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Microbial Dysbiosis During 
Simian Immunodeficiency Virus 
infection is partially Reverted 
with combination Anti-retroviral 
therapy
faith c. Blum1, Britney L. Hardy1, Kimberly A. Bishop-Lilly2, Kenneth G. frey2, 
theron Hamilton2, James B. Whitney3,4, Mark G. Lewis5, D. Scott Merrell1* & 
Joseph J. Mattapallil1*

Human immunodeficiency virus (HIV) infection is characterized by a massive loss of CD4 T cells in 
the gastrointestinal tract (GIT) that is accompanied by changes in the gut microbiome and microbial 
translocation that contribute to inflammation and chronic immune activation. Though highly active 
antiretroviral therapy (HAART) has led to better long-term outcomes in HIV infected patients, it has 
not been as effective at reverting pathogenesis in the GIT. Using the simian immunodeficiency virus 
(SIV) infection model, we show that combination antiretroviral therapy (c-ART) partially reverted 
microbial dysbiosis observed during SIV infection. Though the relative abundance of bacteria, their 
richness or diversity did not significantly differ between infected and treated animals, microbial 
dysbiosis was evident via multiple beta diversity metrics: Jaccard similarity coefficient, Bray-Curtis 
similarity coefficient, and Yue & Clayton theta similarity coefficient. Principal coordinates analysis 
(PCoA) clustered SIV-infected untreated animals away from healthy and treated animals that were 
clustered closely, indicating that c-ART partially reversed the gut dysbiosis associated with SIV 
infection. Metastats analysis identified specific operational taxonomic units (OTUs) falling within the 
Streptococcus, Prevotella, Acinetobacter, Treponema, and Lactobacillus genera that were differentially 
represented across the three groups. our results suggest that complete viral suppression with c-ARt 
could potentially revert microbial dysbiosis observed during SIV and HIV infections.

The gastrointestinal tract (GIT) is colonized by microbes that contribute to its development and maintenance. 
However, numerous disease states have been shown to alter the composition of the gut microbiota. This dysbiosis 
is often accompanied by translocation of microbes or their products across the mucosal epithelium, which in turn 
exacerbates inflammatory conditions in the gut mucosa.

Human immunodeficiency virus (HIV) infection is characterized by dramatic alterations in the gut microen-
vironment during the early stages of infection that is accompanied by significant levels of viral replication, CD4 
T cell depletion, compromise of epithelial barrier integrity, and altered immune homeostasis . Loss of barrier 
integrity leads to microbial translocation that, in turn, contributes to immune activation and disease progression1. 
Interestingly, a number of studies have documented changes in the composition of the gut microbiota during 
progressive HIV infection as compared to healthy individuals2–4; these changes often include a loss of Bacteroides 
and an enrichment of Proteobacteria5–7. Dillion et al.5 showed that HIV infected patients have a higher abun-
dance of Proteobacteria and a decreased prevalence of Firmicutes when compared to healthy subjects. Others have 
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reported decreased microbial richness8 and significant alterations in Prevotella during chronic HIV infection7,9–12. 
A decrease in the abundance of butyrate producing bacteria was found to correlate with microbial translocation 
and immune activation in HIV infected subjects13.

Apparent changes in the gut microbiota during simian immunodeficiency virus (SIV) infection are less con-
gruent. While rhesus macaques progressing to AIDS were found to display an expansion of enteropathogens14, 
others have reported that the overall microbiota composition was not dramatically altered in SIV infected ani-
mals as compared to uninfected animals14–17. Interestingly, a subset of SIV infected macaques with severe illness 
exhibited altered bacterial β-diversity with an increase in the abundance of Enterobacteriaceae and Moraxellaceae; 
these changes were similar to those of HIV infected subjects with low CD4 T cell counts and had an increased 
prevalence of bacterial enteropathogens in their fecal samples18. Glavan et al.19 on the other hand reported that 
decreased expression of pathogen recognition receptors in the gut mucosa during the acute stages of SIV infection 
correlated with an increased abundance of numerous taxa of pathogenic bacteria.

The advent of Highly Active Anti-Retroviral Therapy (HAART) has led to better long-term outcomes for 
HIV infected patients. However, numerous studies have documented persistence of immune activation during 
HAART20–22. Given the association of translocated microbial products with chronic immune activation, there has 
been a significant interest in understanding the effects of HAART on the gut microbiota. Though the composition 
of the microbiota did not significantly differ from that of untreated HIV infected subjects, initiation of HAART 
was associated with altered gut dysbiosis6,9. Interestingly, Mutlu et al.6 reported that HIV infected patients under 
HAART displayed a loss of commensal taxa and a gain of some pathogenic bacterial taxa. Of note, lower micro-
bial richness and diversity has been associated with poor CD4 T cell reconstitution in HIV infected subjects 
under HAART23,24.

In terms of SIV models, SIV infected pigtail macaques were found to have lower relative amounts of 
Proteobacteria without major changes in either Bacteriodetes or Firmicutes25. Anti-retroviral therapy was 
accompanied by a significant decrease in the relative amounts of Firmicutes and a concomitant increase in 
Proteobacteria. These changes were apparent even though the relative amounts of Proteobacteria did not signif-
icantly differ from the first 20 days of SIV infection, suggesting that ART likely restores some of the dysbiotic 
bacteria. It is not clear if similar changes occur in SIV infecetd rhesus macaques .

To address this question, we examined the fecal microbiome of rhesus macaques that were infected with 
SIVmac251 for 9 weeks and compared them to healthy (uninfected) and c-ART treated animals. Rhesus macaques 
have been widely used as a model to study HIV pathogenesis and anti-retroviral therapy26–61. Our results showed 
that even though the relative abundance of bacteria or their richness, and diversity did not significantly differ 
between infected and treated animals, microbial dysbiosis was evident during SIV infection via multiple beta 
diversity calculators : Jaccard index, Bray-Curtis index, and Yue & Clayton theta coefficient. Furthermore, when 
visualized by principle coordinates analysis (PCoA), SIV infected untreated animals clustered separately from 
the healthy and c-ART treated animals, suggesting that c-ART partially reversed the dysbiosis that was apparent 
during SIV infection.

Results
Study population. Fecal samples that were collected from a cross-section of healthy (n = 7), SIV 
infected untreated (n = 6), and SIV infected c-ART treated (n = 10) rhesus macaques (~2.5–4 years old; males) 
were used in this study. All the animals were housed at Bioqual and received similar diets. Absolute CD4 T cell 
counts were determined at 9 weeks post-infection (PI) in the SIV infected untreated group of animals and at 30 
weeks PI in the c-ART treated group of animals and compared to their pre-infection CD4 T cells counts. There 
was no significant difference in the CD4 T cell counts between the SIV and c-ART group of animals relative to 
their pre-infection values (Fig. 1a).

To determine if the levels of plasma viremia were similar between the SIV infected untreated and c-ART 
treated group of animals prior to initiating therapy, we compared the plasma viral loads from SIV infected 
untreated group of animals at 9 weeks PI to c-ART treated group of animals at 10 weeks PI when c-ART was 
initiated. There was a significant difference in the plasma viral loads (Fig. 1b) between the SIV infected group of 
animals (9 weeks post-SIV infection; ~5 ×107 copies of SIV RNA/ ml of plasma) as compared to the c-ART group 
of animals at the time of initiation of c-ART (10 weeks post-SIV infection; ~6 ×105 copies of SIV RNA/ ml of 
plasma). To examine if c-ART was effective at suppressing viremia we determined plasma viral loads at 30 weeks 
PI (20 weeks after c-ART initiation) and compared them to plasma viral loads at the time of c-ART initiation at 10 
weeks PI. Continuous c-ART significantly suppressed plasma viral loads at 30 weeks PI to levels that were below 
the limits of detection (<50 copies/ ml of plasma).

rRnA gene sequencing. Earlier studies had reported gut dysbiosis during progressive SIV infection14,18. To 
determine if SIV infection was accompanied by microbial dysbiosis, we examined the fecal microbiota from SIV 
infected untreated macaques by sequencing the V4 region of the 16S rRNA gene and compared them to that of 
c-ART treated and healthy group of animals.

A total of 7,819,760 raw reads were obtained, of which 4,779,359 reads remained after quality filtering and 
sequence processing. The samples contained an average of 207,798 sequences (range of 108,414 to 308,433). These 
sequences clustered into a total of 27,657 operational taxonomic units (OTUs), with an average of 2,997 OTUs per 
sample (range: 2,395–3,756) when classified using the RDP collection. The raw sequencing reads can be accessed 
using the National Center for Biotechnology Information (NCBI) Bioproject ID# PRJNA561197 (http://www.
ncbi.nlm.nih.gov/bioproject/561197).

Microbiota composition, richness, and diversity. The relative abundance of the bacterial families that 
represented >1% of the total sequences are shown in Fig. 2A, and the relative abundance data for all samples are 
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included in Suppl. Table 1. In line with earlier studies17,25,62, the major phyla present were Bacteroidetes (44%, 
average percentage across all samples), Firmicutes (33%), and Spirochaetes (10%), with a minor contribution from 
Proteobacteria (7%). Almost half of the total sequences classified to three families: Prevotellaceae (27%, member 
of the Bacteroidetes), Ruminococaceae (11%, member of the Firmicutes), and Spirochaetaceae (10%, member of the 
Spirochaetes). Visually, the overall composition of the microbiota did not appear to dramatically differ between 
the healthy, SIV infected untreated, and c-ART treated groups (Fig. 2A). The one exception was the increase in 
the abundance of Spirochaetes found in the SIV infected group of animals (Fig. 2B).

To deal with differences in sequencing depth across individual samples, the sequences were randomly sub-
sampled to the lowest number of sequences found in a sample (108,414) prior to diversity analyses. The Good’s 
coverage of the subsampled dataset averaged 99.0% (range: 98.4%-99.2%) and rarefaction analysis (Suppl. Fig. 1) 
suggested that subsampled sequences still accurately represented the overall number of OTUs present in a sample. 
This is in line with previous observations that the richness of bacterial taxa at this site is very high17. However, the 
slopes of the rarefaction curves suggest that even with sequencing depth of >100,000 sequences per sample, some 
rare bacteria within the rhesus macaque gut microbiota would still not be detected.

To measure bacterial richness, the number of observed OTUs per sample and group were determined using 
the subsampled data (Fig. 3A). Overall, the bacterial richness of each group was not different from the other 
groups, with an average number of 2078 OTUs from the healthy group, 2068 from the SIV-infected group, and 
2228 from the c-ART treated group (P > 0.05, using a one-way ANOVA with Tukey’s multiple comparison test) 
of animals. Similarly, overall diversity analysis using the inverse Simpson index (invsimpson, Fig. 3B) revealed 
that the groups were not different (P > 0.05, using a one-way ANOVA with Tukey’s multiple comparisons test); 
diversity values for the healthy (29.97), SIV infected (27.94), and c-ART treated (31.85) samples were similar.

To assess shared richness between the three groups, the number of shared and unshared OTUs was deter-
mined (Fig. 3C). Of the 18,571 observed OTUs in the subsampled dataset, 2080 were shared between all groups. 
Additionally, while each individual group shared a roughly equal proportion of OTUs with the other individual 
groups, the healthy and c-ART treated groups shared a slightly higher number of OTUs with one another as 
compared to the SIV infected untreated group. Furthermore, the c-ART treated group contained a much larger 
number of unique OTUs as compared to the other groups; the healthy and SIV infected untreated groups each 
contained approximately 3600 unique OTUs, whereas the c-ART treated group contained 6700 unique OTUs. 
Taken together, these data suggest that while dramatic dysbiosis was not readily apparent (Fig. 2), the composi-
tion of the fecal microbiota differed between groups.

To more thoroughly assess the differences between the groups, we performed beta-diversity analyses using 
multiple distance calculators: the Jaccard index63, which is calculated based on the membership of the com-
munity, the Bray-Curtis index64, which is calculated based on the structure of the community, and the Yue & 

Figure 1. Absolute CD4 T cell counts and plasma viral loads. (a) Peripheral blood CD4 T cell counts were 
determined at 9 weeks PI from the SIV infected untreated animals and at 30 weeks PI from the SIV infected 
c-ART treated animals and compared to each animals pre-infection values. (b) Plasma viral loads in SIV 
infected untreated and SIV infected c-ART treated animals. Plasma viral loads were determined at 9 weeks PI 
from the SIV infected untreated animals and at 10 weeks PI prior to initiation of c-ART, and at 30 weeks PI after 
20 weeks of continuous c-ART from the SIV infected c-ART treated animals.
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Clayton theta (ΘYC) coefficient65, which is also calculated based on community structure, but additionally takes 
into account the relative abundance of each OTU. The resulting distance matrices were visualized as heat maps 
(Fig. 4) and were also subjected to Principal Coordinates Analysis (PCoA) as an additional way to visualize the 
results of the distance calculators (Fig. 5). The PCoA plots generated from all three distance metrics revealed that 
the SIV infected untreated group clustered away from the healthy and c-ART treated groups, which appeared 
similar to each other (Fig. 5).

Figure 2. Changes in rhesus macaque gastrointestinal microbiota during SIV infection and c-ART. (A) Relative 
abundance of family-level OTUs, with those families constituting ≥1% of the total sequences shown. “Other” 
comprises all remaining sequences. OTUs were classified to the Ribosomal Database Project (RDP) collection 
based on V4 16S rRNA gene sequencing from fecal material. (B) Percent abundance of phylum-level OTUs, 
with those phyla constituting ≥1% of the total sequences shown. Each symbol represents one sample, with the 
mean shown as a solid black line. Within each phyla, differences in abundance between the treatment groups 
was tested by one-way ANOVA with Tukey’s test for multiple comparisons, where P < 0.05 = *.

Figure 3. Alpha diversity of treatment groups. (A) The bacterial richness of each sample, as calculated by 
the number of observed OTUs. (B) The diversity of each sample as calculated by the inverse Simpson (1/D) 
diversity calculator, such that the higher the number, the greater the diversity. In (A,B), each symbol represents 
one sample, with the mean shown as a solid line. No groups were statistically different, as tested by a one-way 
ANOVA with Tukey’s multiple comparison. (C) Venn diagram showing the number of OTUs shared between 
each group. All calculations were performed after subsampling.
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To determine whether these differences in diversity were statistically significant, analysis by molecular var-
iance (AMOVA) was performed for each distance matrix (Table 1). All comparisons were significant (P < 0.05) 
with the exception of the ΘYC coefficient between healthy vs. c-ART treated groups (P = 0.136). This suggests that 
when community membership is solely considered, as with the Jaccard index, the fecal microbiota of healthy and 
c-ART treated rhesus macaques were different. Similarly, the Bray-Curtis index, a measure of community struc-
ture, found that the two groups were different. However, when the structure of the communities as calculated by 
ΘYC coefficient was considered, the healthy and c-ART treated rhesus macaques were not different. One distinct 
difference between the two calculators is that the Bray-Curtis index is calculated using the raw abundance in each 
OTU, whereas the ΘYC coefficient is calculated using the relative abundance of each OTU. Given the differences 
in results and statistics when beta-diversity was calculated, this distinction appears to be very important for this 
dataset. Thus, even though differences exist between all three treatment groups, SIV infection appears to result in 
changes in beta diversity that are at least partially restored by c-ART.

OTU specific changes. Finally, to determine which specific OTUs were differentially abundant between the 
groups, Metastats analysis66 was performed on OTUs whose average abundance was ≥1% in at least one group. A 
total of 19 OTUs were identified as significantly different (P < 0.05) between the three groups (Table 2 and Suppl. 
Fig. 2). If we expanded the analysis to consider OTUs whose average abundance was ≥0.1% in at least one group, 
70 additional OTUs were found to be significantly different (Suppl. Table 2). As these analyses were performed 
on randomly subsampled data, to allow repeatability of the analysis, the relative abundance data for all subsam-
pled samples are included in Suppl. Table 3. Of the 19 OTUs identified in the ≥1% abundance category, 8 were 

Figure 4. Heat map visualization of beta-diversity calculators. Beta-diversity analysis was performed on 
subsampled data using the Jaccard (A), Bray-Curtis (B), and Yue & Clayton theta (ΘYC) coefficient (C) 
calculators. The output of all three calculators ranges from 0–1. Similarity is plotted; thus, 0 is dissimilar, and 1 is 
similar. The color scale for each calculator is shown adjacent to each heat map.

Figure 5. Principal coordinates analysis (PCoA) visualization of beta-diversity calculators. Beta-diversity 
analysis was performed on subsampled data using the Jaccard (A), Bray-Curtis (B), and Yue & Clayton theta 
(ΘYC) coefficient (C) calculators. Each symbol represents one sample. The variation described by axis 1 and axis 
2 is shown in parentheses.

Comparison groups Jaccard Bray-Curtis ΘYC

All groups <0.001 <0.001 0.008

Healthy vs. SIV-infected <0.001 0.006 0.007

SIV-infected vs. c-ART treated <0.001 0.003 0.015

Healthy vs. c-ART treated 0.001 0.030 0.136

Table 1. Analysis by molecular variance (AMOVA) values for treatment group differences in beta diversity. 
*Significant P values are shown in bold.
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different between healthy and SIV infected untreated, 7 were different between SIV infected untreated and c-ART 
treated, and 12 were different between healthy and c-ART treated groups. Classification with the RDB reference 
database revealed that the OTUs that differed included members of the Streptococcus, Prevotella, Acinetobacter, 
Treponema, and Lactobacillus genera.

To confirm and extend the classification to the species level where possible, the OTUs were also classified 
against the Greengenes database. Using this approach OTU2 was classified as Streptococcus luteciae, and sev-
eral other OTUs were classified as Prevotella copri. For example, OTU4, OTU8, and OTU11 each classified as 
Prevotella copri; these OTUs were less abundant in the SIV infected group of animals as compared to both healthy 
and c-ART treated group of animals (Fig. 6). Thus, Prevotella copri appears to be a member of the microbiota of 
healthy rhesus macaques that is reduced over the course of SIV infection, and is restored after c-ART.

OTU15, a member of the family Prevotellaceae, followed a similar pattern, though the difference between 
the healthy and SIV infected untreated groups did not achieve statistical significance (Table 2). In contrast, 
several OTUs showed an increase or decrease in abundance when healthy animals were compared with SIV 
infected untreated animals, but this trend was not reversed in c-ART treated animals; these include OTU2 
(Streptococcus luteciae), OTU3 (family S24-7), OTU14 (family p-2534-18B5), OTU27 (YRC22), OTU33 (family 
Enterobacteriaceae), OTU37 (phylum Bacteroidetes), and OTU42 (Treponema). Thus, even though c-ART appears 
to shift the fecal microbiota to be more similar to healthy animals (Fig. 5 and Table 1), ultimately treatment was 
unable to completely alleviate all SIV-associated dysbiosis within the timeframe examined in these animals.

Discussion
HIV and SIV infections are accompanied by chronic immune activation and disease progression that is likely 
aided by the translocation of microbial products across the gut epithelium. Though gut dysbiosis has been well 
documented during HIV infection, whether similar changes occur during SIV infection is less clear. SIV infected 
pigtailed macaques have been reported to display altered gut microbiota25, whereas these changes were not as 
readily apparent in SIV infected rhesus macaques67. At a broader level, our results are in line with these findings 
as the overall microbiota composition did not seem to differ between the SIV infected untreated and other groups 
of macaques. However, dysbiosis was apparent when the beta-diversity was examined using multiple metrics, 
suggesting that while infection-associated changes in the composition of gut microbiota are subtle, they were 
apparent during SIV infection.

Interestingly, animals under c-ART for a period of 20 weeks (30 weeks PI) clustered with healthy animals 
(Fig. 5). These animals initiated c-ART at about the same time (10 weeks PI) that the SIV infected untreated group 
of animals were sampled at 9 weeks PI. Unfortunately, we did not have access to fecal samples from the c-ART 

OTU

Classificationa Mean abundance (%) Metastats P value

According to RDP database
According to Greengenes 
database Healthy SIV infected

c-ART 
treated

Healthy vs 
SIV infected

SIV infected vs 
c-ART treated

Healthy 
vs c-ART 
treated

OTU2 Streptococcus Streptococcus luteciae 1.44 3.49 4.95 0.215 0.620 0.034

OTU3 Porphyromonadaceae (family) S24-7 (family) 1.60 2.12 3.53 0.707 0.379 0.048

OTU4 Prevotella Prevotella copri 3.82 0.40 1.91 0.001 0.002 0.071

OTU6 Acinetobacter Acinetobacter 0.10 4.65 1.66 0.059 0.286 0.008

OTU7 Treponema Treponema 0.71 7.51 0.14 0.068 0.052 0.008

OTU8 Prevotella Prevotella copri 2.29 0.50 2.51 0.007 0.002 0.852

OTU10 Treponema Treponema 0.43 3.98 1.06 0.076 0.178 0.042

OTU11 Prevotella Prevotella copri 2.00 0.05 2.61 0.040 0.013 0.753

OTU13 Treponema Treponema 2.04 0.06 1.68 0.044 0.086 0.848

OTU14 Bacteroidetes (phylum) p-2534-18B5 (family) 0.48 1.04 2.14 0.335 0.215 0.017

OTU15 Prevotellaceae (family) [Prevotella] 1.36 0.63 1.70 0.282 0.037 0.723

OTU19 Lactobacillus Lactobacillus 1.16 1.62 0.22 0.668 0.007 0.106

OTU23 Treponema Treponema 0.70 2.68 0.08 0.259 0.108 0.038

OTU25 Dialister Dialister 1.42 0.40 0.73 0.012 0.122 0.110

OTU27 Bacteroidales (order) YRC22 1.81 0.36 0.33 0.041 0.899 0.036

OTU33 Enterobacteriaceae (family) Enterobacteriaceae (family) 0.05 1.19 0.79 0.096 0.728 0.030

OTU37 Bacteroidetes (phylum) Bacteroidetes (phylum) 0.15 0.27 1.04 0.476 0.020 0.005

OTU42 Bacteria (kingdom) Treponema 1.10 0.13 0.04 0.010 0.629 0.004

OTU54 Lactobacillus Lactobacillus 0.17 1.07 0.02 0.031 0.013 0.017

Table 2. Metastats analysis. OTU number is listed, together with the classification according to the Ribosomal 
Database Project (RDP) and the Greengenes databases. OTUs constituting ≥1% mean abundance for any 
group (healthy, SIV infected, or c-ART treated) are shown. Analysis was performed from a subsampled dataset. 
Metastats P values < 0.05 are shown in bold. aGenus and species are italicized. If the OTU was not classified to 
genus, the taxonomic group to which it classified is listed, with that taxonomic level in parantheses. No species 
information was available for OTUs classified to the RDP collection.
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group of animals at the time of c-ART initiation (10 weeks PI) to directly compare these time points. However, 
the cross-sectional comparisons between the 3 groups of animals and the clustering of the SIV infected untreated 
group away from the c-ART treated and healthy animals (Fig. 5) suggest that c-ART partially reverts the dysbiosis 
observed during SIV infection.

It is important to consider our results within the context of prior studies. Earlier studies have reported that 
SIV infection per se did not alter gut microbiota in rhesus macaques67. However, Dillon et al.5 reported an 
increase in the percent abundance of the Prevotella genus in HIV-infected individuals. This is in contrast to the 
decreased abundance of specific Prevotella OTUs that we observed in the SIV infected untreated group of animals 
(Table 2). Mutlu et al.6 reported several taxa that were indicator species of healthy human subjects as compared 
to HIV infected patients: these included Dialister in the control group and Enterobactericeae and Prevotella in 
the HIV group. Similarly, we observed a higher abundance of OTU25 (Dialister) in the healthy as compared to 
SIV infected untreated group, and a lower abundance of OTU33 (Enterobacteriaceae) in the healthy group as 
compared to the c-ART treated group. However, unlike the prior study6, we observed several OTUs of Prevotella 
that were higher in the healthy and c-ART treated groups as compared to the SIV infected untreated group of 
animals (OTUs 4, 8, and 11). The percent abundance of Spirochaetes was significantly higher in the SIV infected 
untreated group as compared to the c-ART treated group (Fig. 2B), though it did not differ from that of healthy 
animals, suggesting that c-ART likely leads to a reduction in the abundance of Spirochaetes. As has been reported 
in SIV infected pigtail macaques, there was no major difference in the relative abundance of either Bacteriodetes 
or Firmicutes between the groups25.

There are a number of factors such as the experimental design, variation in animals sampled, their diets, etc., 
that may contribute to the differences between the various studies that have examined changes in the gut micro-
biota during HIV and SIV infections. In our study, it is also likely that the higher viremia in the SIV infected 
untreated group (~7 log of SIV/ ml of plasma at 9 weeks PI) as compared to the c-ART treated group (~ 6 logs 
of SIV/ ml of plasma at 10 weeks PI) at the time of initiation of therapy could have played a role. There was, 
however, no major difference in the peripheral blood CD4 T cell counts between the SIV infected untreated and 
c-ART treated animals. It is also important to point out that the described study was cross-sectional in nature; 
clearly longitudinal sampling from the same animal over time would yield better insights into the animal-specific 
changes in gut microbiota during the course of SIV infection.

In conclusion, our results show that SIV infection differentially alters the composition of the gut microbiota 
and that this change is not readily apparent in animals receiving c-ART. This finding, combined with the cluster-
ing of c-ART-treated animals with healthy macaques, strongly suggests that highly suppressive ART likely reverts 
some of the dysbiosis associated with SIV infection.

Materials and Methods
Animals and fecal samples. Fecal samples were collected without handling the animals from ~2.5 to 4 year 
old male rhesus macaques (Macaca mulatta) of Indian origin as follows: healthy (n = 7), SIV infected untreated 
(n = 6), and SIV infected c-ART treated (n = 10) animals. Sixteen animals were infected with 100 animal infec-
tious doses of SIVmac251 intravenously. The c-ART group of animals was treated with a combination of PMPA 
(Tenofovir; 30 mg/ Kg BW/ daily), FTC (Emtricitabine; 20 mg/ Kg BW/ daily), and DTG (Doultegravir; 2.5 mg/ 
Kg BW/ daily) subcutaneously for a period of 20 weeks starting at 10 weeks PI.

All animals were housed at Bioqual in accordance with the recommendations of the Association for 
Assessment and Accreditation of Laboratory Animal Care International Standards and NIH Guide for the Care 

Figure 6. Scatter plots of representative OTUs identified as statistically different by Metastats. Percent 
abundance of the OTU is plotted, and each symbol represents one sample, with the mean shown as a solid line. 
OTUs decreased (OTU4 and OTU27) or increased (OTU54 and OTU37) in mean abundance from healthy 
to SIV infected, and subsequently increased (OTU4 and OTU37) or decreased (OTU27 and OTU54) from 
SIV infected to c-ART treated groups. Calculations were performed from a subsampled dataset. Statistical 
significance was tested by the mothur implementation of Metastats, with P < 0.05 = *, and P < 0.01 = **.
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and Use of Laboratory Animals of the United States, and were a part of protocols that were previously approved 
by the Institutional Animal Use and Care Committee (IACUC) of BIOQUAL (protocol# 17-030). As the fecal 
samples were collected without handling the animals, a separate IACUC protocol was not required by the IACUC 
at Bioqual or USUHS. All the animals were seronegative for SIV, simian retrovirus and simian T-cell leukemia 
virus type-1 prior to being enrolled in these studies. Fecal samples were collected, immediately snap frozen in 
liquid nitrogen, and transported to the laboratory for analysis.

Bacterial DNA extraction. Approximately 200–300 mg of fecal material from each animal was used for 
DNA isolation. Total bacterial genomic DNA was extracted using the PowerSoil-htp 96 Well Soil DNA Isolation 
Kit (MOBIO). PCR amplification and sequencing protocols were adapted from the Earth Microbiome Project 
(http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s/). Briefly, the V4 region of the bacterial 
16S rRNA gene was PCR-amplified using barcoded primers to generate paired-end reads68. Each 25-µL PCR mix-
ture contained 10 µL 5 PRIME HotMasterMix (QuantaBio), 0.5 µL of each 10 µM primer, 1 µL extracted genomic 
DNA, and 13 µL sterile water. PCR amplification was performed using the following settings: 94 °C for 3 min; fol-
lowed by 35 cycles of 94 °C for 45 s, 50 °C for 1 min, and 72 °C for 90 s; followed by 72 °C for 10 min. Each sample 
was amplified in triplicate and pooled, resulting in 75 µL of PCR product. Products were visualized by gel electro-
phoresis and the concentration of PCR-amplified DNA fragments was determined using a Nanodrop (Thermo). 
About 240 ng of each amplicon was next pooled and the pooled amplicons were cleaned using the UltraClean 
PCR Clean-Up Kit (MOBIO). Samples were assessed using a Bioanalyzer (Agilent Technologies) for quality and 
average size distribution and via Qubit (Invitrogen) for concentration prior to sequencing on a MiSeq sequencer 
(Illumina) according to manufacturer’s instructions.

Microbiota analysis. Analysis of the V4 region of the 16S rRNA gene was performed using the open-source 
software program mothur (v.1.41.1)69, according to the MiSeq standard operating procedure (http://www.mothur.
org/wiki/MiSeq_SOP). The paired forward and reverse reads were assembled into contigs, and sequences longer 
than 275 base pairs, containing any ambiguous base calls, or a run of greater than 8 homopolymers were dis-
carded. The remaining sequences were aligned to the Silva 16S rRNA reference files, release 13270. Chimeric 
sequences were identified and removed using the mothur implementation of the VSEARCH algorithm71. Reads 
were classified using the Ribosomal Database Project, version 972, with a Bayesian classifier using an 80% boot-
strap confidence level over 100 iterations. Contaminant sequences from mitochondria, chloroplasts, archaea, 
eukaryotes and unknown were removed. Remaining sequences were clustered into operational taxonomic units 
(OTUs), defined by a 97% similarity level, according to the average-neighbor algorithm. A total of 27,657 OTUs 
were identified. The samples contained an average of 207,798 sequences (range: 108,414–308,433). The percent 
relative abundance of bacterial family members in each sample was calculated. Samples were rarified to the lowest 
number of reads from a sample (108,414) to minimize the effects of different sequencing depths. The subsampled 
dataset contained 18,571 OTUs, with an average Good’s coverage of 99.0% (range: 98.4–99.2%). Alpha diversity 
was calculated by inverse Simpson index. Beta diversity was assessed using the Jaccard63, Bray-Curtis64, and Yue 
& Clayton theta (ΘYC)65 calculators. Visualization of the distance matrices was accomplished using principal 
coordinates analysis (PCoA).

The dataset we examined contained a large proportion of singletons (OTUs that contain a single sequence). 
To ensure that these unique events did not overly impact the data analysis, singletons were removed and the 
data were reanalyzed. Removal of the singletons decreased the number of unique OTUs in each group, but other 
measures of alpha-diversity (observed OTUs and inverse Simpson) were very similar to the dataset containing 
singletons. The beta-diversity of the samples was essentially identical, with PCoA graphs indistinguishable from 
the dataset with singletons (Data not shown). Statistical analysis of the distance matrices by analysis by molecular 
variance (AMOVA) reached the same significance. The only striking difference was the rarefaction curve; without 
singletons, the curves leveled off more than with singletons (though the curves still do not reach a slope of zero; 
data not shown). Overall, the removal of the singletons did not change the conclusions we made from the analysis, 
and OTU-based analysis was necessary to observe the differences between the groups by both beta-diversity and 
metastats. GraphPad Prism (8.0.0) was used to create heatmaps and to graph data. Quantitative Venn diagrams 
were based on those generated by BioVenn (http://www.biovenn.nl/index.php)73.

Statistical analysis. Differences between treatment groups were tested by one-way ANOVA with Tukey’s test 
for multiple comparisons for the following comparisons: percent abundance of phylum-level sequences, observed 
OTUs, and inverse Simpson index. Significant differences in beta-diversity between the communities were deter-
mined with AMOVA using mothur. Differences in the abundance of specific OTUs between treatment groups were 
determined using the mothur implementation of Metastats66. For OTUs that were statistically different between 
groups, the sequences were additionally re-classified using the Greengenes reference files, version 13_8_9974.

Data availability
All the data supporting the results are included in the manuscript. The raw sequencing reads can be accessed 
using the National Center for Biotechnology Information (NCBI) BioProject ID# PRJNA561197 (http://www.
ncbi.nlm.nih.gov/bioproject/561197). Samples M1 - M10 are the 10 SIV infected c-ART treated animals; samples 
M11 - M16 are the 6 SIV infected untreated animals; samples M18, M25, M27, and M29 - M32 are the 7 healthy 
animals.
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