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Inconsistent effects of stochastic 
resonance on human auditory 
processing
Katharina S. Rufener1,2, Julian Kauk1, Philipp Ruhnau1,2, Stefan Repplinger1,3, Peter Heil2,4 & 
tino Zaehle1,2*

It has been demonstrated that, while otherwise detrimental, noise can improve sensory perception 
under optimal conditions. The mechanism underlying this improvement is stochastic resonance. An 
inverted U-shaped relationship between noise level and task performance is considered as the signature 
of stochastic resonance. Previous studies have proposed the existence of stochastic resonance also 
in the human auditory system. However, the reported beneficial effects of noise are small, based on 
a small sample, and do not confirm the proposed inverted U-shaped function. Here, we investigated 
in two separate studies whether stochastic resonance may be present in the human auditory system 
by applying noise of different levels, either acoustically or electrically via transcranial random noise 
stimulation, while participants had to detect acoustic stimuli adjusted to their individual hearing 
threshold. We find no evidence for behaviorally relevant effects of stochastic resonance. Although 
detection rate for near-threshold acoustic stimuli appears to vary in an inverted U-shaped manner for 
some subjects, it varies in a U-shaped manner or in other manners for other subjects. Our results show 
that subjects do not benefit from noise, irrespective of its modality. In conclusion, our results question 
the existence of stochastic resonance in the human auditory system.

Noise is generally considered detrimental for signal processing. Under certain circumstances, however, noise can 
be beneficial. It has been demonstrated in a variety of micro- and macro-systems that applying noise to a weak 
signal can increase the probability that the signal crosses a threshold1–3. Given such a threshold, the probability of 
detecting a subthreshold signal may therefore be higher in the presence of noise at a specific optimal level than in 
the absence of noise or in the presence of noise of suboptimal and supraoptimal levels. This results in a non-linear 
relationship between the probability of detecting a weak signal and the noise level. With regard to sensory percep-
tion, an inverted U-shaped function between signal and noise is typically considered as the signature of stochastic 
resonance (SR)4–7.

Animal data suggest that the responses of hair cells, auditory-nerve fibers, and brainstem neurons to weak 
acoustic stimuli are enhanced by low levels of acoustic noise in a manner consistent with stochastic resonance7–10. 
Human electrophysiological data suggest that noise can increase neural synchrony in the human auditory cortex, 
which, in turn, might lead to improved hearing performance11. Furthermore, a few studies claim improvements 
in perceptual detection thresholds due to the application of low-level noise. This has been reported for normally 
hearing subjects9,12 and for subjects having cochlear and brainstem implants9.

However, although this previous research argues for a beneficial effect of noise on auditory perception, to 
the best of our knowledge, none of the available studies provide robust evidence for SR in the human auditory 
system, either due to conceptual shortcomings or to a lack of a valid statistical analysis. Firstly, no study shows 
the expected SR-inherent inverted U-shaped relationship between noise level and performance in humans9,11,12. 
Rather, only one single noise level leads to improved detection while noise levels below or above fail to do so. 
Secondly, data in favor of SR in the auditory system typically rely on a small number of subjects9,12,13, which 
increases the probability of false-positive results. Thirdly, one study9 proposing SR lacks a statistical analysis such 
that the reported results are of descriptive nature only.
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In addition to the critical role of external noise, the amount of internal noise present has also been discussed as 
a crucial predictor of SR-effects in human perception2,14–16. Internal noise includes any kind of non-phase-locked 
activity in the system at any stage of the signal transmission, from basic physiological properties, for instance 
noise generated in neurons to higher order cognitive functions such as fluctuation in the subject’s attention. Walsh 
(2004)14 suggested that internal and external noise together determine the overall amount of noise that is added 
to the weak external signal. Internal noise is typically estimated as the subject’s variability in performance without 
the application of external noise. In the visual system, a negative correlation between the amount of internal noise 
and SR has been demonstrated15. Accordingly, it has been suggested that the likeliness of SR to occur is reduced if 
the internal noise itself is already very strong. Adding external noise would then cause masking of the target stim-
ulus16. However, to date, no study assessing SR in the auditory domain took the role of internal noise into account.

Here, we applied acoustic noise at different intensities to assess the existence of SR in the auditory system, 
as manifested by an inverted U-shaped relationship between noise level and detection performance (study 1). 
In order to investigate whether SR emerges at the level of the auditory cortex, we applied electric white noise at 
different intensities by means of transcranial random noise stimulation (tRNS, study 2). TRNS is a non-invasive 
brain stimulation technique that applies weak electrical currents of randomly changing frequencies and ampli-
tudes. Although the precise neurophysiological mechanisms behind tRNS-effects are yet not fully understood, 
increased cortical excitability in circumscribed areas under the stimulation electrodes has been demonstrated17. 
On the behavioral level, the efficacy of tRNS to increase detection rate for near-threshold stimuli has been shown 
both in the visual18 as well as in the auditory domain19.

In both studies, we first analyzed the detection performance at the group level by means of a non-parametric 
approach. Secondly, to take into account the high inter-individual variability we performed a common “best com-
pared to zero-noise condition” comparison. Thirdly, we fitted a linear and a quadratic function to the individual 
data in order to compare the fits of these two model functions. Finally, we estimated the amount of internal noise, 
as reflected by the subjects’ variability in detecting target stimuli in the zero-noise condition, and predicted SR on 
the basis of this approximation.

Results
Study 1: Assessing the effect of acoustic noise on detection rate for near threshold stimuli. In 
this study, participants were presented with near-threshold acoustic target stimulus embedded in white noise 
applied at six different intensity levels (individual detection threshold multiplied by 0.3, 0.45, 0.6, 0.75, 0.9, 1.2). 
Using a three-interval-three-alternative forced choice (3AFC) task, participants were to indicate in which obser-
vation interval the target stimulus was presented. We hypothesize to find 1) an inverted U-shaped relationship 
between noise level and detection rate and 2) an increased detection rate when the target stimulus was presented 
embedded in noise compared to when presented in the zero-noise condition. At a group level, the level of the 
acoustic noise had a small differential effect on the detection probability (Friedman test; chi-square = 12.974, 
p = 0.043; cf. Fig. 1A). However, post hoc comparisons of the detection probability at each noise level with that 
in the zero-noise condition did not reveal significant differences (Wilcoxon paired signed-rank tests; all p > 0.05, 
even if not corrected for multiple comparisons). The detection probability for the noise level of 0.45 was higher 
than that for all other noise levels (excluding the zero-noise condition). After Bonferroni-Holmes correction, 
however, none of the differences were significant. In the Bayesian ANOVA, the null model (no performance 
difference between the noise levels) was favored, but the evidence for the null model was inconclusive (BF 1.3).

Figure 1B shows the distribution of the noise level at which the participants achieved their best performance 
(“best noise” level) emphasizing the pronounced variability. We compared the performance in the individual  
best noise condition to the performance in the zero-noise condition (Fig. 1C) (see Methods for details). A sig-
nificantly increased detection rate was found when noise at the optimal level was applied compare to zero-noise 
((Z(28) = −3.668, p < 0.001).

In order to examine whether there may be an inverted U-shaped relation between noise level and detec-
tion probability, we compared the goodness-of-fit (quantified by the Bayesian information criterion, BIC) of the 
quadratic and the linear fit of the participants’ behavioral data. As evident from Fig. 1D, we found no statistically 
significant difference between the BICs of the linear fit and the quadratic fit (Z(28) = −1.724, p = 0.085). In fact, 
only six out of 29 subjects showed a superiority of the quadratic fit combined with a < 0, indicating an inverted 
U-shaped rather than a linear relationship between noise level and task performance. However, with a mean 
BIC-difference of M = −2.64, SD = 2.31, the evidence against the linear model even in this subgroup was only 
small.

Finally, we estimated each subject’s internal noise level, as reflected by the variability in performance in the 
zero-noise condition. We then used this parameter as a predictor for SR, as quantified by the subject’s perfor-
mance increase from the zero-noise condition to the best noise condition. Figure 2 shows the lack of a statistically 
significant relationship between internal noise and SR (Spearman’s rank correlation coefficient, r = 0.3; p = 0.11), 
indicating that the subjects’ variability in the zero-noise condition does not predict an SR-effect.

Study 2: Assessing the effect of electrical noise on detection rate for near threshold stimuli. In 
this study, participants had to detect a near-threshold acoustic target stimulus while tRNS at different intensities 
(0.3, 0.6, 0.9, 1.2, and 1.5 mA) was administered to the auditory cortex. Using a 3AFC task, participants were to 
indicate in which observation interval the target stimulus was presented. We hypothesize to find 1) an inverted 
U-shaped relationship between tRNS intensity and detection rate and 2) an increased detection rate when the 
target stimulus was presented simultaneously with tRNS compared to when presented without tRNS. At a group 
level, we found no evidence that the noise level differentially affected the subjects’ detection rates (Friedman test; 
chi-square = 2.538, p = 0.771; cf. Fig. 3A). This finding was confirmed by the Bayesian JZS ANOVA, which pro-
vided strong evidence for the null model (BF 11.9).
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Figure 1. Results of the acoustic stimulation in study 1. (A) Behavioral performance depicted for each noise 
level. Cyan lines indicate the individual participants, the black line the mean performance and the red line the 
chance level (33% in a 3AFC-task). (B) Histogram showing the number of individuals that performed best at 
each noise level. (C) Mean performance (black rectangles) and individual performance (cyan rectangles) in the 
zero-noise condition and in the best noise condition. Lines connect data from a given subject. Asterisks indicate 
statistically significant differences. (D) Mean BICs (black rectangles) and individual BICs (cyan rectangles) 
for the linear and the quadratic fit demonstrating that the quadratic fit does not better explain the relationship 
between detection rate and noise level than the linear fit. Lines connect data from a given subject.

Figure 2. Internal noise as predictor for an SR-effect in study 1. The scatterplot depicts the lack of a statistically 
significant correlation between the subject’s internal noise, i.e., the variability in the zero-noise condition, and 
the occurrence of an SR-effect as represented by the difference between the subject’s performance achieved in 
the best noise condition and in the zero-noise condition. Rectangles depict the different subjects. The best noise 
condition is color-coded.
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Figure 3B indicates the variability in the noise level at which the participants achieved their best performance. 
We compared the performance in the individual best noise condition to the performance in the zero-noise con-
dition (Fig. 3C) (see Methods for details). A significantly increased detection rate was found when noise at the 
optimal level was applied compare to zero-noise (Z(25) = −2.041, p = 0.041).

Comparing the BIC for the linear to the BIC for the quadratic model fit (cf. Fig. 3D) showed no superiority 
for one of the two approaches to explain the relationship between noise level and detection rate (Z(25) = −0.673, 
p = 0.501). Only five of 26 subjects showed lower BICs in the quadratic fit combined with a < 0, indicating an 
inverted U-shaped relationship between noise level and detection rate. However, and comparable to the results of 
study 1, the difference between the two BICs was only moderate even in this subgroup (M = −3.41, SD = 2.56).

Finally, we estimated each subject’s internal noise level and used this parameter as a predictor for SR, as quan-
tified by the subject’s performance increase from the best noise condition compared to the zero-noise condition. 
Figure 4 shows the statistically significant relationship between internal noise and SR (Spearman’s rank correla-
tion coefficient, r = −0.68; p < 0.001), indicating that the subject’s variability in the zero-noise condition predicts 
an SR-effect.

Discussion and Conclusion
Here we report the results of two studies investigating the existence of SR in the human auditory system. We 
applied noise either acoustically (study 1) or electrically by means of tRNS (study 2) to assess detection rates for 
near-threshold acoustic stimuli as a function of the applied noise level. The results of our studies show that add-
ing low-level acoustic noise has only weak, if any, overall effect on the participants’ detection probability while 
low-level electrical noise did not yield such an overall effect. However, neither in study 1 nor in study 2 did we 
find evidence for an inverted U-shaped relationship between noise-level and detection rate. In fact, only a small 
subsample of participants (six out of twenty-nine in study 1 and five out of twenty-six in study 2) showed the 
hypothesized superiority of the quadratic inverted U-shaped compared to the linear model fit expected for SR. 
Moreover, the differences in the BICs for the linear and the quadratic model fits are only small, even when con-
sidering only those individuals showing a superiority of the quadratic model fit20. Our data thus argue against the 
general existence of a behaviorally relevant SR-mechanism in the human auditory system.

Previous work on SR has discussed the role of the subjects’ internal noise level (i.e., noise at each stage of sig-
nal processing from the cellular to the behavioral level) as a crucial mediator of SR14–16. While a high amount of 
internal noise negatively affects SR because the additional application of external noise then masks the signal, a 
mild to moderate amount should allow SR16. In line with those studies, we found a negative correlation between 

Figure 3. Results of the electrical stimulation in study 2. (A) Behavioral performance depicted for each noise 
level. Cyan lines indicate the individual participants; black line represents the mean performance and red line 
the chance level (33% in a 3AFC-task). (B) Histogram with the number of individuals that performed best at 
each noise level. (C) Mean performance (black rectangles) and individual performance (cyan rectangles) in the 
zero-noise condition and the best noise condition. Lines connect data from a given subject. Asterisks indicate 
statistically significant differences. (D) Mean BICs (black rectangles) and individual BICs (cyan rectangles) for 
the linear and the quadratic fit demonstrating that the quadratic fit does not explain the relationship between 
detection rate and noise level better than the linear fit. Lines connect data from a given subject.
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the subjects’ internal noise and the occurrence of an SR-effect when the external noise consisted of tRNS (study 
2). No such effect was present in study 1, where acoustic white noise was applied. This is intriguing because the 
target stimulus was identical in both studies. However, in study 1 both the target and the noise were acoustic 
stimuli, and, thus, they already interacted physically. In study 2, the noise consisted of electrical white noise 
applied by means of tRNS over the auditory cortex. It seems therefore plausible that the amount of internal noise 
is SR-relevant only if target signal and external noise converge not until the level of the auditory cortex, an argu-
mentation which is in line with previous work on SR in the visual16 and the somatosensory system21.

What could be other reasons for why we found no consistent evidence for SR in our studies? To address this, it 
is useful to recall the requirements for SR to occur. In the canonical threshold version of SR, an invariable “hard” 
threshold is assumed. The sinusoidal signal alone is subthreshold and never crosses that threshold. With weak 
noise added to the signal, the sum of signal plus noise has an increased probability of periodically exceeding the 
hard threshold, such that the signal can be detected22. Accordingly, if this threshold is variable and fluctuates over 
time, noise at a given intensity will not always allow the weak periodic signal to pass this threshold. It is unclear, 
however, whether a hard threshold exists in the auditory system. Heil and Matysiak23 performed experiments 
specifically designed to address the question of whether there is a hard threshold at the perceptual level but found 
no evidence for the existence of such a threshold (see also24). In fact, detection thresholds for tones presented in 
quiet, and the dependence of threshold on tone duration and envelope, can be well understood without a hard 
threshold (e.g.,23,25). Ward et al.22 argue that SR might also be observed in the case of a “soft threshold”, i.e., a 
non-linear transfer function between instantaneous input and output, such as an exponential or logistic function, 
if sufficiently steep. The phase-locked period histograms of mammalian auditory-nerve fibers to low-frequency 
tones can be well described by exponential transfer functions relating the instantaneous stimulus pressure to the 
instantaneous spike rate (e.g.,26,27). However, it appears from comparing the data in these studies with the findings 
of Ward et al.22 (their Figure 6) that at the low, near-threshold stimulus levels the transfer functions are not steep 
enough to allow for SR. Later, Greenwood et al.28 reported that for SR to occur it is important that the signal is 
located near a transition between a relatively flat and an increasing portion (an ‘edge’) of the transfer function, 
while the slope of the function, in itself, would not be of great importance. In our view, an exponential function 
does not have such an edge. In addition, SR will not arise when the transfer function is invertible (as is the case 
for the exponential and the logistic function), no matter how steep, if the observer uses the Fisher information to 
decide about the presence of a stimulus28. Given the lack of evidence for a “hard” threshold at the perceptual level 
or for edges in the invertible transfer functions of auditory-nerve fibers, it is perhaps not surprising that we found 
no clear evidence for SR.

In both of our studies, we found substantial interindividual variability in the noise level yielding the strongest 
improvement in the participants’ performance (cf. Figs. 1 and 3) although we individually adjusted the level of 
the target stimulus and the level of the noise stimulus. Such variability has already been demonstrated in studies 
assessing SR on the single-unit level1, in the motor cortex29 and in the visual cortex18. Different factors such as the 
baseline neurotransmitter level, synaptic transmission, number of activated postsynaptic receptors, ion concen-
tration, membrane conductance, and effects of previous action potentials, i.e., the refractory period, have been 
suggested as modulating factors30. These individual physiological properties can modulate the subject’s sensory 
perception and, accordingly, the same amount of (acoustic or electrical) noise can affect hearing performance 
differentially.

Figure 4. Internal noise as predictor for an SR-effect in study 2. The scatterplot depicts the negative correlation 
between a subject’s internal noise, i.e. the variability in the zero-noise condition, and the occurrence of an SR-effect 
as represented by the difference between the subject’s performance achieved in the best noise condition and in the 
zero-noise condition. Rectangles depict the different subjects. The best noise condition is color-coded.
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In the same vein, an identical tRNS-intensity can affect individual participants differentially. Physiological 
factors such as properties of scalp and cranium but also macroscopic differences between participants, e.g. gyr-
ification and grey and white matter volume result in different susceptibility to the electrical stimulation31,32. 
Although the mechanism of action of tRNS is yet not fully clear, potentiation of voltage-gated sodium-channels 
resulting in long-term potentiation is the most often discussed possibility (e.g.17,33. Recently, data from an animal 
model showed that tRNS can modulate sodium-channels of pyramidal cells according to the SR-typical inverted 
U-shaped curve with tRNS administered at intermediate intensity leading to the strongest modulation34. Thereby, 
the membrane potential of pyramidal cells in the vicinity of the tRNS-electrodes is more depolarized, which 
increases the probability that a weak incoming acoustic signal can evoke an action potential and, as a conse-
quence, a subliminal signal passes detection threshold. How intensities from animal studies translate to human 
research, however, remains an open question that needs to be addressed in the future.

Since the number of studies using tRNS is limited, especially when looking at work in the auditory domain, we 
have chosen noise-intensity level increments as used in recent studies on SR in the visual system18,35. We therefore 
cannot fully rule out the possibility that applying noise at other intensities might have led to more pronounced 
effects. We applied tRNS at intensities between 0.3 and 1.5 mA, which is clearly below the individual sensory 
threshold36. This is confirmed by the fact that none of our participants was able to distinguish between the differ-
ent stimulation intensities or between the zero-noise condition and any other stimulation condition, as reported 
in the methods section. Whether we need finer noise-intensity level increments applied to auditory cortex to 
produce SR-like effects remains to be tested in the future.

In the present work, we assessed online effects of tRNS on SR in the human auditory system. Although it has 
been demonstrated that the application of transcranial alternating current (tACS) for 1 second does not yield 
measurable after-effects, there is yet no data available on the stability of tRNS-effects on cortical excitability. 
Therefore, in order to control for such potential carry-over effects, the different tRNS intensities were presented 
block-wise. In order to allow comparing the results of study 1 (acoustic noise) and study 2 (electrical noise by 
means of tRNS) we used a block design also in study 1. Previous studies showed that a full randomization of the 
noise levels is not a prerequisite to evoke SR-effects (e.g.11,12,15,16,18). However, our study design does not allow to 
draw conclusions on potential fluctuations in performance due to, e.g., perceptual learning, attention, and moti-
vation. Future studies using a more extended number of trials per noise level and a fully randomized presentation 
of the different noise conditions will shed more light on this aspect.

Of note, we found highly significant effects of noise on detection rate when comparing the zero-noise con-
dition with the specific noise condition that yielded the individual’s best performance but the effect vanished 
when comparing it with the two neighboring noise levels. Accordingly, the results of our studies also demonstrate 
that comparing the performance in the subjects’ best-noise condition to the zero-noise condition leads to an 
artificial difference between the two conditions and, thereby, an overestimation of the real noise effect on detec-
tion rate. The use of more robust statistical approaches reduces the probability for false-positive findings. Such 
approaches include 1) excluding the best-noise condition but comparing the performance at adjacent noise levels 
to zero-noise, 2) analyzing the overall effect of noise on detection rate by means of a general linear model, and 3) 
examining whether an inverted U-shaped relationship between noise-level and detection rate exists by comparing 
the BICs of quadratic and linear fits.

In the present studies, we used a 3AFC task to measure the subject’s performance in detecting acoustic 
near-threshold stimuli embedded in white noise. Accordingly, SR of type E (energy) was assessed since adding 
the energy of the noise to the energy of the near-threshold signal was hypothesized to elevated the signal + noise 
stimulus over threshold. In addition to type E, Moss7 postulated a type I (information) SR, which is characterized 
by increased ability to differentiate subliminal information embedded in supra-threshold stimuli. Thus, future 
studies will shed more light on whether type I-SR is evident in the human auditory system and, if so, to which 
amount external noise can improve discrimination rate.

In sum, aiming to investigate SR in the human auditory system we assessed detection rates for near-threshold 
acoustic stimuli embedded in acoustic or electric noise. The present data provide no evidence for a behaviorally 
relevant SR-typical inverted U-shaped relationship between detection rate and noise-level, independent of the 
modality in which noise was applied. Further work is needed to gain a comprehensive understanding of SR 
in human perception and to establish approaches that would cause behaviorally relevant modulations of the 
(altered) inherent signal to noise ratio in the human auditory system.

Material and Methods
Participants. Fifty native German-speaking subjects in the age range of 19–35 years were recruited via adver-
tisement at the University of Magdeburg. Twenty-nine subjects participated in study 1 (acoustic noise, mean age: 
23.7 years, standard deviation: 3.6 years, eighteen females) and twenty-six in study 2 (electrical noise, mean age: 24.5 
years, standard deviation: 3.9 years, sixteen females). Five subjects participated in both studies. None of the subjects 
included in studies 1 and 2 reported any neurological or auditory pathology. In addition, subjects who participated 
in study 2 fulfilled the physiological prerequisites for transcranial electrical stimulation37. All participants gave writ-
ten informed consent in accordance with the Declaration of Helsinki. The ethics committee of the Medical Faculty 
of the Otto-von-Guericke University of Magdeburg approved the protocols (approval number 90/17).

General experimental design. All experiments were run in an acoustically shielded booth (Industrial 
Acoustics, Company, Niederkrüchten, Germany). Subjects were seated in a comfortable chair in front of a 19 
inch LCD screen (vertical refresh rate 60 Hz) at a distance of approximately 60 cm. Stimuli were generated in 
MATLAB R2010a (The MathWorks, Natick, MA, USA) and were presented diotically using circumaural head-
phones (Sennheiser HDA 200) by means of the Psychophysics Toolbox extensions38–40.
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Determining the individual acoustic target stimulus level. The acoustic target stimulus to be 
detected in the main experiment in both studies was a pure tone (frequency: 1000 Hz, duration: 500 ms including 
10 ms cosine-squared ramps) presented either in quiet or in the presence of a soft background acoustic noise (see 
below). The level of that tone was set individually for each subject such that it matched each subject’s individual 
threshold level for detecting that tone in quiet. This threshold level was determined using two consecutive proce-
dures. A first rough estimate of the subject’s threshold level was obtained using a yes / no-detection task combined 
with a one-up-three-down staircase procedure. Here, a clearly detectable stimulus was presented first, and its level 
was then adjusted stepwise (fixed step sizes 6 dB, 3 dB, 1.5 dB). The mean of the last six reversals served as the first 
estimate. The algorithm handling this rough threshold estimation was adopted from Soranzo and Grassi41 and 
yields a threshold level corresponding to a detection probability of 79.4%. Second, this first estimate was used as 
the initial threshold level fed to an adaptive QUEST procedure42. In brief, the QUEST procedure is a Bayesian 
adaptive psychometric method where the level of the stimulus to be presented in a given trial is based on the sub-
ject’s responses in all previous trials. Using a Weibull distribution and the initial estimate of the subject’s threshold 
(see above), the point of maximum likelihood is then chosen as the best estimate for the threshold, and the next 
stimulus is presented at that level. Two independent and randomly interleaved QUEST staircase procedures, one 
starting at 0.8 times (1.94 dB below) and the other starting at 1.2 times (1.58 dB above) the initial threshold level 
estimate, were performed42. Each QUEST staircase procedure consisted of 40 trials, which were presented in a 
3AFC-task. The average of the two threshold level estimates from these QUEST staircase procedures was taken as 
the subject’s individual threshold level for the target stimulus in quiet, which corresponded to a detection proba-
bility of 0.5. This part of the experiment took about 40 min.

Study 1: Effect of acoustic noise on near-threshold acoustic target stimulus detection. In study 
1, the target stimulus at threshold level had to be detected either in quiet (zero-noise control condition) or in 
the presence of acoustic Gaussian white noise (bandwidth: 20 to 14000 Hz, duration: 1000 ms including 10 ms 
cosine-squared ramps) at six different levels. These levels were obtained by multiplying the noise at the individual 
threshold level by 0.3, 0.45, 0.6, 0.75, 0.9, and 1.2, yielding noise levels ranging from 10.5 dB below to 1.6 dB above 
the individual threshold level for the noise. Each subject’s individual threshold level for the noise stimulus was 
determined using the same two consecutive procedures as described above for the target stimulus.

In the main experiment, participants performed an auditory three-interval-three-alternative forced choice 
(3AFC) task, where the target stimulus at threshold level was presented randomly in one of three observation 
intervals, while in each observation interval white noise was presented (except in the zero-noise condition). The 
observation intervals lasted 1000 ms each (i.e., identical to the duration of the white noise stimulus) and were sep-
arated by 500 ms. Each observation interval was cued visually by a red rectangle presented simultaneously on the 
LCD screen (visual angle 0.9°). The first observation interval was preceded by a period of 2000 ms during which 
a black cross (visual angle 0.6°) was displayed. After the end of the third observation interval, the black cross 
reappeared and the subject was requested to select the interval thought to contain the target stimulus by pressing a 
corresponding button with the dominant hand. This response period lasted 3000 ms, and the next trial started. In 
the conditions, in which the 500 ms long target tone was presented in noise, the 1000 ms long noise started 250 ms 
before the onset of the tone and ended 250 ms after the offset of the tone.

In an initial practice block, subjects were familiarized with the task and also received feedback about their 
performance in each trial. Subsequently, the seven different conditions (one control condition and six noise con-
ditions) were applied in separate blocks. Each block consisted of 50 trials. The order of the blocks was counter-
balanced across subjects according to a balanced Latin Square design. Both, the subject and the experimenter 
were blind to the order of blocks. In the main experiment, subjects received no feedback about their performance. 
Completion of all measurements took about 120 min. on average per subject.

Study 2: Effect of electrical noise applied by means of tRNS on near-threshold acoustic target 
detection. In study 2, the acoustic target stimulus was the same as that in study 1. It had to be detected in 
quiet but either in the absence (zero-noise control condition) or in the presence of high-frequency electrical 
noise, with amplitudes of 0.3, 0.6, 0.9, 1.2, and 1.5 mA in different conditions. The electrical noise was applied by 
means of tRNS (100–640 Hz) using two 5 cm ×7 cm-rubber electrodes placed over T7 and T8 (i.e., over the left 
and right auditory cortex) according to the 10–20 system for EEG electrode placement and via a battery-driven 
DC stimulator (NeuroConn, Ilmenau, Germany). Ten20 conductive paste (Weaver and Company, Aurora, USA) 
was used to attach the electrodes to the scalp and to keep impedances below 10 kOhm. The electrical noise, which 
was created digitally using Matlab (The Mathworks, Natick, MA, USA), was then converted to an analog signal by 
a digital-to-analog-converter (NI-6212, National Instruments, Austin, Texas, USA), and then fed into the external 
signal input of the DC stimulator.

In the main experiment, participants performed the 3AFC-task analogously to study 1. In trials in which elec-
trical noise was applied, tRNS started 250 ms prior to the onset of the first observation interval and ended 250 ms 
after the offset of the last observation interval. The different tRNS-intensities were applied in separate blocks, each 
consisting of 50 trials. The order of blocks was counterbalanced according to a balanced Latin Square design. 
Both, the participant and the experimenter were blind to the order of blocks. On average, the experiment took 
about 120 min. in total (including preparation of the tRNS-electrodes) and was performed in a single session.

After each block, the subjects were asked whether they had felt any sensation due to the electrical stimulation 
(i.e., headache, nausea, dizziness, loss of concentration, fatigue, phosphenes, skin irritation, itch, prickle on the 
scalp, heat, burning) by means of a numeric rating scale (0 = no sensation, 6 = very strong sensation). Statistical 
analysis of these data by means of separate non-parametric Friedman tests for each sensation did not reveal any 
significant differences between any of the noise conditions (all p > 0.05).
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Statistical analyses. For both studies, the analysis was equal. Trials with missing responses were excluded 
from data analysis. None of the participants showed more than 10 missing trials.

First, in order to examine whether there is an overall effect of acoustic or electric noise on the participants’ 
auditory detection probability on the group level, Friedman-tests with the factor noise level (detection rate at 
each noise level including the zero-noise control condition) were performed for each study. Wilcoxon paired 
signed-rank tests were run in order to unravel statistically significant differences in the detection probability 
at each noise level compared to the zero-noise control condition. Bonferroni correction was applied to correct 
for multiple comparisons. To verify these results, we used a Bayesian ANOVA invoking the Zellner-Siow’s (JZS) 
approach with repeated measurements design. For simplicity, noise levels (including zero-noise) were treated as a 
categorical independent variable, and performance (percent correct) was the dependent variable. JZS ANOVA is 
a Bayesian method that allows accepting either the null or the working hypothesis. We used R (R package version 
0.9.12-4.2) and the anovaBF function from the ‘BayesFactor’ package. This function uses default, non-informative 
priors43 and outputs a Bayes Factor, which quantifies the evidence in favor of one model relative to the evidence in 
favor of the competing model. By convention, Bayes Factors between 3 and 10 are considered substantial, Bayes 
Factors> 10 are considered strong evidence in favor of either model44.

Secondly, because the noise condition in which the individual participants show best performance might vary 
due to individual physiological differences30, we determined the noise condition yielding the highest detection 
probability for each subject separately (“best noise” condition) and compared the detection probability in that 
condition to the detection probability in the zero-noise condition by means of non-parametric Wilcoxon paired 
signed-rank tests. Therefore, we randomly split the data into two sub-samples (50% of the trials of each noise 
condition). In sample 1, we determined each individuals best noise condition. In sample 2, we then compared 
performance in the zero-noise condition with performance in the best noise condition identified in sample 1.

Thirdly, in order to examine whether there is an inverted U-shaped relationship between detection rate y and 
noise level x, considered a signature of SR, we fitted a quadratic function (y = ax2 + bx + c) to each participant’s 
data. Here, x corresponds to the noise levels (including the zero-noise condition) and the intercept parameter c to 
the performance in the zero-noise condition. As a control, a linear function (y = bx + c) was fitted to data. Similar 
to the quadratic fit, x corresponds to the noise levels and the intercept parameter c to the performance in the 
zero-noise condition. Both, the quadratic and the linear model were fitted to the data of each individual subject 
and compared using the Bayesian information criterion (BIC = n ∙ ln (SSE /n) + k ∙ ln (n);45, where SSE is the sum 
of the squared errors, n is the number of data points (here: number of noise levels), and k is the number of free 
parameters. The SSE from the quadratic model is necessarily less than or equal to that from the linear model, but 
the number of free parameters is three instead of two. The BIC from the quadratic model can therefore be smaller 
than, equal to, or larger than that from the linear model. The lower BIC indicates the model which fits the data 
better. When the difference in the BIC values for the linear and the quadratic fit is <2, the strength of evidence 
against the linear model is “not worth more than a bare mention”20. The model fits were conducted with a maxi-
mal number of 1000 iterations using the lsqcurvefit function (MATLAB Optimization Toolbox).

Finally, in order to estimate the internal noise, we computed each individual’s variability as reflected by the 
standard deviation of the performance in the zero-noise condition using a bootstrapping resampling by replace-
ment approach (n = 1E6 iterations). Assuming a relationship between the internal noise level and the SR effect, 
we then run a non-parametric Spearman correlation between this measure of variability and the SR effect, as 
reflected by performance difference achieved in the best noise condition and in the zero-noise condition.

Data availability
The data sets analyzed in the current work are available from the corresponding author on reasonable request.
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