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continuous-variable source-
device-independent quantum key 
distribution against general attacks
Yichen Zhang1, Ziyang chen2, christian Weedbrook3, Song Yu1* & Hong Guo2

the continuous-variable quantum key distribution with entanglement in the middle, a semi-device-
independent protocol, places the source at the untrusted third party between Alice and Bob, and thus 
has the advantage of high levels of security with the purpose of eliminating the assumptions about the 
source device. However, previous works considered the collective-attack analysis, which inevitably 
assumes that the states of the source has an identical and independently distributed (i.i.d) structure, 
and limits the application of the protocol. to solve this problem, we modify the original protocol by 
exploiting an energy test to monitor the potential high energy attacks an adversary may use. our 
analysis removes the assumptions of the light source and the modified protocol can therefore be called 
source-device-independent protocol. Moreover, we analyze the security of the continuous-variable 
source-device-independent quantum key distribution protocol with a homodyne-homodyne structure 
against general coherent attacks by adapting a state-independent entropic uncertainty relation. the 
simulation results indicate that, in the universal composable security framework, the protocol can still 
achieve high key rates against coherent attacks under the condition of achievable block lengths.

Quantum key distribution (QKD)1–3, as one of the most practical quantum cryptography technology, allows two 
users (traditionally called Alice and Bob) to establish a set of secret keys exploiting both quantum mechanics and 
classical post-processing methods. This can provide information-theoretic security even against existing potential 
eavesdroppers.

Continuous-variable (CV) QKD protocol4,5, of which the characteristic is that the information is encoded 
on the quadratures of the light field and measured with coherent measurement methods, e.g., homodyne6 and 
heterodyne detection7, has developed rapidly. There are two main reasons resulting in CV-QKD attracting so 
much attention in recent years: it can be easily implemented with standard telecom components8,9 and compatible 
with wavelength division multiplexing10,11, and it can achieve high key rate in metropolitan distance12, which has 
advantages of short-range implementation.

There are plenty of CV-QKD protocols proposed to deal with different scenarios. In the case of fully 
trusted-device protocols, it is always assumed that both Alice and Bob are honest, and Eve can only control the 
quantum channels rather than the devices at the two parties. A large number of distinctive trusted-device pro-
tocols, including discrete modulation CV-QKD protocols13–15, two-way protocols16–21 and so forth, have been 
put forward to enrich the protocol design. However, because of the imperfection of the practical source and 
detection devices, a QKD system may be attacked by a potential eavesdropper, and it compromises the security 
of a protocol22. To eliminate all the loopholes of devices, fully device-independent protocols are proposed, which 
do not make any assumptions for all experimental devices and allows Eve to control them all. Nevertheless, those 
protocols face experimental challenges because they have to perform a detection-loophole-free Bell test23.

As a compromise,  semi-device-independent (semi-DI) protocols are proposed, such as 
measurement-device-independent (MDI)24–26 and one-sided device-independent (1sDI)27,28 QKD protocols, 
to give a trade off between the security of some devices and the performance of a protocol, which regard that 
part of the protocol is honest and the other part is untrusted. Remarkably, both CV-MDI29–31 and CV-1sDI pro-
tocols27,32,33 have been analyzed against general coherent attacks, which improves the security analysis of the 
protocols.
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CV-QKD with entanglement in the middle34 is the protocol of which the source is placed at the untrusted 
third party in the middle and controlled by the malicious eavesdropper. Alice and Bob then measure one of the 
modes they received separately, with either homodyne or heterodyne detection. The goal of the protocol is that we 
do not need to give assumptions on the source, which is sometimes ill-characterised and unsafe in communica-
tion. Nevertheless, the security analysis of the CV-QKD with entanglement in the middle protocol is only con-
fined to the collective attack cases, which inevitably assumes that the states of the source has identical and 
independently distributed (i.i.d) structure, i.e., ρ σ= ⊗

A B AB
n

n n , leading to the protocol unable to reach the original 
idea of source-device-independent (SDI).

Inspired by the security analysis technique used in the 1sDI protocol by F. Furrer et al.32,33, we adapt one 
type of state-independent entropic uncertainty relation with CVs to analyse the security of the CV-QKD with 
entanglement in the middle protocol under coherent attacks and only consider the case that both Alice and Bob 
perform homodyne detections. We modify the original protocol by exploiting an energy test at the reconciliation 
side (Bob’s side for reverse reconciliation as an example) to monitor the potential high energy attacks an adversary 
may use. By properly quantifying the correlation between Alice’s and Bob’s data, which could be used for estimat-
ing Eve’s knowledge of the raw key, we obtain the secret key rate of a finite number of exchanged signals supposing 
that the strategy Eve exploits is a coherent attack. Our analysis removes the assumptions of the light source and 
assumes that the sampling process performed in Alice’s and Bob’s sides are i.i.d, which is needed for exploiting 
the entropic uncertainty relation. Therefore, The modified protocol can be called CV-SDI QKD protocol. Finally, 
simulation shows that even when the coherent attack is considered, CV-QKD with entanglement in the middle 
can still reach a non-zero key rate over short distance, without giving any constrains of the source.

Results
the original cV-QKD protocol with entanglement in the middle against collective attacks. We 
begin by describing the CV-QKD protocol with entanglement in the middle, which was originally proposed in 
ref. 34. A two-mode squeezed vacuum state EPR, with an unknown variance V, is prepared by the untrusted third 
party, see Fig. 1. The EPR source can be created either by an untrusted communication party Charlie or by the 
potential adversary Eve. The two modes of an EPR source, e.g., EPR1 and EPR2, are sent to Alice and Bob sepa-
rately through quantum channels. As the general assumption in QKD is that both of the two quantum channels 
could be totally controlled by potential eavesdropper Eve; leading to the introduction of loss and noise to the 
states after transmission. Assuming the quadratures of the two modes of the EPR source are X̂EPR1

 and X̂EPR2
 with 

the covariance matrix (CM)

γ =






−

−






V V

V V

I Z

Z I

1

1
,
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where I = diag[1, 1] and I = diag[1, −1], and the transmissivities of two channels are τA and τB respectively, then 
we have the quadratures after transmissions, given by

τ τ

τ τ

= + −

= + −

ˆ ˆ ˆ
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where E1 and E2 are the ancillary systems which Eve inject into the links to attack the protocol. The 
two-correlated-mode eavesdropping strategy is considered here, which is the general two-mode attack strategy, 
where the CM γE E1 2

 of the two correlated modes is

γ
ω

ω
=











I G
G I

,
(3)

E E
A

B
1 2

Figure 1. Schematic of the entanglement-in-the-middle CV-QKD protocol34. EPR: untrusted two-mode 
squeezed state with variance V. Hom: homodyne detection. QM: quantum memory. Only the homodye 
detections are discussed here and Eve’s attacks are considered as two correlated modes attacks without loss of 
generality.
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where ωA and ωB are the variance of modes E1 and E2, and the correlation term G = diag[g, g′] with the correlation 
parameters g and g′ satisfying the constraints shown in ref. 35. The attack is optimal by setting modes E1 and E2 as 
coherent given in refs. 24,36,37.

Originally, Alice and Bob perform quadrature measurements via homodyne or heterodyne detections, and 
in this paper, we only consider the scenario that both Alice and Bob employ homodyne detections to get one 
measurement result, i.e., quadrature x or p. After finishing the state preparation and measurement phases, both 
Alice and Bob announce which quadrature they choose through an authenticated pubic channel to sift their keys. 
They hold the data for which the selected quadratures are the same and discard the rest. Finally, the two commu-
nication parties proceed with classical data post-processing, namely parameter estimation, error correction and 
privacy amplification to distill their keys.

In the case of collective attacks setting, the state ρA B EN N N after all runs can be considered as a tensor product 
state, namely ρ ρ= ⊗

A B E ABE
N

N N N , where N is the total number of quantum signals exchanged during the protocol. In 
this paper, we only focus on the asymptotic case under collective attacks to show the ideal performance of the 
protocol, where the total number of quantum states N tends to infinite. The asymptotic secret key rate Kcollective

asym  (for 
reverse reconciliation) is given by the Devetak-Winter formula38, which reads

β χ= −K I A B B Emax{ ( : ) ( : ), 0}, (4)collective
asym

where β is the reconciliation efficiency, I A B( : ) is the classical mutual information between Alice’s and Bob’s data, 
and χ B E( : ) is the Holevo information between Bob’s data and the eavesdropper39. This is given by 
χ = − |B E S E S E B( : ) ( ) ( ), where S(E) is the von Neumann entropy of Eve and |S E B( ) is the conditional von 
Neumann entropy of Eve given Bob’s information.

χ B E( : ) can be bounded with the help of the Gaussian state extremality theorem40,41 in the case of collective 
attacks, hence we assume that the state ρAB is Gaussian to minimize the final secret key rates, which can be calcu-
lated from the CM. A detailed derivation of the CM and the key rate can be seen in Methods section.

The modified CV-SDI QKD protocol against general coherent attacks. In the case of general coher-
ent attacks, the assumption that ρA B EN N N  has tensor product structure is invalid, so we cannot apply Eq. (4) 
directly to bound the security key rate after finite runs of the protocol. There are in general two main 
security-proof techniques developed in CV-QKD to handle coherent attack issues. One method is the de Finetti 
theorem42,43, which have the ability to reduce the security from coherent attacks to collective attacks, and it was 
successfully employed to analyse the protocol which has some symmetric properties30. The alternative is the 
entropic uncertainty relation32,33,44, which requires that the protocol needs to randomly measure between two 
quadratures and perform the sifting process27,31. We exploit the latter tool in this paper to obtain the security of 
the entanglement-in-the-middle protocol with homodyne-homodyne structure against coherent attacks. We 
point out that the protocol in ref. 33 has no assumption on Alice’s side (also be treated as the source side), thus it is 
also called one-sided device independent protocol. In our protocol, there is also no assumption on the source. 
However, since the structure of our protocol is a network structure, where the source is located in a third party, 
and Alice and Bob only perform measurements, this structure is very different from previous protocol, where the 
source is located in one side of the protocol. We named our protocol “source device independent” to distinguish 
it from previous one-sided device independent protocols.

We analyse the protocol under general coherent attacks with untrusted source in the middle by adapting the 
approach described in ref. 33. Thanks to the composable security framework, we have the ability to study the pro-
tocol considering some imperfect situation, such as the practical detection model, the energy test and finite-size 
effect, which allows us to modify the protocol in coherent-attack case.

Simulation. Using the results in the previous section, we can plot the secret key rate as a function of the total 
transmission distance focusing on the symmetric configuration where we set τ τ= = TA B  and T is the trans-
missivity of the channel. The simulations are under two-mode optimal attacks to show the performance of the 
protocol and both collective and coherent attack scenarios are discussed shown in Fig. 2. Note that modeling an 
eavesdropper’s attack behavior here does not limit the eavesdropping ability, but just for the convenience of sim-
ulations. Actually, in experiment, we only need to know the parameter estimation data x p{ , }A

pe
A
pe  and x p{ , }B

pe
B
pe  

of Alice and Bob to execute the security analysis of the protocol. Therefore there is no need to assume which 
model Eve’s attack strategy belongs to before the protocol starts. Modeling attacks of eavesdroppers with 
two-mode coherent attacks yields the worst performance of the protocol24,36,37, thus we use this modeling method 
to well reflect the performance of the protocol. The results are shown in Figs. 2 and 3, where Fig. 2 shows the 
secret key rates of the CV-SDI QKD as the function of transmission distance under different block sizes, while 
Fig. 3 is the key rate varying with the block size.

Discussion
In order to facilitate the analysis of the performance of the protocol, we simulate the key rate with some ideal 
parameters. For instance, we assume that the protocol has an ideal modulation variance V = 105 (which could 
replace an infinite modulation variance) and perfect reconciliation efficiency β = 1. Also, to get the lower bound 
of the protocol, we set ω ω ω ω= − + + −g min { ( 1)( 1) , ( 1)( 1) }A B A B  and ω ω ξ= = + −T T1 /(1 )A B  
with excess noise ξ in one channel for two-mode optimal attacks. In the coherent attack cases, we set the interval 
parameter α to 5232 and the overall security parameter is smaller than 10−20. Meanwhile, the parameter Mth is set 
to 12 to ensure that the energy test fails with probability smaller than 10−20.

In Fig. 2, the gray dot line shows the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound45, which gives an 
upper bound of the secret key capacity of the lossy channel. The black solid line is the asymptotic key rate under 
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collective attacks, and the longest transmission distance is over 18 km, which is a little shorter than that of the 
two-mode individual attacks case (where the correlation parameter g = 0)34. The other five curves, from top to 
bottom, describe the key rates under coherent attacks. The red solid curve is obtained for N → ∞, and the other 
dashed lines describe the rate for N = 1010 to N = 107 with finite exchanged signals. In Fig. 3, we also plot the secret 
key rate under coherent attacks as a function of block size for different distances. The distances are 5 km, 10 km 
and 14 km, respectively. We point out that when the block size reduces, the secret key rate decreases, and it is not 
achievable if the block size is below 107.

We notice that there is a gap between the performance of CV-QKD protocol with entanglement in the middle 
under collective attacks and that under asymptotic coherent attacks cases. The reason is that the bound given by 
the entropic uncertainty relation is not very tight especially in the high losses regime, which has been shown in 
ref. 33.

In conclusion, we have analyzed the security of continuous-variable source-device-independent quan-
tum key distribution protocol against general coherent attacks, where the source of the protocol is untrusted 
and may be controlled by the malicious adversary. By exploiting the state-independent entropic uncertainty 
relation together with the energy test, our analysis has no assumptions on the source, making the protocol 
source-device-independent even under coherent attacks. The simulation results indicate that, in the universal 
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Figure 2. Secret key rates of the CV-SDI QKD protocol. The protocol is under symmetric configuration with 
τ τ= = TA B  where T is the total transmissivity of the channel. We consider the protocol with perfect 
reconciliation efficiency β =1  and ideal modulation variance =V 105. We also set the excess noise as ξ = 0.001 
in each channel and the overall security parameter is smaller than 10−20. The gray dot line is the PLOB bound45 
and the black solid line is the key rate under collective attacks. The red solid line is the key rate under coherent 
attacks with infinite exchanged signals. The four dashed lines, from top to bottom, are the secret key rates under 
coherent attacks, with the block lengths from 1010 to 107.
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Figure 3. Secret key rates as functions of block size of the CV-SDI QKD protocol. The black solid line shows the 
performance with the distance of 5 km. The red dot-dashed line and the blue dashed line are the key rates of the 
protocol with distances of 10 km and 14 km, respectively. The other parameters are as in Fig. 2.
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composable security framework, the protocol is still secure, achieving high key rates against coherent attacks 
under the condition of achievable block lengths (N from 107 to 1010).

Methods
covariance matrix and the secret key rate under collective attacks. The final bipartite quantum 
state ρAB of Alice and Bob has the CM with the form

γ = ( )a c
c b

I Z
Z I

,
(5)AB

where

τ τ ω
τ τ ω

τ τ τ τ

= + −
= + −

= − − − −

a V
b V

c V g

(1 ) ,
(1 ) ,

1 1 1 , (6)

A A A

B B B

A B A B
2

and we let

ω ω ω ω= − + + −g min { ( 1)( 1) , ( 1)( 1) } (7)A B A B

by setting modes E1 and E2 are coherent. Then the secret key rate Kcollective
asym  can be calculated by Eq. (4) if we restrict 

our discussion in reverse reconciliation cases. The mutual information between Alice’s and Bob’s data can be 
described as

=


 −



.I A B a

a c b
( : ) 1

2
log

/ (8)2 2

To obtain the von Neumann entropy S(E) and |S E B( ), we always assume that Eve can purify the whole system 
in order to maximize her information, thus we have S(E) = S(AB) and | = |S E B S A B( ) ( ). S(AB) is a function of the 
symplectic eigenvalues λ1,2 of γAB, which reads

λ λ= − + −S AB G G( ) [( 1)/2] [( 1)/2], (9)1 2

where

= + + −G x x x x x( ) ( 1)log ( 1) log , (10)2

and

λ ∆ ∆= ± − D1
2

[ 4 ], (11)1,2
2 2 2

where we use the notations that Δ = a2 + b2 − 2c2 and D = ab − c2. After Bob performs homodyne detection, 
Alice’s CM conditioned on Bob’s measurement results will transform to

γ γ γ= − Σ Σ−X X( ) , (12)A
x

A C
T

B C
1b

where γA = aI, γB = bI, ∑C = cZ and X = [1,0; 0,0]. λ| = −S A B G( ) [( 1)/2]3  is a function of the symplectic eigen-
value λ3 of the covariance matrix γA

xb with λ = −a a c b( / )3
2 . Therefore, the secret key rate under collective 

attacks when the reverse reconciliation is performed is

β= − − | .K I A B S AB S A B( : ) [ ( ) ( )] (13)collective
asym

the practical detection model and the measurement phase. We model the practical detector as 
an ideal homodyne detector followed by an analog-to-digital converter (ADC) with finite sampling range, and 
therefore the measurement process can be divided into two steps.

In Step 1, Alice and Bob exploit ideal homodyne detectors to measure the input signal with infinite ranges 
and resolutions. The measurement quadratures are ideal continuous variables with infinite dimensions, hence the 
measurement results are also continuous. Assuming that the sifting process is done, we denote the outputs of ideal 
homodyne detectors as QA and QB in two sides. In general CV-QKD scenario, the statistical distribution of each 
outcome should follow a Gaussian distribution.

In order to obtain a tight bound using the entropic uncertainty relation, we need to rescale one of two results, 
QA or QB, and ensure that Alice’s and Bob’s measurement outcomes have high correlations after transmission 
through untrusted channels. We use the transformations below (using Alice as an example) to scale the quadra-
ture measurements:

→ =Q Q t Q , (14)A A q A

where tq denotes the rescaling factor related to the channel losses of Alice and Bob, which can be determined by 
matching the variances of Alice’s and Bob’s measurement results. Supposing that m signals are randomly chosen 
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to do the parameter estimation, the average value of quadrature measurement results both in Alice’s and Bob’s 
sides can be estimated by

∑ ∑= =
= =

ˆ ˆE Q
m

Q E Q
m

Q( ) 1 , ( ) 1 ,
(15)A

i

m

A
i

B
i

m

B
i

1 1

where = =Q Q{ }A A
i

i
m

1 and = =Q Q{ }B B
i

i
m

1, and it is easy to estimate the parameter tq by31

= ∑ −

∑ −
.=

=

ˆ
ˆ
ˆt

Q E Q
Q E Q

( ( ))
( ( )) (16)

q
i
m

B
i

B

i
m

A
i

A

1
2

1
2

In the symmetric case, where the channel losses and noises of Alice and Bob are approximately the same, we 
can simplify the analysis by assuming that tq ≈ 1.

In Step 2, the ADCs with finite range and finite precision followed by homodyne detectors are exploited to 
discretize continuous measuring intervals into discrete intervals, and the continuous variables QA and QB are also 
discretized. The measurement results are grouped into intervals:

α α α δ α δ α α−∞ − − − + .... − ∞( , ], ( , ], , ( , ], ( , ), (17)

where α is the maximum discretization range of the ADCs, which takes the finite range of detectors into consid-
eration, and δ denotes the resolution of the measurement, which shows how much detail the detector can detect. 
The corresponding outcome alphabet is denoted by χ α δ= ...{1, 2, , 2 / }, where we assume α δ ∈2 /  and every 
measurement outcome corresponds to one of the intervals. After this step, the continuous outcomes are replaced 
by the discrete results, which are denoted by

 →  → .Q X Q X, (18)A
discrete

A B
discrete

B

This detection model can effectively illustrate the practical detector with finite range and resolution, without 
considering the efficiency of the detector, which could be modeled by a beam splitter with transmissivity Td

46. 
However, the “discretization” process may cause security issues when compared with the ideal detection case 
since the detection results are missing information about the quadratures. One issue is that any measurement 
outcomes inside one of the equal-length intervals α α δ α δ α− − + .... −( , ], , ( , ] will map to the same value 
and it may cause a reduction in the information about the state within each sampling interval due to the finite 
sampling bits. This effect can be suppressed by increasing the number of sampling bits. The other problem is 
caused by two intervals with infinite length, namely α−∞ −( , ] and α ∞[ , ), and users cannot know the full infor-
mation about the state outside the detection range. In other word, users cannot distinguish whether the energy of 
the measured pulse is low or high, which may leave some loopholes for eavesdropping. This problem can be 
solved by the energy test solution.

the energy test. For fear of the large energy attack that Eve may exploit during the communication process, 
the protocol should be modified by adding the energy test step to ensure that the energy of measured states is below 
a certain threshold. We adapt the energy test method proposed in ref. 33 to study entanglement-in-the-middle 
protocol to remove the assumption of the source in the security analysis, which should be considered in trusted 
source scenario32, hence this protocol also can be called source-device-independent protocol.

Assuming that the protocol is performed with reverse reconciliation, the energy test is exploited in Bob’s side 
before Bob performs the measurement step, which is described in Fig. 4. Bob uses a beam splitter with almost 

Figure 4. Schematic of the energy test at Bob’s side. Bob uses a beam splitter with transmissivity T to split the 
incoming signal into two parts. The transmission mode ′XB is used for generating Bob’s data and the reflection 
mode a′ is exploited to perform the energy test. a and b are two vacuum modes induced by beam splitters. 
Modes t1 and t2 are the output modes of the balanced beam splitter used for checking whether | |qt1

 and | |pt2
 are 

below a certain threshold.

https://doi.org/10.1038/s41598-020-63024-5


7Scientific RepoRtS |         (2020) 10:6673  | https://doi.org/10.1038/s41598-020-63024-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

perfect transmissivity T to split incoming mode XB into two parts, and a is the vacuum mode introduced by the 
other port of the beam splitter. Mode ′X B is the transmitted mode of the output used for generating Bob’s raw data 
using a homodyne detector, and a′ is the reflected mode for the energy test. The reflected mode a′ is measured by 
a heterodyne detector, which consists of a balanced beam splitter and two homodyne detectors. Modes t1 and t1 
are the output modes of the balanced beam splitter used for checking whether the amplitude of one output | |qt1

 
and the phase of the other output | |pt2

 are below a certain threshold. If for every measured signal, both the ampli-
tude | |qt1

 and the phase | |pt2
 are not larger than the threshold Mth, we say that the energy test passes; and the proto-

col aborts otherwise. The probability that Bob measures with homodyne detection larger than the detection range 
α can be bounded by the function Γ α T M( , , )th , which reads33

α λ λ μα
λ

Γ =
+ + + 



−

−
+






−
T M M

T
( , , ): 1 1

2
exp ( )

(1 )/2
,

(19)
th

th
1 2

where μ = − T
T

1
2

 and λ = −( )T
T

2 1 2
. The smoothness of the energy test ε further can be bounded by

ε
Γ α

= .

n T M
p

2 ( , , )

(20)

th

pass

Finite-size effect and the key rate. In the coherent-attack scenario, due to the leftover hash lemma, the 
εc-correct and εs-secret key of length sec can be extracted47, which can be expressed by

ε ε
≤ | − − +ε

ρ H X E( ) log 1 2,
(21)

B
key

EC
c

sec min 2
1
2

where EC denotes the leaked information in error correction step, and it can be estimated before the error correc-
tion begin during the parameter estimation phase, |εH X E( )B

key
min  is the smooth conditional min-entropy of data 

XB
key with smoothing parameter ε, conditioned on the information Eve may have, which quantifies Eve’s uncer-

tainty about the Alice’s measurement outcomes. ε satisfies ε ε ε ε≤ − − p( )/2 2s pass1 , where ppass is the probability 
that the parameter estimation step passes, ε is the security parameter related to the energy test given in Eq. (20) 
and we choose ε1 = εs/2 for simplification48. Equation (21) is a CV type key formula considering the quantum side 
information E in infinite-dimensional Hilbert space32.

The parameter EC can be easily obtained by publishing some of Bob’s data (in the reverse reconciliation case), 
which is

β= − H X I X X( ) ( : ), (22)EC B B A

where H(XB) denotes the discrete Shannon entropy of the data in Bob side, which can be described by

∑ δ= − −
=

H X p x p x( ) ( )log ( ) log ,
(23)B

i

n

i i
1

2 2

and I X X( : )B A  is the mutual information between Alice and Bob.
Our target is to bound the smooth min-entropy |εH X E( )B

key
min  in the presence of quantum adversaries. The 

entropic uncertainty relations were originally introduced in discrete variable QKD to bound the min-entropy and 
to show the protocols’ security49,50. They were thereafter extended to infinite dimensions by F. Furrer et al.51,52. 
Therefore we exploit one type of uncertainty relation formula shown in ref. 33 to bound the min-entropy in the 
entanglement-in-the-middle protocol, and the feature of the entropic uncertainty relation together with the 
energy test, resulting in making the protocol being source-device-independent.

Entropic uncertainty relation gives a bound of guessing the uncertainty that the eavesdropper may have, when 
both communication parties randomly measure in two bases. The relationship between smooth min- and max- 
entropies is given by

δ
| ≥ − |ε

ω
ε

ωH X E n
c

H X A( ) log 1
( )

( ) ,
(24)B

key
B
key n

min max

where c(δ) quantifies the overlap of the two measurements and is independent of the measured states, which 
considers the detectors’ discretization process and has the form:

δ
π

δ δ
= ⋅











c S( ) 1
2

1,
4

,
(25)

2
0
(1)

2 2

where S0
(1) is the 0th radial prolate spheroidal wave function of the first kind53, which can be well approximated by 

δ δ π≈c( ) /(2 )2  if the interval length δ is not large. |ε
ωH X A( )B

key n
max  is the smooth max-entropy between Bob’s data 

and Alice’s system with smoothing parameter ε. In Eq. (24), we assume that the random sampling of detections 
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are i.i.d. The goal of estimating the smooth min-entropy |εH X E( )B
key

min  is to give an upper bound of the smooth 
max-entropy |ε

ωH X A( )B
key n

max .
To estimate the upper bound of |ε

ωH X A( )B
key n

max , first due to the data processing inequality54, we can obtain that

| ≤ |ε
ω

ε
ωH X A H X X( ) ( ) , (26)B

key n
B
key

A
key

max max

and we need to bound the correlation between data XB
key and XA

key. For that we exploit the average distance,

∑= −
=

d X Y
n

X Y( , ) 1 ,
(27)i

n

i i
1

to give the bound of the smooth max-entropy. It has been shown in ref. 32 that if ε≥ ≤d X X dPr[ ( , ) ]B
key

A
key 2 holds, 

we can always give a bound by

γ| ≤ .εH X X n d( ) log ( ) (28)B
key

A
key

max 2

where γ is a function arising from a large deviation consideration, which reads

γ = + + + − .t t t t t( ) ( 1 )[ /( 1 1)] (29)
t2 2

However, we have only data XA
pe and XB

pe with m length to perform the parameter estimation rather than data 
XA

key and XB
key, thus parameter d needs to be bounded by exploiting the data only consumed in parameter estima-

tion step. Two functions need to be defined first, one is the average second moment of the difference between two 
sequences, which reads

∑= −
=

d X Y
N

X Y( , ) 1 ,
(30)k

N
k k

2
1

2

and the other is the average second moment for the discretized data measurements, which is denoted by

∑ α δ= − .
=

m X
N

X( ) 1 /
(31)k

N
k

2
1

2

Then we check whether the average distance =d d X X( , )PE
A
pe

B
pe  is not larger than a certain threshold d0. They 

continue the protocol if ≤d dPE
0 and abort the protocol otherwise. In the case of the protocol proceeding, Alice 

and Bob calculate the average second moments of their data respectively, which denote =V m X( )X
PE

A
pe

2A
 and 

=V m X( )X
PE

B
pe

2B
 according to Eq. (31), and they also compute the average second moments between their data by 

=V d X X( , )d
PE

A
pe

B
pe

2  according to Eq. (30).
With the help of Serfling’s large deviation bound55, we can finally bound the max-entropy by

γ μ| ≤ +εH X X n d( ) log ( ), (32)B
key

A
key

max 2 0

where μ describes the statistical fluctuation deviating from d X X( , )B
key

A
key , which denotes

μ ξ
σ α δ ξ

= +−
−

⁎N
m n

N
nm

2log
4( / )log

3
,

(33)2
1 2

1

with

σ ν
δ

ν
δ

ν
δ

=


 −



 +



 + +



 +



 +






 +



⁎

m
N

V m
N

d m
N

V V m
N

V V( ) 2 2 ,
(34)d

PE PE
X
PE

X
PE

X
PE

X
PE2 2

2 2 2A B A B

and

ξ ε ε α ν α= − − Γ −




−

+





.n T M nm

N m
( 2 2 ( , , ) ) 2exp 2( / )

( 1) (35)
s th1

2 2
2

v  is the smallest real number making ξ  positive. If there exist v such that ξ  is positive and 
ε α ε− Γ <T M2 2 ( , , )th s1  is satisfied, the final secret key rate under coherent attacks can be written as

= K N/ , (36)coherent Low

where Low is the lower bound of the secure key length, which reads

δ
γ μ

ε ε
=







− +






− − + . n
c

dlog 1
( )

log ( ) log 1 2
(37)

Low EC
c

0
1
2

Otherwise, we denote that the key rate =K 0coherent . The detailed proof of this section can be seen in ref. 33.
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The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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