylogenetic analyses. Our results suggest that many taxonomic discrepancies at species 
and genus levels should to be re-assessed. It is likely that adoption of multiple genetic markers would likely reveal 
inconsistencies both in species delimitations and generic classifications.

In conclusion, with this study we demonstrated the usefulness of COI barcode data in efficient species identi-
fication in Gelechioidea. Moreover, a functional threshold for tentative species determination within the super-
family was proposed. We demonstrated that DNA barcoding provides an efficient way to detect morphologically 
cryptic species. Comprehensive DNA barcode reference libraries would also facilitate accurate identification of 
immature stages of pests, which are many in Gelechioidea.

Accession Codes: From MK210635 to MK211143 for COI sequences.
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