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Microbial modulation of host body 
composition and plasma metabolic 
profile
M. nazmul Huda  1,2, Jason H. Winnike3, Jocelyn M. crowell1,2, Annalouise o’connor4 & 
Brian J. Bennett  1,2,4*

The gut microbiota is a critical mediator of nutrition and disease risk. Like most complex traits, the 
microbiome is under genetic regulation and differs between inbred strains of mice. We tested the effect 
of fecal microbiota transplantation (FMT) on obesity, and plasma glucose. For this study, we collected 
microbiota from 2 inbred strains of mice which differ in adiposity and glucose tolerance, C57BL/6J and 
WSB/EiJ. C57BL/6J female mice (n = 18) were first treated with antibiotics for 4 weeks to ablate the 
microbiota. Following ablation, the mice were transplanted with microbiota from a C57BL/6J or a WSB/
EiJ mouse and clinical traits and plasma metabolomic profiles were interrogated at 2- and 4-weeks 
post-transplantation. Unexpectedly, the mice receiving WSB/EiJ microbiota increased adiposity but 
decreased plasma glucose. Metabolomic and 16S microbiota profiling indicated broad metabolic 
changes occurred during and after FMT. Detailed analysis of these interactions demonstrated specific 
microbiota-host metabolite interactions which may alter disease susceptibility.

Bacteria is heavily colonized in the gastrointestinal tract, often referred to as the gut microbiota (hereafter referred 
to as microbiota), which can modulate nutritional status, health, and diseases of the host1. The diversity and 
composition of the gut bacteria have been intensely studied, as well as the microbiota’s impact on the health status 
of the host2. The microbiota has been found to be associated with susceptibility to multiple diseases including: 
obesity3, cardiovascular diseases4, renal diseases5, and metabolic syndrome (MetSyn)6, all of which have impact 
on major public health. For example, 32% of American adults are obese7 and nearly 35% have MetSyn8 and the 
prevalence of these diseases are increasing. However, there are still critical gaps in our knowledge regarding how 
alterations of the microbiota (dysbiosis) can alter metabolism and thus disease susceptibility. A better under-
standing of the effect of host genetic-microbiota interactions on the composition of the microbiota and disease 
susceptibility is needed. A holistic view of the metabolic status of an individual, including both microbiota and 
host genetics, may provide new insights into the underlying mechanisms of pathobiology which may allow us to 
modulate disease onset, prognosis, and survival9,10.

Metabolomic profiling may provide additional insight into the processes affected by specific bacteria or when 
the composition of the microbiota is altered11. It has been shown that the gut microbiota can have a signifi-
cant effect on plasma metabolic profile, which can modulate host health12. Therefore, pairing metabolomics and 
microbiota analysis may yield important mechanistic insights. For example, trimethylamine N-oxide (TMAO) 
was identified as a risk factor for cardiovascular disease through a metaorganismal pathway involving the micro-
biota and diet13.

Laboratory mice are often used to investigate both genetic and microbiota to understand the underlying 
mechanisms of disease risk. There are hundreds of inbred mouse strains which vary in clinical traits and sus-
ceptibility to diseases like obesity and MetSyn. Variation in their microbiota may explain part of the disease 
variation14–16. For example, compared to WSB/EiJ mice, C57BL/6J mice have higher fasting blood glucose levels, 
lower insulin sensitivity, and higher body fat composition17, and are susceptible to obesity, cardiovascular disease, 
and MetSyn. C57BL/6J and WSB/EiJ mice also have different gut microbiota18. Therefore, it can be hypothesized 
that at least part of the elevated plasma glucose and higher body fat in C57BL/6J mice could be improved by fecal 
microbiota transplantation (FMT) from WSB/EiJ mice.
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Recently, fecal microbiota transplantation (FMT) has been used to treat disorders such as Clostridium difficile 
infection19, irritable bowel syndrome (IBS)20, ulcerative colitis21, obesity22, and MetSyn23. Animal models such as 
gnotobiotic mice and antibiotic-treated mice have been used successfully to show that FMT can modulate phys-
iological traits such as obesity22 and atherosclerosis24. In this study, we used 18 C57BL/6J female mice who were 
treated with antibiotics for 4 weeks and then received FMT either from a C57BL/6J or a WSB/EiJ mouse to iden-
tify the gut bacteria associated with body composition and MetSyn risk factors such as plasma glucose and lipid 
profile. We assessed gut microbiota at baseline, after antibiotics treatment, and at 2- and 4 –week post FMT by 
using 16S V4 region next-generation sequencing methodology with QIIME2-DADA2 bioinformatics pipeline25. 
For determining the differential microbiota abundance we used ANCOM26. We further analyzed plasma meta-
bolic profile at baseline, after antibiotics treatment and 2-week post FMT using two-dimensional gas chromatog-
raphy time of flight mass spectrometry (GCxGC-TOFMS) and Biocrates AbsoluteIDQ p150 kit to interrogate the 
effect of gut microbial depletion and recolonization on the plasma metabolomic profile. The association between 
plasma metabolic profile and phenotypes or gut microbiota were determined by using ANOVA, t-test, principal 
component (PCA), and Spearman correlation-based statistics.

Results
Fecal microbial diversity and composition changes due to microbial depletion and fecal microbiota  
transplantation (fMt). Gut microbiota of eighteen (n = 18) female mice were depleted using an anti-
biotic cocktail27 for 4 wk and then fecal microbiota from a WSB/EiJ or a C57BL/6J mouse was transplanted 
(Supplemental Fig. 1). Treatment of C57BL/6J mice with antibiotics for 4 weeks caused ablation of almost all 
the gut bacteria except some bacteria in the family Streptococcacea lineage (Fig. 1a). Fecal microbial transplan-
tation from a C57BL/6J or a WSB/EiJ mice caused a divergence of the microbial composition after transplan-
tation. Bacterial genera related to Tyzzerella, ASF356, Acetatifactor, Lachnospiraceae UCG-001, Anaerotruncus, 
and Marvinbryantia lineage from the donner WSB/EiJ mouse did not get colonized in any recipient mouse. 
The microbiota in the FMT recipient groups (FMT-B6 and FMT-WSB) were similar to their donor microbial 
composition, but engraftment did not completely replicate the microbiota of the donor strains (Supplemental 
Fig. 2). Several 16S Amplicon Sequence Variant (ASV) mapping to specific bacterial genera, and families were 
differentially abundant between FMT-groups as determined by ANCOM at 2 wk (Table 1) and 4 wk post-FMT 
(Supplemental Table 1). Microbial α-diversity (Shannon diversity index, observed ASV, and Faith’s PD) segre-
gated between FMT groups and observed Amplicon Sequence Variant (ASV) reached statistically significant at 2 
wk post-FMT while Shannon diversity index at 4 wk post-FMT (Fig. 1b–d). Both the phylogeny-based (weighted 
and unweighted UniFrac) and abundance-based (Bray-Curtis) β-diversity were affected by antibiotics treatment 
and FMT (Fig. 1e and Supplemental Fig. 3). Permutational Multivariate Analysis of Variance (ADONIS) showed 
that there was a significantly different β-diversity between FMT groups both at 2 wk and 4 wk post-FMT (Table 2).

Body composition, plasma glucose and cholesterol are modulated by microbial depletion and 
recolonization. To evaluate the effect of microbial depletion and recolonization on the body composition we 
measured body weight, fat and lean mass by using MRI at baseline, after microbiota depletion, 1 wk post-FMT, 
and 2 wk post-FMT. We observed a 16.1% increase in mouse body weight (from 17.2 ± 0.8 g to 19.9 ± 1.0 g) after 
gut microbial depletion (Fig. 2a). No significant difference in the body weight was observed between FMT groups 
(Fig. 2d). However, there were significant differences in body composition, body fat percentage and lean mass 
percentage between FMT groups, starting at 2 wk post-FMT (Fig. 2b,c,e,f). FMT-WSB group had an 18.5% higher 
percent body fat than the FMT-B6 group at 2 wk after fecal transplant. The increased percent body fat was not 
due to reduced lean mass as we found the lean mass unchanged by FMT, while the fat mass was different between 
FMT groups (Supplemental Fig. 4).

We then determined if clinical traits related to obesity and MetSyn were influenced by microbial depletion and 
recolonization with C57BL/6J or WSB/EiJ mouse microbiota. Plasma glucose, cholesterol, and TG were meas-
ured at baseline, after microbiota depletion, and 2 wk post-FMT. Plasma glucose and cholesterol levels decreased 
significantly due to microbial depletion and remained lower throughout the study period (Fig. 2g,i). Mice col-
onized with WSB/EiJ fecal microbiota were found to have significantly lower plasma glucose levels compared 
to mice that were recolonized with C57BL/6J fecal microbiota (Fig. 2h). No other plasma clinical chemistry 
concentrations measured in this study was found responsive to microbial depletion and recolonization by FMT 
(Supplemental Fig. 5).

Gut microbiota was associated with body composition and plasma biomarkers. We performed 
correlation analysis between gut microbial diversity, body composition and plasma clinical chemistry concentra-
tions. Plasma triglyceride (TG) concentration was positively associated with Shannon diversity index (Fig. 3a). 
Additionally, several associations between β-diversity indices and plasma TG were observed. To determine which 
bacterial colonization is associated with body composition and plasma biomarkers at 2 wk post-FMT, we per-
formed ANCOM analysis at ASV level. ANCOM W values were converted to negative values if the mean abun-
dance of the bacteria was lower in the above-median phenotype group. Relative abundances of several bacterial 
ASV were found to be higher (red) in the higher (above median) phenotype group and several bacterial ASV were 
found to be lower (blue) in the higher phenotype group (Fig. 3b). For example, Akkermansia and Lachnospiraceae 
abundance at 2 wk post-FMT were found lower in the mice those have higher body weight compared to those 
have lower body weight. Similarly, two ASVs in the Peptostreptococcaceae family were positively associated with 
plasma TG and glucose concentrations. Two ASVs in the Clostridiaceae family, one ASV in Bacilli class and 
Blautia were positively associated with plasma glucose.
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plasma metabolic profile shifted due to microbial depletion and recolonization. To better  
understand the underlying metabolic changes in the mice we performed metabolomic analysis at baseline, 
after microbiota depletion, and 2 wk post-FMT (see methods). The metabolic profile shifted dramatically 
due to microbial depletion (Fig. 4a,b; ADONIS Bray-Curtis dissimilarity matrix: F.model = 2.80, R2 = 0.078, 

Figure 1. Effect of antibiotics treatment and fecal microbial transplantation (FMT) from a C57BL/6J or a 
WSB/EiJ mouse on recipient mice’s gut microbiota. (a) Mean relative abundance of top 20 genera in mice at 
baseline, after 4 wk antibiotic treatment, 2 wk, and 4 wk post fecal microbial transplantation by FMT groups. 
(b) Shannon diversity and (c) observed ASV, and (d) Faith’s Phylogenetic Diversity indices by time points and 
FMT groups. (e) Bray-Curtis beta diversity principal coordinate plot at different time points by the FMT groups. 
Red and black dot on the 4 wk post fecal transfer plot represents the Bray-Curtis beta diversity measure for the 
donor WSB/EiJ and C57BL/6J, respectively. The ellipse on the principal coordinate analysis plot indicates 95% 
CI of the clusters by FMT groups. ** = P < 0.01, # = P < 0.10.
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Feature identifiera Familyb Genusb Wc

FMT-B6 FMT-WSB

Median 
(25th, 75th) Range

Median (25th, 
75th) Range

Family

274a9dbce84cab67bbf98bbd996ae61a c_Bacilli_o_f_g_ 23 459  
(295, 882) 147–5327 68  

(35.8, 107) 22–976

b7e39d297eeb509ab88cce440a36a83b f_Akkermansiaceae 25 25200  
(9170, 30600) 3–31564 5.5  

(3.75, 7.25) 0–27

c5d7b8624f86f1e6c7c74d62753a70c3 f_Lachnospiraceae 20 1940  
(1390, 3420) 592–14289 14900  

(13000, 18700) 11609–20877

efd8c0105efddba1192866904a26e07b f_Ruminococcaceae 21 126  
(78.3, 221) 39–632 1850 

(1700, 2090) 1420–2913

Genus

274a9dbce84cab67bbf98bbd996ae61a c_Bacilli_o_f_g_ c_Bacilli_o_f_g_ 43 459  
(295, 882) 147–5327 68  

(35.8, 107) 22–976

30e43c08a14e7ad72858b1a7157fd01d f_Ruminococcaceae g_Ruminiclostridium 9 50 0  
(0, 6.25) 0–87 201  

(104, 295) 43–420

7e22b108e05287de71c88fb1d51ba45b f_Lachnospiraceae g_[Eubacterium] oxidoreducens group 43 0  
(0, 0) 0–21 967  

(176, 2020) 0–2993

b7e39d297eeb509ab88cce440a36a83b f_Akkermansiaceae g_Akkermansia 54 25200  
(9170, 30600) 3–31564 5.5  

(3.75, 7.25) 0–27

efd8c0105efddba1192866904a26e07b f_Ruminococcaceae f_Ruminococcaceae_g_ 50 10  
(0, 74.25) 0–264 1320  

(1260, 1430) 749–1992

ASV

0ac80c6966a22aa4ff1ebc30b86a88ae f_Clostridiaceae 1 f_Clostridiaceae 1_g_ASV1 236 11.5  
(1.5, 16.5) 0–32 0  

(0, 0) 0–0

2be344ca421a0e752ea4dc95092a1c47 f_Clostridiaceae 1 f_Clostridiaceae 1_g_ASV2 286 1620  
(791, 2400) 28–3108 0  

(0, 0) 0–8

2eee016c4e8f0658382ca9a5669d1c62 c_Bacilli_o_f_g_ c_Bacilli_o_f_g_ASV1 287 1890  
(976, 2140) 613–3985 0  

(0, 2) 0–4

3e9a14f1875c77ada0f2e6e7f8d24d8c f_Ruminococcaceae g_Oscillibacter 258 114  
(32.3, 261) 0–331 0  

(0, 0) 0–0

4311be6681becaa0f785e2979b29cee3 f_Clostridiaceae 1 g_Clostridium sensu stricto 1_ASV1 267 0  
(0, 0) 0–0 1303  

(0, 18382) 0–32283

4859baec2549b5610973887db0d9ecf6 c_Bacilli_o_f_g_ c_Bacilli_o_f_g_ASV2 252 25.5  
(14.3, 46.5) 0–110 0  

(0, 0) 0–0

5475888a6effb097d9cceb292103c327 f_Peptostreptococcaceae f_Peptostreptococcaceae_g_ASV1 286 0  
(0, 0) 0–29 5770  

(11, 29300) 0–32298

603e2fef21704715da814484e80a211e f_Clostridiaceae 1 g_Clostridium sensu stricto 1_ASV2 274 561  
(153, 1150) 43–1496 0  

(0, 17) 0–197

6ae4a0fc0e687ea9f38148b2ac187bbb f_Streptococcaceae g_Lactococcus_ASV1 244 12  
(10, 19) 0–20 0  

(0, 0) 0–0

a3ce03f3225ec3cfebf2e3da095170d3 f_Lachnospiraceae f_Lachnospiraceae_g_ASV1 243 71  
(0, 275.25) 0–1389 0  

(0, 0) 0–0

b7e39d297eeb509ab88cce440a36a83b f_Akkermansiaceae g_Akkermansia 238 45.5  
(18.3, 19200) 6–21613 1  

(1, 6) 0–34

bbaa57cbcd00b123b9132079d19423fe f_Clostridiaceae 1 f_Clostridiaceae 1_g_ 291 4200  
(2550, 6600) 131–14144 0  

(0, 0) 0–5

c1fd9146929c7f2be99ce0aba2c10ffe f_Peptostreptococcaceae f_Peptostreptococcaceae_g_ASV2 289 2190  
(1430, 3250) 756–5172 0 (0, 0) 0–2

c5d7b8624f86f1e6c7c74d62753a70c3 f_Lachnospiraceae g_Blautia 285 1090  
(401, 2030) 137–4228 2 (0, 5) 0–15

cdef72d7f76f333e18e68e622eff148a f_Enterobacteriaceae g_Dickeya 240 0  
(0, 0) 0–0 66 (0, 1326) 0–2719

d1492ca972b61625ac76fd04962a9b5b f_Streptococcaceae g_Lactococcus_ASV2 236 0  
(0, 0) 0–0 11 (0, 25) 0–36

eb9b3795f8d285b97cec1a0812457398 f_Peptostreptococcaceae f_Peptostreptococcaceae_g_ 254 1330  
(464, 3380) 0–7821 0 (0, 0) 0–20

f2d93e5e4d90b71a07acac497854b6ef f_Lachnospiraceae f_Lachnospiraceae_g_ASV2 235 58  
(0, 155.75) 0–299 0 (0, 0) 0–0

Table 1. Differentially taxa abundance at 2 wk post fecal micrbioal transplantation between mice received 
C57BL/6J (FMT-B6) or WSB/EiJ (FMT-WSB) fecal microbiota determined at family, genera, and amplicon 
sequence variance (ASV) levels. aFeature identities equal the MD5 hashes of the 16S rRNA gene sequences. 
bMaximum available taxonomic information till family or genus level. cW equals the number of ANCOM 
subhypotheses that have passed for each individual taxon, indicating that the ratios of that taxon’s relative 
abundance to the relative abundances of W other taxa were detected to be significantly different between two 
groups. dDifferentially abundant taxa was determined by ANCOM at a adj.P value of <0.05.
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P = 0.049) and recolonization (Fig. 4d,e; ADONIS Bray-Curtis dissimilarity matrix: F.model = 3.22, R2 = 0.091, 
P = 0.044). Principal Components (PCs) of the plasma metabolites showed significant correlation with body 
composition and plasma biomarkers (Fig. 4c,f). The antibiotic treatment caused 122 metabolites to change signif-
icantly from baseline (Supplemental Table 2) and 38 metabolites changed between microbiota depletion and 2 wk 
post-FMT (Supplemental Table 3). Among the 38 metabolites that changed due to FMT, 18 metabolites (Listed 
in Supplemental Table 3) decreased significantly after microbial depletion and increased after recolonization 
by FMT (Supplemental Fig. 6). Additionally, one unknown metabolite (Unknown_RI1082) increased signifi-
cantly after microbial depletion and decreased significantly after bacterial recolonization (Supplemental Fig. 6 
and Supplemental Table 4).

At 2 wk post-FMT, the overall metabolic profile between FMT-B6 and FMT-WSB groups was not significantly 
different (Fig. 4g,h; ADONIS on Bray-Curtis dissimilarity matrix: F.model = 1.96, R2 = 0.115, P = 0.14). We note 
there was a difference between FMT groups in PC2, (Fig. 4h) and PC3 was correlated to plasma TG level (Fig. 4i). 
Differential abundance analysis identified 7 plasma metabolites: (3-hydroxyisovaleric acid, methyl-galactoside, 
ribose, SM C18:1, phenylacetic acid, Lysophosphatidylcholines (LysoPC) a C14:0, and heneicosanoic acid) that 
were significantly different between FMT-B6 and FMT-WSB groups (Supplemental Table 5). To determine the 
significance of the metabolites in mice, we then determined the correlation between phenotypes and plasma 
metabolites. We found 19 metabolites significantly correlated (adj.P < 0.05) with plasma cholesterol, TG and body 
weight (Supplemental Table 6).

Specific adiposity related gut microbiota is associated with plasma metabolic profile. To test 
the differential gut microbiota abundance between mice having high (above median) and low (below median) 
plasma metabolites concentration we performed ANCOM analysis at baseline and 2 wk post-FMT. At 2wk 
post-FMT, Clostridiaceae, Peptostreptococcaceae, Blautia, and Lachnospiraceae showed significant association 
with plasma metabolites and were the top 4 influential bacterial taxa. A heatmap of the top 30 plasma metabolites 
modulated by multiple bacterial taxa and top 20 microbiota modulating multiple metabolites at 2 wk post-FMT 
is shown in Fig. 5. A complete heatmap with all metabolite - bacteria ASV associations has been depicted in the 
Supplemental Table 7. At 2 wk post-FMT, a limited number of microbial ASVs were found to be associated with 
multiple metabolites and similarly a few metabolites were found to be associated with multiple gut bacteria. 
For example, we identified positive associations between Akkermansia and methyl-galactoside, ribose, sphin-
gomyelins (SM) C18:1, phosphatidylcholines (PC) aa C42:0, and linoleic acid. Akkermansia abundance was also 
negatively associated with an unknown metabolite (unknown_RI724) and γ-hydroxybutyric acid (Fig. 5 and 
Supplemental Table 7). Similarly, methyl-galactoside was found to be positively associated with bacteria related 
to Akkermansia, Lactococcus, Oscillibacter, Clostridium sensu stricto 1, and Blautia genus; and Lachnospiraceae, 
Clostridiaceae, Peptostreptococcaceae, and Clostridiaceae families. Methyl-galactoside was also negatively asso-
ciated with two ASVs belonging to the genus Dickeya: Clostridium sensu stricto 1 and Lactococcus, and one ASV 
belonging to the family Peptostreptococcaceae (Fig. 5 and Supplemental Table 7). Among the 19 metabolites 
significantly associated with plasma TG, cholesterol and body weight (Supplemental Table 6), 13 were found to be 
associated with differential bacterial ASV abundance (Supplemental Table 8), as determined by ANCOM analy-
sis. There were a limited number of associations between gut bacterial ASV with plasma metabolites at baseline 
(Supplemental Fig. 7).

β-dispersion ADONIS

F P F.Model R2 P

Pre-ABX

Weighted UniFrac 0.196 0.69 0.242 0.0149 0.86

Unweighted UniFrac 0.512 0.47 1.14 0.0665 0.27

Bray-Curis 0.167 0.66 0.911 0.0539 0.44

After 4wk-ABX

Weighted UniFrac 0.0291 0.84 1.60 0.0965 0.14

Unweighted UniFrac 0.0468 0.82 1.01 0.0633 0.43

Bray-Curis 0.439 0.67 1.51 0.0916 0.099

2wk post FMT

Weighted UniFrac 0.0676 0.81 5.20 0.257 <0.001

Unweighted UniFrac 0.649 0.46 3.60 0.194 <0.001

Bray-Curis 2.35 0.13 6.38 0.298 <0.001

4wk post FMT

Weighted UniFrac 0.62 0.48 4.74 0.504 <0.001

Unweighted UniFrac 24.0 <0.001 2.34 0.334 <0.001

Bray-Curtis 2.02 0.16 3.53 0.431 <0.001

Table 2. Multivariate homogeneity of groups dispersions (betadisper) and Permutational Multivariate Analysis 
of Variance (ADONIS) analyses of the microbial β-diversity between FMT-B6 and FMT-WSB groups.
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Discussion
The gut microbiota has coevolved with and is now an integral part of mammalian biology28. It is well documented 
that the gut microbiota is associated with obesity3, cardiovascular diseases4, type-2 diabetes29, behavior30, immu-
nity31, long-lasting vaccine response32, and MetSyn6. Knowledge about specific mechanistic interactions between 
gut microbiota, body composition, metabolic health, and metabolic profile is still insufficient. In this study, we 
have depleted the C57BL/6J mouse gut bacteria using antibiotics and then we recolonized them by FMT from 
either a C57BL/6J or a WSB/EiJ mouse. These 2 strains are divergent for a number of clinical traits including adi-
posity and glucose metabolism17. We found that gut microbial recolonization with feces from a WSB/EiJ mouse 
had a profound effect on the body composition, plasma glucose, and cholesterol. We also examined both the 
plasma metabolome and the gut microbiota to identify interactions mediating these responses.

C57BL/6J mice are more susceptible to obesity, diabetes, and atherosclerosis compared to WSB/EiJ mice17,18 
and thus often used as models of human diseases. We found that fecal microbial transplantation from a C57BL/6J 
or WSB/EiJ mouse successfully recolonized in the recipient mice gut and the microbial community started to 
diverge between FMT recipient groups as evidenced by the α and β -diversity at 2 wk and 4 wk post-FMT. The 

Figure 2. Effect of gut microbial depletion and re-colonization on body composition and plasma clinical 
biomarkers. (a) Body weight (b) percent of fat mass, and (c) percent of lean mass at baseline, after 4 wk 
antibiotics treatment, and after 1 and 2 wk post fecal microbiota transplant. (d) Body weight, (e) percent of  
fat mass, and (f) percent of lean mass at 1 and 2 wk post fecal microbiota transplant by the FMT groups.  
(g) Plasma glucose level at baseline, after 4 wk antibiotics treatment, and after 2 wk post fecal microbiota 
transplant. (h) Comparison of plasma glucose levels at 2 wk post-FMT between FMT groups. (i) Plasma 
cholesterol level at baseline, after 4 wk antibiotics treatment, and after 2 wk post-FMT. (j) Comparison of plasma 
cholesterol levels at 2 wk post-FMT between FMT groups. Boxes with no common letter indicate significant 
differences. *P < 0.05, #P < 0.10.
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mice reconstituted with WSB/EiJ microbiota had significantly higher fat mass but lower circulating glucose con-
centrations compared to the mice reconstituted with C57BL/6J microbiota. Since all the FMT recipient mice 
(C57BL/6J) in this study were genetically identical, fed the same diet, and similarly housed, the observed higher 
fat mass in the FMT-WSB group was likely caused by the transplanted gut microbiota. We observed that com-
pared to FMT-WSB group, FMT-B6 group had a significantly higher abundance of Akkermansia, Blautia, a bac-
terium related to class Bacilli lineage, and two bacteria related to the Clostridiaceae family lineage. Our results 
suggest that there may be a causal inverse relationship between Akkermansia, Blautia, and adiposity. These bac-
teria have individually been reported to be associated with changes in adiposity and metabolic parameters. For 
example, administration of Akkermansia, a mucin degrading bacteria, decreased fat mass in diet-induced obese 
mice33. Additionally, Blautia decreases with reduced body weight and body fat34. How these bacteria interact with 
each other and other community members remain to be investigated.

In addition to investigating changes in adiposity, we also sought to identify metabolic changes in the FMT 
mice. Mice reconstituted with WSB/EiJ feces had significantly lower blood glucose levels and a similar trend was 
observed for plasma cholesterol. Although, the mice reconstituted with WSB/EiJ microbiota are more obese, they 
are potentially metabolically healthier than mice transplanted with C57BL/6J feces. As noted above several taxa 
including Akkermansia, Peptostreptococcaceae and Blautia are differentially abundant between FMT-B6 and 
FMT-WSB groups. ANCOM analysis identified bacteria in the genus Blautia, a bacterium related to class Bacilli 
lineage, and two bacteria related to the family Clostridiaceae were positively associated with plasma glucose 

Figure 3. Association between microbiota and phenotypes. (a) Spearman correlation between microbial 
diversity and body composition or plasma clinical parameters at 2 wk post-FMT. “*”P < 0.05, “.”P < 0.10 
(b) Heatmap showing the ANCOM detected differential bacterial abundance at ASV level between higher 
(above median) and lower (below median) plasma biochemical parameters at 2 wk FMT. Color key represents 
ANCOM W value. For easier presentation, ANCOM W values were converted to negative if the mean 
abundance of the bacteria is lower in the above median group. Red indicates higher ASV abundance in 
the above median group and blue bacteria represents higher ASV abundance in the below median group. 
White represents non-significant result obtained  from ANCOM analysis. Red and blue represent significant 
association determined by ANCOM after FDR correction for multiple comparisons at a significant level 
adj.P < 0.05.
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levels in our study. In prediabetes or diabetic humans, Blautia abundance was found to be associated with better 
whole-body insulin sensitivity and lower glucose uptake in the colon35. Additionally, we identified Akkermansia 
as higher in mice having above-median plasma cholesterol but was not significantly related to plasma glucose. 
The data relating Akkermansia to plasma glucose and lipids are complex. A recent metagenomic study found 
Akkermansia genes were enriched in type 2 diabetic subjects, however, data from rodents indicate an inverse asso-
ciation between Akkermansia abundance and diabetes in NOD mice36 and diet-induced obese C57BL/6J mice33. 
Additionally, subjects with MetSyn given supplements of Akkermansia have reduced plasma total cholesterol37. 
Overall, our findings, together with previous reports, indicate the complexity of the microbiota in which the rela-
tionships between specific bacteria and clinical traits maybe both casual and reactive to disease status.

The complexity of host-microbe interactions is difficult to disentangle. One possible link is the plasma metab-
olome and thus we focused on metabolic alterations during our FMT protocol. Overall there were dramatic shifts 
of the plasma metabolites during gut microbial depletion. The microbiota has clear effects on the metabolic pro-
file and germ-free mice have a different plasma metabolic profile compared to conventional mice12. Among these 
microbiota sensitive metabolites, 19 metabolites were significantly modulated by both gut microbiota depletion 

Figure 4. Principal component analysis plot of plasma metabolites. (a) Scores are shown for the two first 
PCs from the PCA of data on plasma metabolites at baseline and after depletion of gut microbiota by 4-wk 
antibiotics treatment. Each point represents a sample at baseline (blue) or after 4 wk ABX (red). The ellipse on 
the principal coordinate analysis plot indicates 95% CI of the clusters by study time points. (b) Comparison of 
the contribution of baseline and gut microbiota depleted samples on the PC1, PC2, and PC3. (c) Correlation 
between corresponding PC1, PC2, and PC3 and plasma clinical parameters. (d) Scores are shown for the two 
first PCs from the PCA of data on plasma metabolites after depletion of gut microbiota by 4-wk antibiotics 
treatment and 2 wk post-FMT. Each point represents a sample after 4 wk ABX (red) or at 2 wk post-FMT 
(green). The ellipse on the principal coordinate analysis plot indicates 95% CI of the clusters by study time 
points. (e) Comparison of the contribution of baseline and gut microbiota depleted samples on the PC1, PC2, 
and PC3. (f) Correlation between corresponding PC1, PC2, and PC3 and plasma clinical parameters. (g) 
Scores are shown for the two first PCs from the PCA of data on plasma metabolites at 2 wk post fecal microbial 
transplantation. Each point represents a mouse that received FMT from either a WSB/EiJ (pink) or a C57BL/6J 
(gray) mouse donor. The ellipse on the principal coordinate analysis plot indicates 95% CI of the clusters by 
FMT groups. (h) Comparison of the corresponding PC1, PC2, and PC3 between samples collected from FMT 
groups after at 2 wk fecal transplantation. (i) Correlation between corresponding PC1, PC2, and PC3 and 
plasma clinical parameters at 2 wk post-FMT. “***”P < 0.001, “**”P < 0.01, “*”P < 0.05, “.”P < 0.10.
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and recolonization of the microbiota. These metabolites are either synthesized by microbiota or produced by 
the host in response to the presence of microbiota in the gut. Indeed, among these 19 responsive metabolites, 14 
metabolites were found to be associated with specific microbiota at baseline and 7 were associated with specific 
microbiota at 2 wk post-FMT, indicating potential microbiota-metabolic links. Since our mice were treated with 
antibiotics, we cannot eliminate the fact that some or all of these altered metabolite levels could be related to 
direct effects of the antibiotics treatment. In total, we were able to identify a number of metabolites associated 
with adiposity and metabolic traits.

We next determined the association between gut microbiota and plasma metabolites at 2 wk post-FMT using 
ANCOM analysis. There were several metabolites associated with specific microbiota. For example, Akkermansia 
was found positively associated with the following metabolites: methyl-galactoside, ribose, SM C18:1, PC aa C42:0, 
and linoleic acid. Other genus was associated with plasma metabolites such as, Blautia whose abundance is asso-
ciated with methyl-galactoside; ribose; 2-t-butylperoxy-2-ethylbutan-1-ol, propionate ester; 1,5-anhydroglucitol 
citric acid; docosahexaenoic acid; citrulline; cycloleucine; 5-hydroxydopamine; and 3-hydroxyisovaleric acid. 
Additionally, Blautia abundance was associated with a number of lipid metabolites such as two acylcarnitines 
C3:1 and C5-DC (C6-OH), 5 sphingolipids (SM (OH) C16:1, SM C16:0, SM C18:0, SM C18:1, and SM C24:1), 
and 4 phospholipids (PC aa C36:0, PC aa C42:4, PC ae C40:4, PC aa C32:3, PC ae C40:6). Blautia is known to 
expresses enzymes for propionate production38 and similar relationships between Blautia abundance and propi-
onate has been found in piglets39. We also observed that there was a negative associated between Blautia abun-
dance and plasma hypotaurine which has been previously reported in Wistar rats40. Additionally, we observed 
that some plasma metabolites were associated with many bacteria at 2wk post-FMT. For examples, we found that 
methyl-galactoside was positively associated with the following bacteria: Akkermansia, Blautia, Dickeya, Bacilli, 
Peptostreptococcaceae, and Clostridiaceae. Some of these interactions are supported in the literature such as 
increased methyl-galactoside in patients with increased Akkermansia abundance41. More importantly, our data 
suggest that broader changes in community structure may be important to consider when investigating the meta-
bolic consequences of the gut microbiota. Methyl-galactoside itself is an intriguing metabolite as it has anti-fungal 
activity towards certain fungi42. Since gut bacteria and fungi community live together and influence each other43, 
it is highly likely that the alteration of certain fungal abundance can influence a number of gut bacteria and vice 
versa. Broadening sequenced based approaches to include fungi, viruses, and archaea may aid our understanding 
of how microbiota influence host phenotype.

We note that in addition to metabolites associated with bacteria, there were several metabolites associated 
with obesity and dyslipidemia. For example, 2 specific phosphatidylcholines (PC ae C36:4 and PC ae C38:6) were 
significantly correlated with plasma cholesterol levels which is similar to previous report44. Additionally, we found 
a significant positive correlation between plasma TG levels and a sphingomyelin (SM C24:0) levels which was 

Figure 5. Heatmap showing the ANCOM detected top 20 (based on cumulative ANCOM W value) differential 
bacterial abundance at ASV level between high (above median) and low (below median) top 30 microbiota 
associated plasma metabolites at 2 wk FMT. Color key represents ANCOM W value. For easier presentation, 
ANCOM W values were converted to negative if the mean abundance of the bacteria is lower in the above 
median group. Red indicates higher ASV abundance in the above median group and blue represents higher 
ASV abundance in below median group. White color represents non-significant results. Red and blue represent 
significant association determined by ANCOM after FDR correction for multiple comparisons at a significant 
level adj.P < 0.05.
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also supported by a previous study44. In our study, we found PC ae C38:6 was positively associated with bacteria 
related to the Clostridiaceae family and SM C24:0 was positively associated with a bacteria related to the family 
Lachnospiraceae and Peptostreptococcaceae suggesting a causal relationship between gut microbiota and plasma 
metabolites which affects clinical traits. However, further mechanistic study is needed to understand the func-
tional consequences of altering these specific phosphatidylcholines and sphingomyelins. We note that our FMT 
model did not identify all biologically meaningful metabolite:phenotype relationships. For example, numerous 
studies have found an association between branched-chain amino acids (BCAA) and obesity45 but we did not find 
any such association between BCAA and body fat or body weight in this study. This indicates that the microbiome 
may not be a significant determinant of this well described pathway and that genetic variants in the host or per-
haps disease status itself contributes to this pathway.

Our microbiota depletion protocol included ampicillin, vancomycin, neomycin, and metronidazole27 which 
provides bactericidal activity against both gram-positive and gram-negative bacterial strains. The 4-week antibi-
otics treatment reduced the bacteria in the feces except few bacteria related to the Streptococcaceae lineage. 16S 
NGS technique captures DNA from both dead and viable bacteria. Since mouse skin microbiota contains several 
bacteria46, and after oral antibiotics treatment their number decreased but does not abolish completely47, it is not 
surprising that some of these bacterial DNA can be found in the fecal pellets after antibiotic depletion of the gut 
microbiota. Overall, the decrease in total bacterial DNA and decrease diversity indicate our antibiotic treatment 
was quite effective.

The growth-promoting effects of sub-therapeutic level low dose antibiotics have been widely used in agri-
culture48,49 to exert selective pressures on gram-positive bacteria to accelerate weight gain by as much as 15%50. 
Although we observed significant changes in body fat percentage during our FMT protocol, the increase in 
body weight of the mice in the study was similar to large scale phenotyping reported by the Jackson Laboratory51. 
Therefore, the significant increase of body weight during the 4-week antibiotics treatment is likely to be related to 
normal growth, not a treatment effect. Indeed, previous mouse study also found no changes in body weight due 
to antibiotic treatment52.

In the current study, there was initially a significant decrease in fat mass whereas the lean body mass remained 
unchanged following FMT. Unlike animals used in agricultural production, laboratory mouse is raised in a 
pathogen-free environment and thus might have a different microbiota-host relationship which could lead to a 
difference in the energy requirement for maintaining the already colonized and established gut microbiota53–55. 
The germ-free host gut, after first encountering with gut bacteria, goes through a number of innate and adaptive 
immune responses which are energy and nutrient expensive53–55. Alternatively, the gut of the microbiota depleted 
mice may have experienced low-grade inflammation during recolonization, which can lower nutrient absorption 
from food56. Once the healthy beneficial bacteria are successfully colonized, they can help harvesting energy from 
the host diet57–59 and thus can contribute a positive energy balance.

Overall, the results of this study highlight the complexity of the metabolic consequences of host-microbe 
interactions. We observed significant effects of FMT on increases in plasma glucose but unexpected adiposity. 
Our study utilized samples isolated from mice susceptible and resistant to obesity. As FMT has been proposed to 
be a potential therapeutic treatment for obesity and Metabolic Syndrome, our results suggest that is complex and 
thus need more integrative mechanistic research to understand the underlying potential beneficial and harmful 
health outcomes of FMT.

Methodology
Study design. Eighteen (n = 18) four-week-old C57BL/6J female mice were purchased from Jackson 
Laboratories at (Bar Harbor, ME, USA), and acclimated for 1 week. After the acclimation period, average water 
consumption was measured for a 7-day period and then mice were subjected to a 4-week gut microbial depletion 
using antibiotic cocktails, fecal microbiota transplantation (FMT) from either a C57BL/6J or a WSB/EiJ, and 
4-week follow-up. For microbiota depletion, mice were given water supplemented with antibiotics for 4 weeks 
based on consumption27. Water flasks were supplemented with 1 g/l ampicillin, 5 mg/ml vancomycin, 10 mg/ml 
neomycin, and 10 mg/ml metronidazole. The fresh antibiotic cocktail was mixed every day and ampicillin and 
water was renewed every 7th day. The study procedures are detailed in the Supplemental Fig. 1. Body composition 
(body weight, fat mass, and lean mass) was measured using an EchoMRITM-100H (Echo MRI LLC, Houston, 
TX, USA) at 4 time points: baseline (study week 0), after microbiota depletion (study week 4), 1 wk post-FMT 
(study wk 5), and 2 wk post-FMT (study wk 6) as shown in Supplemental Fig. 1. From each mouse, blood and 
fresh fecal samples were collected at baseline, after 4 weeks of antibiotics treatment, and 2-week post-FMT. An 
additional fecal sample was collected at 4-week post-FMT. Fecal samples were stored at −80 °C until further 
processing. Plasma was separated from blood and stored at −80 °C until further analysis. For the entire study 
period, mice were group-housed in metabolic cages at 3 mice per cage and standard conditions (12 h light: dark, 
temperature- and humidity-controlled conditions). Mice were on a nutritionally complete purified synthetic diet 
containing 9.4% kcal from fat, 75.9% kcal from carbohydrate and 14.7% kcal from protein (AIN93M; #D10012M; 
Research Diets Inc., New Brunswick, NJ, USA). All experiments were approved by the Institutional Animal Care 
and Use Committee (IACUC) at the North Carolina Research Campus (NCRC) and the experiment were carried 
out in accordance with the relevant guidelines and regulations.

fecal microbiota transplantation (fMt). Prior to transplant studies, feces from age and sex-matched 
donor C57BL/6J and WSB/EiJ mice fed an AIN-93M diet were collected and stored at −80 °C until further use. 
On the day of inoculation, frozen feces were pulverized with dry ice-cooled mortar and pestle. Fecal powder was 
suspended in sterile PBS (100 g feces/1000 ml of sterile PBS). The suspended feces were kept on ice and each study 
mouse was administered 100 μl via oral gavage and transferred to a new clean cage with fresh food and water.
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plasma clinical biomarkers assay. Mice were fasted for 4 hours before blood draw via retro-orbital bleed. 
Blood was collected into EDTA-containing tubes and plasma was separated by centrifugation at 10,000 xg for 
10 min at 4 °C. Plasma triacylglycerol (TG), total cholesterol, and glucose were measured by Biolis 24i Analyzer 
(Carolina Liquid Chemistries, Winston-Salem, NC).

plasma metabolite assay. Plasma metabolite analysis was performed using two platforms, 
two-dimensional gas chromatography time of flight mass spectrometry GCxGC-TOFMS (LECO, MI, USA) and 
Biocrates AbsoluteIDQ p150 kit (Biocrates, Innsbruck, Austria). Data from the two analytical platforms were 
combined for the downstream analysis. Detailed analysis procedures can be found in the Supplemental Method 
section.

Microbiota analysis. Fecal microbiota was analyzed by 16S rRNA V4 sequencing methodology. In brief, 
total fecal DNA was extracted using ZymoBIOMICS™ 96 MagBead DNA kit (Zymo Research, Irvine, CA) 
with automated epMotion (Eppendorf, Hamburg, Germany) robotic system. Mixed template amplicon library 
was prepared according to the protocol from Earth Microbiome Project (http://www.earthmicro biome.org/
emp-standard-protocols/) form extracted fecal total DNA using the primer sets (515 F and barcoded 806 R)60. 
The PCR master mix, primer, and samples were plated in triplicate using automated epMotion robotic system 
(Eppendorf, Hamburg, Germany). The PCR composition and the reaction cycle for the amplicon library prepara-
tion has been previously described31. Amplicon DNA was multiplexed and sequenced using the Illumina MiSEQ 
platform with 2 × 250 bp paired-end sequencing. Obtained sequence data were de-multiplexed and analyzed 
using the open-source software QIIME2-DADA2 pipeline25. Taxonomy was assigned using the SILVA 132 ref-
erence database61 customized for QIIME2 for 16S  V4 (515 F/806 R) region of sequences at the threshold of 99% 
pairwise identity. A detailed analysis has been described in the supplemental methodology.

Statistical analysis. Statistical analyses were performed using R version v3.5.1 for Windows62. Metadata 
continuous variables were analyzed for Normality using Shapiro-Wilk normality test and QQ-normal plot. 
Variables with a Shapiro-Wilk W value ≥0.95 were considered as Normal. Non-Normal metadata variables were 
transformed by natural log, square root, square, or Box-Cox power transformation. If no appropriate transforma-
tion was found, the variables were normalized rank-transformed. Differences of homogeneity of microbial com-
position dispersions between FMT groups were determined by using PERMDISP2 function of R Package Vegan63 
with 999 permutations. Differences in microbial community β-diversity were tested by ADONIS (perMANOVA) 
in the R Package Vegan. Principal coordinate (PCoA) analysis was carried out by PhyloSeq64. Differential micro-
biota abundance was analyzed by ANCOM26 using R package ancom.R with default settings and FDR correction.

We measured 354 measured metabolites by GCxGCMS and 163 by Biocrates. Metabolite data were checked 
for excessive missing values. 56 metabolites measured by GCxGCMS were removed due to a higher number of 
missing values detected by using R package WGCNA’s65 “goodSampleGenes” test. Principal component analysis 
(PCA) was performed by using R function “prcomp”. The similarities of the metabolites at different study time 
points or between FMT groups were carried out by PerMANOVA (ADONIS) analysis on Bray–Curtis distance 
matrix using the vegan package in R63. Correlation analysis was carried out by Spearman correlation. Two group 
comparisons were carried out by two-sample t-tests or Wilcoxon rank-sum tests. Multiple group comparisons 
were carried out by ANOVA. All P values reported in the study were from two-tailed tests. P values were cor-
rected for multiple comparisons using Benjamini-Hochberg (BH) procedure. P values < 0.05 were accepted as 
significant for clinical data analysis, and BH adjusted P values (q value) <0.05 was considered as significant 
for metabolomics and microbiota data. Graphs were prepared by GGplot266 and GraphPad Prism (GraphPad 
Software, Inc., CA, U.S.A.).

Data availability
The 16 S sequence data is available at NCBI Sequence Read Archive (SRA) database under the BioProject ID 
“PRJNA575555”. The phenotype and metabolomics data of this study are available from the corresponding author 
upon request.

Received: 1 October 2019; Accepted: 26 March 2020;
Published: xx xx xxxx

References
 1. Savage, D. C. Microbial ecology of the gastrointestinal tract. Annual review of microbiology 31, 107–133 (1977).
 2. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol Rev 90, 859–904, https://doi.

org/10.1152/physrev.00045.2009 (2010).
 3. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 

1022–1023, https://doi.org/10.1038/4441022a (2006).
 4. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57 (2011).
 5. Cigarran Guldris, S., Gonzalez Parra, E. & Cases Amenos, A. Gut microbiota in chronic kidney disease. Nefrologia 37, 9–19, https://

doi.org/10.1016/j.nefro.2016.05.008 (2017).
 6. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546, https://doi.

org/10.1038/nature12506 (2013).
 7. Ogden, C. L. et al. Prevalence of overweight and obesity in the United States, 1999-2004. Jama 295, 1549–1555 (2006).
 8. Aguilar, M., Bhuket, T., Torres, S., Liu, B. & Wong, R. J. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 

313, 1973–1974, https://doi.org/10.1001/jama.2015.4260 (2015).
 9. Psychogios, N. et al. The human serum metabolome. PloS one 6 (2011).
 10. Nicholson, J. K. & Lindon, J. C. Systems biology: metabonomics. Nature 455, 1054 (2008).
 11. German, J. B., Hammock, B. D. & Watkins, S. M. Metabolomics: building on a century of biochemistry to guide human health. 

Metabolomics 1, 3–9, https://doi.org/10.1007/s11306-005-1102-8 (2005).

https://doi.org/10.1038/s41598-020-63214-1
http://www.earthmicro
https://doi.org/10.1152/physrev.00045.2009
https://doi.org/10.1152/physrev.00045.2009
https://doi.org/10.1038/4441022a
https://doi.org/10.1016/j.nefro.2016.05.008
https://doi.org/10.1016/j.nefro.2016.05.008
https://doi.org/10.1038/nature12506
https://doi.org/10.1038/nature12506
https://doi.org/10.1001/jama.2015.4260
https://doi.org/10.1007/s11306-005-1102-8


1 2Scientific RepoRtS |         (2020) 10:6545  | https://doi.org/10.1038/s41598-020-63214-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 12. Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad 
Sci USA 106, 3698–3703, https://doi.org/10.1073/pnas.0812874106 (2009).

 13. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63, https://doi.
org/10.1038/nature09922 (2011).

 14. Montgomery, M. K. et al. Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. 
Diabetologia 56, 1129–1139 (2013).

 15. Rossmeisl, M., Rim, J. S., Koza, R. A. & Kozak, L. P. Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-
induced obesity. Diabetes 52, 1958–1966 (2003).

 16. Parks, B. W. et al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell 
metabolism 17, 141–152 (2013).

 17. Lee, K. T., Karunakaran, S., Ho, M. M. & Clee, S. M. PWD/PhJ and WSB/EiJ mice are resistant to diet-induced obesity but have 
abnormal insulin secretion. Endocrinology 152, 3005–3017 (2011).

 18. O’Connor, A., Quizon, P. M., Albright, J. E., Lin, F. T. & Bennett, B. J. Responsiveness of cardiometabolic-related microbiota to diet 
is influenced by host genetics. Mamm Genome 25, 583–599, https://doi.org/10.1007/s00335-014-9540-0 (2014).

 19. Kassam, Z., Lee, C. H., Yuan, Y. & Hunt, R. H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review 
and meta-analysis. The American journal of gastroenterology 108, 500 (2013).

 20. Borody, T. J. et al. Bacteriotherapy using fecal flora: toying with human motions. Journal of clinical gastroenterology 38, 475–483 
(2004).

 21. Anderson, J., Edney, R. & Whelan, K. Systematic review: faecal microbiota transplantation in the management of inflammatory 
bowel disease. Alimentary pharmacology & therapeutics 36, 503–516 (2012).

 22. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214, https://
doi.org/10.1126/science.1241214 (2013).

 23. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic 
syndrome. Gastroenterology 143, 913–916. e917 (2012).

 24. Kasahara, K. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nature 
microbiology 3, 1461 (2018).

 25. Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Report No. 2167–9843, (PeerJ 
Preprints (2018).

 26. Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health 
Dis 26, 27663, https://doi.org/10.3402/mehd.v26.27663 (2015).

 27. Reikvam, D. H. et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS One 6, 
e17996, https://doi.org/10.1371/journal.pone.0017996 (2011).

 28. Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 
307, 1915–1920, https://doi.org/10.1126/science.1104816 (2005).

 29. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55 (2012).
 30. Dinan, T. G. & Cryan, J. F. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol Clin North Am 46, 77–89, https://

doi.org/10.1016/j.gtc.2016.09.007 (2017).
 31. Huda, M. N. et al. Stool microbiota and vaccine responses of infants. Pediatrics 134, e362–372, https://doi.org/10.1542/peds.2013-

3937 (2014).
 32. Huda, M. N. et al. Bifidobacterium Abundance in Early Infancy and Vaccine Response at 2 Years of Age. Pediatrics 143, https://doi.

org/10.1542/peds.2018-1489 (2019).
 33. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings 

of the National Academy of Sciences 110, 9066–9071 (2013).
 34. Li, Y., Cui, Y., Hu, X., Liao, X. & Zhang, Y. Chlorophyll Supplementation in Early Life Prevents Diet-Induced Obesity and Modulates 

Gut Microbiota in Mice. Mol Nutr Food Res, e1801219, https://doi.org/10.1002/mnfr.201801219 (2019).
 35. Motiani, K. K. et al. Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Med Sci Sports Exerc, https://

doi.org/10.1249/MSS.0000000000002112 (2019).
 36. Hansen, C. H. F. et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in 

the NOD mouse. Diabetologia 55, 2285–2294 (2012).
 37. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-

concept exploratory study. Nat Med 25, 1096–1103, https://doi.org/10.1038/s41591-019-0495-2 (2019).
 38. Polansky, O. et al. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota. Appl Environ 

Microbiol 82, 1569–1576, https://doi.org/10.1128/AEM.03473-15 (2015).
 39. Li, N. et al. Characterization of the Early Life Microbiota Development and Predominant Lactobacillus Species at Distinct Gut 

Segments of Low- and Normal-Birth-Weight Piglets. Front Microbiol 10, 797, https://doi.org/10.3389/fmicb.2019.00797 (2019).
 40. Li, M. et al. Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine 

compounds. J Transl Med 14, 237, https://doi.org/10.1186/s12967-016-0987-5 (2016).
 41. Allali, I. et al. Gut microbiome of Moroccan colorectal cancer patients. Med Microbiol Immunol 207, 211–225, https://doi.

org/10.1007/s00430-018-0542-5 (2018).
 42. Viana, P. A. et al. Activity of Debaryomyces hansenii UFV-1 alpha-galactosidases against alpha-D-galactopyranoside derivatives. 

Carbohydr Res 346, 602–605, https://doi.org/10.1016/j.carres.2011.01.024 (2011).
 43. Limon, J. J., Skalski, J. H. & Underhill, D. M. Commensal Fungi in Health and Disease. Cell Host Microbe 22, 156–165, https://doi.

org/10.1016/j.chom.2017.07.002 (2017).
 44. Mirzoyan, K. et al. Increased urine acylcarnitines in diabetic ApoE-/- mice: Hydroxytetradecadienoylcarnitine (C14:2-OH) reflects 

diabetic nephropathy in a context of hyperlipidemia. Biochem Biophys Res Commun 487, 109–115, https://doi.org/10.1016/j.
bbrc.2017.04.026 (2017).

 45. Rauschert, S. et al. Early Programming of Obesity Throughout the Life Course: A Metabolomics Perspective. Ann Nutr Metab 70, 
201–209, https://doi.org/10.1159/000459635 (2017).

 46. Chen, Y. E., Fischbach, M. A. & Belkaid, Y. Skin microbiota-host interactions. Nature 553, 427–436, https://doi.org/10.1038/
nature25177 (2018).

 47. Zhang, M. et al. Oral antibiotic treatment induces skin microbiota dysbiosis and influences wound healing. Microb Ecol 69, 415–421, 
https://doi.org/10.1007/s00248-014-0504-4 (2015).

 48. Visek, W. The mode of growth promotion by antibiotics. Journal of Animal Science 46, 1447–1469 (1978).
 49. Gaskins, H. R., Collier, C. T. & Anderson, D. B. Antibiotics as growth promotants: mode of action. Anim Biotechnol 13, 29–42, 

https://doi.org/10.1081/ABIO-120005768 (2002).
 50. Butaye, P., Devriese, L. A. & Haesebrouck, F. Antimicrobial growth promoters used in animal feed: effects of less well known 

antibiotics on gram-positive bacteria. Clinical microbiology reviews 16, 175–188 (2003).
 51. C57BL/6J, J. M. S.-. BODY WEIGHT INFORMATION FOR C57BL/6J (000664), https://www.jax.org/jax-mice-and-services/strain-

data-sheet-pages/body-weight-chart-000664
 52. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J 22, 

2416–2426, https://doi.org/10.1096/fj.07-102723 (2008).

https://doi.org/10.1038/s41598-020-63214-1
https://doi.org/10.1073/pnas.0812874106
https://doi.org/10.1038/nature09922
https://doi.org/10.1038/nature09922
https://doi.org/10.1007/s00335-014-9540-0
https://doi.org/10.1126/science.1241214
https://doi.org/10.1126/science.1241214
https://doi.org/10.3402/mehd.v26.27663
https://doi.org/10.1371/journal.pone.0017996
https://doi.org/10.1126/science.1104816
https://doi.org/10.1016/j.gtc.2016.09.007
https://doi.org/10.1016/j.gtc.2016.09.007
https://doi.org/10.1542/peds.2013-3937
https://doi.org/10.1542/peds.2013-3937
https://doi.org/10.1542/peds.2018-1489
https://doi.org/10.1542/peds.2018-1489
https://doi.org/10.1002/mnfr.201801219
https://doi.org/10.1249/MSS.0000000000002112
https://doi.org/10.1249/MSS.0000000000002112
https://doi.org/10.1038/s41591-019-0495-2
https://doi.org/10.1128/AEM.03473-15
https://doi.org/10.3389/fmicb.2019.00797
https://doi.org/10.1186/s12967-016-0987-5
https://doi.org/10.1007/s00430-018-0542-5
https://doi.org/10.1007/s00430-018-0542-5
https://doi.org/10.1016/j.carres.2011.01.024
https://doi.org/10.1016/j.chom.2017.07.002
https://doi.org/10.1016/j.chom.2017.07.002
https://doi.org/10.1016/j.bbrc.2017.04.026
https://doi.org/10.1016/j.bbrc.2017.04.026
https://doi.org/10.1159/000459635
https://doi.org/10.1038/nature25177
https://doi.org/10.1038/nature25177
https://doi.org/10.1007/s00248-014-0504-4
https://doi.org/10.1081/ABIO-120005768
https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/body-weight-chart-000664
https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/body-weight-chart-000664
https://doi.org/10.1096/fj.07-102723


13Scientific RepoRtS |         (2020) 10:6545  | https://doi.org/10.1038/s41598-020-63214-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

 53. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 
1268–1273, https://doi.org/10.1126/science.1223490 (2012).

 54. Klasing, K. & Leshchinsky, T. Functions, costs, and benefits of the immune system during development and growth. Ostrich 69, 32 
(1999).

 55. Wolowczuk, I. et al. Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008, 639803, https://doi.
org/10.1155/2008/639803 (2008).

 56. Peuhkuri, K., Vapaatalo, H. & Korpela, R. Even low-grade inflammation impacts on small intestinal function. World J Gastroenterol 
16, 1057–1062, https://doi.org/10.3748/wjg.v16.i9.1057 (2010).

 57. Angelakis, E., Merhej, V. & Raoult, D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. 
Lancet Infect Dis 13, 889–899, https://doi.org/10.1016/S1473-3099(13)70179-8 (2013).

 58. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031, 
https://doi.org/10.1038/nature05414 (2006).

 59. Hartstra, A. V., Bouter, K. E., Backhed, F. & Nieuwdorp, M. Insights into the role of the microbiome in obesity and type 2 diabetes. 
Diabetes Care 38, 159–165, https://doi.org/10.2337/dc14-0769 (2015).

 60. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 
1621–1624, https://doi.org/10.1038/ismej.2012.8 (2012).

 61. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids 
research 41, D590–D596 (2012).

 62. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
2019. URL http://www.R-project.org. (2019).

 63. Oksanen, J. et al. The vegan package. Community ecology package 10 (2007).
 64. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. 

PLoS One 8, e61217, https://doi.org/10.1371/journal.pone.0061217 (2013).
 65. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559, https://

doi.org/10.1186/1471-2105-9-559 (2008).
 66. Wickham, H. ggplot2: elegant graphics for data analysis. (Springer Science & Business Media (2009).

Acknowledgements
This research was supported in part by NIH grant 5R01HL128572 (BJB), USDA project 2032-51530-025-00D 
(BJB) and a pilot and feasibility project funded by the UNC NORC (P30DK056350).

Author contributions
B.J.B. was the PI of this study. He designed the study, and supervised all analyses, interpreted the results, and 
mentored manuscript writing. J.H.W., A.O. and J.M.C. conducted the research. M.N.H. and J.M.C. performed 
the bioinformatics of the gut microbiota and statistical analyses. M.N.H. interpreted the results, drafted the 
manuscript, and addressed co-authors comments and concerns. J.H.W., A.O. and J.M.C. critically revised 
the manuscript. B.J.B. had primary responsibility for final content. All authors read and approved the final 
manuscript.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-63214-1.
Correspondence and requests for materials should be addressed to B.J.B.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-63214-1
https://doi.org/10.1126/science.1223490
https://doi.org/10.1155/2008/639803
https://doi.org/10.1155/2008/639803
https://doi.org/10.3748/wjg.v16.i9.1057
https://doi.org/10.1016/S1473-3099(13)70179-8
https://doi.org/10.1038/nature05414
https://doi.org/10.2337/dc14-0769
https://doi.org/10.1038/ismej.2012.8
http://www.R-project.org
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/s41598-020-63214-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Microbial modulation of host body composition and plasma metabolic profile
	Results
	Fecal microbial diversity and composition changes due to microbial depletion and fecal microbiota transplantation (FMT). 
	Body composition, plasma glucose and cholesterol are modulated by microbial depletion and recolonization. 
	Gut microbiota was associated with body composition and plasma biomarkers. 
	Plasma metabolic profile shifted due to microbial depletion and recolonization. 
	Specific adiposity related gut microbiota is associated with plasma metabolic profile. 

	Discussion
	Methodology
	Study design. 
	Fecal microbiota transplantation (FMT). 
	Plasma clinical biomarkers assay. 
	Plasma metabolite assay. 
	Microbiota analysis. 
	Statistical analysis. 

	Acknowledgements
	Figure 1 Effect of antibiotics treatment and fecal microbial transplantation (FMT) from a C57BL/6J or a WSB/EiJ mouse on recipient mice’s gut microbiota.
	Figure 2 Effect of gut microbial depletion and re-colonization on body composition and plasma clinical biomarkers.
	Figure 3 Association between microbiota and phenotypes.
	Figure 4 Principal component analysis plot of plasma metabolites.
	Figure 5 Heatmap showing the ANCOM detected top 20 (based on cumulative ANCOM W value) differential bacterial abundance at ASV level between high (above median) and low (below median) top 30 microbiota associated plasma metabolites at 2 wk FMT.
	Table 1 Differentially taxa abundance at 2 wk post fecal micrbioal transplantation between mice received C57BL/6J (FMT-B6) or WSB/EiJ (FMT-WSB) fecal microbiota determined at family, genera, and amplicon sequence variance (ASV) levels.
	Table 2 Multivariate homogeneity of groups dispersions (betadisper) and Permutational Multivariate Analysis of Variance (ADONIS) analyses of the microbial β-diversity between FMT-B6 and FMT-WSB groups.




