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Simulation of overland flow 
considering the influence of 
topographic depressions
Lin Hu1,3, Weimin Bao1, Peng Shi1,2*, Jianjin Wang1 & Meixia Lu1

The simulation of overland flow, wherein runoff yield and concentration are influenced by topography, 
is fundamental to hydrological forecasting. Therefore, critically evaluating the characteristics of 
overland flow under the influence of topographic depressions—which are one of the most common 
microtopographic structures—is vital for improving current hydrological models. In this study, we 
developed a solution for the real-world application of overland flow simulations under the influence 
of depressions in hydrological models. A relative depression storage–outflow curve (RDOC) was 
proposed to investigate surface outflow processes. Experiments were conducted based on the variable-
controlling approach using three rainfall return periods, four slopes, and four depression rates while 
ensuring a consistent initial soil moisture content. A homogenized RDOC was achieved based on shape 
analysis; it was parameterized by the outflow threshold and the reciprocal of the curve index of two 
outflow stages (B and D). A relative depression storage–outflow function (RDOF) was generated and a 
complete calculation procedure was applied within a hydrological model. Furthermore, we analyzed the 
hydrological responses to parameters of different hydrological factors to improve our understanding of 
the parameter determination of the RDOF.

Flood disasters are among the most destructive natural disasters faced by humans. They greatly threaten the 
safety, lives, and property of people worldwide1–3. To further improve the accuracy of flood forecasting, the effects 
of microtopography on hydrological responses have become a key global research topic4–6. As one of the most 
common microtopographic structures, depressions are widely distributed across all types of soils, vegetation, 
and rocks, and even occur as mountain ditches7; these structures significantly affect the runoff yield and con-
centration8. During a flood event, when rainfall exceeds evaporation and infiltration, runoff in a basin with no 
depressions will move directly along the slope towards a river or outlets. However, when depressions exist, water 
exceeding the evaporation and infiltration capacity will first be stored within these topographic lows. The water 
stored in depressions will not spill over until it reaches the depression storage threshold, after which the rainfall 
in depressions and the incoming water from upstream will enter the spillover stage. The confining influence of 
the rough surface gradually decreases with the increasing formation of overland flow, which greatly facilitates the 
process of runoff confluence. Thus, the spatial structure of topographic depressions has a significant redistribut-
ing effect on the rainfall–runoff process over time. It is of great practical value to further explore the influence of 
depression impoundment on overland flow characteristics, as doing so allows for the construction of more accu-
rate flood models. Furthermore, the results of this study will enhance the accuracy of simulated overland flow in 
regions with numerous depressions.

Previous studies on the microtopography of depressions have predominately focused on the effects of their 
fundamental characteristics on hydrological processes. For example, depressions can delay the initial time of 
runoff yield9, as well as the volume of outflow10. The existence of depressions increases the roughness of soil sur-
faces11 and reduces the velocity of overland flow12. Surface depressions enhance the retention of runoff water13 
and the depression storage areas behave as temporary passive storages of overland flow, resulting in delays in the 
hydrograph signals14. Maximum depression storage has previously been estimated from different hydrological 
factors15,16, and the interaction between topographic depressions and infiltration has also been explored17. In 
recent years, studies on depressions have focused on the functional and structural features18 related to the appear-
ance of overland flow. The concept of hydrological connectivity has been used to express these features and has 
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been studied in a variety of disciplines19–21. To obtain effective indicators of the connectivity properties, Antoine 
et al. (2009) conducted numerical experiments and proposed the relative surface connection function (RSCF) as 
a functional connectivity indicator22. Additionally, Peñuela et al. (2015) characterized the RSCF and estimated the 
extent to which it can be predicted by structural indicators23. To characterize the runoff generation process and 
the related spatiotemporal variations, Yang and Chu (2013) proposed a conceptual puddle-to-puddle model to 
track the evolution of connectivity and simulate outflow24. Meanwhile, methods based on high-resolution digital 
elevation models (DEMs) are not yet applicable in areas for which there is insufficient data25.

In contrast to previous studies, this work was conducted to develop a solution for the application of overland 
simulations under the influence of topographic depressions in hydrological models. This study is mainly focused 
on the relationship between surface outflow and the water stored in depressions, rather than any specific overland 
flow generative mechanism. Therefore, our primary goal was to construct a convenient function to express the 
outflow process. To achieve this, we set four specific objectives: (1) to introduce the concept of a relative depres-
sion–outflow curve (RDOC) and establish its relationship to the simulation of overland flow; (2) to analyze the 
shape of RDOCs modelled with different hydrological factors; (3) to construct a function based on the curve and 
complete its calculation as applied in a hydrological model; (4) to analyze the hydrological responses to function 
parameters of different slopes and rainfall intensities.

Materials and Methods
Relative depression storage–outflow curve (RDOC).  During a rainfall event, the overland flow 
(Fig. 1a) and depression storage processes (Fig. 1b) generally begin at the same time, and both first increase 
and then stabilize. By excluding the influence of time, we simultaneously combined the surface outflow with the 
depression storage. The growth of depression storage was then selected for visualization (Fig. 2a). Regarding the 
building ideal of the RSCF proposed by Antoine et al.20, we normalized the abscissa and ordinate to eliminate the 
influence of the time dimension on the shape of the curve (Fig. 2b).

The curves built in this study are RDOCs. The difference between the RSCF and RDOC is their ordinates. The 
ordinate of the RSCF is the area connected to the outlet, which is equal to the R/P (Runoff/Precipitation) when 
surface confinement is ignored. The ordinate of the RDOC is the relative surface outflow rate, which is expressed 

Figure 1.  Time-variant curve of (a) overland flow and (b) depression storage.

Figure 2.  (a) Depression storage–outflow curve; (b) relative depression storage–outflow curve (RDOC).
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as Rout/(P-E-i), and is equivalent in numerical value to Rout/Ryield when ignoring surface confinement (i.e., flow 
roughness), where Rout is the surface outflow (mm), Ryield is the runoff yield (mm), E is the evaporation (mm), and 
i is the infiltration (mm). This data represents the cumulative number of outflow readings obtained every 30 s. 
Here, Ryield corresponds to the value of rainfall minus evaporation and infiltration. In this experiment, the amount 
of evaporation relative to water storage is negligible. For infiltration, this experiment guarantees that the initial 
soil moisture content of each experiment is like that of the soil tester and is consistent with the initial soil moisture 
content of the non-depression experiment. This implies that at each moment of the experiment the same rainfall 
and rainfall intensity is experienced. When the slope is different, the infiltration amount of each group of control 
experiments corresponding to different depression rates is the same. The infiltration amount is subtracted from 
the outflow result of the non-depression experiment to obtain Ryield. Determining the function of the RDOC is 
of great importance to minimize the effect of the lack of a depression calculation module on the runoff yield and 
concentration modules when simulating overland flow in areas with depressions.

Experimental settings.  Experiments were conducted in the runoff yield and concentration laboratory of 
Hohai University, Nanjing, China. The experimental instruments, including an artificial rainfall generator and 
slope-changeable soil tank, are shown in Fig. 3. The dimensions of the soil tank were 1.5 m × 0.5 m × 0.65 m. 
For simulating outflow, standardized depressions were constructed on the soil trough. The surface area of each 
depression was a square with dimensions of 0.125 m × 0.125 m. To ensure that the depressions met the experi-
mental requirements of size, location, and depth, they were built using a template made of wood. The depression 
layout is shown in Fig. 4, and the completed depressions are shown in Fig. 5.

In this study, typical tillage soil from Nanjing was used as the research material. The original soil material 
recovered was analyzed to determine its physicochemical properties, and all analyses were averaged after four 
repetitions. The soil density and field water holding capacity were determined by ring shear testing recommended 
by the agricultural industry-standard (NY/T 1121.22-2010), issued by the Ministry of Agriculture of the People’s 
Republic of China. The results showed that the dry density of the soil was 1.58 g/cm and the field water holding 
capacity was 214.59 g/kg. Grain size analysis was performed using an LS13320 Laser Diffraction Particle Size 
Analyzer (Beckman Coulter Inc., USA). The measured clay content (<0.002 mm) accounted for 12.11% (0.02–
0.002 mm), the silt content accounted for 50.2% (2–0.02 mm), and the sand content accounted for 37.69% of the 
soil. According to the international classification standard for soil adopted at the 2nd International Soil Society 
meeting, the soil texture is silty loam.

Figure 3.  Schematic of the experimental instruments.

Figure 4.  Local schematic map of standardized depressions.
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The experimental soil pretreatment process primarily included an air-drying treatment and grinding screen-
ing, and the treated soil utilization rate exceeded 80%. Before filling, a 5-cm layer of soil was placed in each tank, 
and a layered filling was used. The fill volume of each 5-cm layer was calculated according to the measured soil 
density, and the weighed soil was poured into the soil trough, which was filled with steamed bread after the soil 
was filled. To prevent soil stratification, the soil was gently shaved with a shovel, and the soil layer was tightly 
combined. After the filling was completed, the surface runoff of the earthen trough and the outflow nozzle of the 
soil were blocked, and only the underground diameter outflow nozzle was reserved to fill the surface of the soil; 
it was subsequently slowly infiltrated. After a few days, the soil surface water was reduced, and water was contin-
uously poured until the water outlet of the underground channel of the tank flowed out. The soil inside the tank 
was saturated at this time.

After the soil moisture in the trough had completely infiltrated, the soil was allowed to stand to reduce the 
water content and restore its natural state. Every two to three days, the soil surface was lightly watered to pre-
vent the soil surface from cracking, and to stop the soil water content from falling too low. This process lasted 
for two months. After the soil in the tank had settled for more than two months, subsequent experiments were 
performed.

To fully explore the hydrological response of RDOCs under different hydrological factors, we conducted this 
study with three return periods, four slopes, and four depression depths (Table 1).

The rainfall intensity at 2-year, 5-year, and 10-year return periods in Nanjing was 0.824 mm/min, 1.044 mm/
min, and 1.209 mm/min, respectively. Considering that the depression depth represents the only attribute of 
each depression and the remaining variables were representative of the overall nature, the depression depth was 
replaced with the depression rate (DR), which can be considered as the increase in the surface area when the 
depression is increased, compared to when there is no depression. The DR is calculated as follows:

= − ×( )DR S /S 1 100% (1)surface projection

where Ssurface is the surface area of the entire slope, including the depressions, and Sprojection is the projection area 
perpendicular to the direction of the slope. The resultant depression rates of the standardized depressions con-
structed in this experiment are listed in Table 2.

Figure 5.  Physical display of constructed depressions in the slope-adjustable soil tank.

Return period (year) 2 5 10

Slope (°) 2.5° 5° 7.5° 10°

Depression depth (cm) 0.5 1 1.5 2

Table 1.  Experimental variable settings.
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Experimental procedure. 
The main experimental procedure was as follows:

	 1.	 Standardized depressions of specified depths were constructed on the surface of the soil and the slope was 
adjusted to a specified gradient.

	 2.	 A pre-rainfall period was conducted before the start of the experiment to eliminate the effects of the initial 
soil water contents. Soil monitoring instruments were used to ensure that the soil had been saturated, 
artificial rainfall was stopped, and the surface water of the soil was cleared.

	 3.	 The artificial rainfall was adjusted to generate rainfall of a specified intensity, and a waterproof cloth was 
used to prevent infiltration of the heterogeneous initial rainfall that occurs in the first 5 min into the soil.

	 4.	 Surface outflow was recorded every 30 s after the waterproof cloth was removed.
	 5.	 Each experiment was repeated three times, and the averages were taken as the experimental results.

Results and Discussion
In this study, the shape of the RDOCs was first analyzed under different hydrological conditions, followed by 
construction of the function based on these analyses. To facilitate the application of the function to actual hydro-
logical simulations, the establishment of function parameter values and the hydrological responses of different 
factors were further studied.

Curve shape analysis of the relative depression storage–outflow process.  To construct an RDOC, 
the surface outflow and depression storage of each moment are required. The surface outflow was determined 
from the discharge collected every 30 s, and the depression storage was calculated from the difference between 
the surface outflow curves under the depression and without depressions. Observing the RDOCs constructed 
by this method, we found that when DR ≤ 4%, the end-point judgment of depression storage was problematic in 
some cases (e.g., Fig. 6). The reason for this error is mainly due to the surface outflow exhibiting a certain degree 
of volatility. The influence of DR ≤ 4% on the surface outflow is relatively small compared to the surface outflow 
volatility when the depressions are close to the spillover point. Therefore, only the results for DR > 4% were used 
in subsequent analyses.

The RDOCs constructed under different hydrological factors are summarized according to their different 
depression rates in Fig. 7. The results indicate that although there were differences in the RDOCs under different 
hydrological factors, there was no obvious difference in their shapes under the same rainfall intensity and slope. 
The RDOCs with distinct differences in shape were c2, d2, and d3, in which DR = 8%. This is mainly due to the 
relatively small depression rate, sleep stope, and high rainfall intensity. The RDOCs have a second flat stage in 
their curves (Fig. 7. a3, b3, and c3) when the rainfall intensity is higher, particularly when this is accompanied by 
an elevated depression rate is. The flat stage also exists when the rain intensity is low. This is because the initial 
relative surface depression rate decreases in the flat stage after the rain intensity increases, magnifying the obser-
vation on the figure. This shows that when the rain intensity is large enough, the increased rate of the relative 
depression storage rate is higher than that of the relative surface outflow rate, i.e., the increase rate of the water 
storage rate is higher. Each of these factors can weaken the effect of depressions to some extent, and the combina-
tion of all three factors determined the original shape of the RDOC.

By homogenizing the depression rate, updated RDOCs were generated; these are shown in Fig. 8 after exclud-
ing the curves c2, d2, and d3. The results suggest that the shape of RDOCs under different rainfall intensities are 
generally similar. The only exception to this pattern was the RDOC with a return period of 2 years and a slope 
of 2.5°, whose surface outflow rate did not markedly increase until the relative depression storage reached ~0.1. 
This is mainly because the rainfall intensity with a return period of 2 years was low. During the initial stage, a 

Depression depth (cm) 0 0.5 1 1.5 2

Depression rate (%) 0 4 8 12 16

Table 2.  Depression rates of standardized depressions.

Figure 6.  RDOCs of different slopes when DR = 4% and the rainfall return period is 5 years. Each curve 
represents the average of three replicates.
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considerable portion of the rainfall was used for wetting the soil when the rainfall intensity was low, and therefore 
the surface outflow was slow and not easily obtained by the method used in our calculations. Our experiments 
also revealed that as the slope increases, the effective storage capacity of the depression declines. Since the water 
in the depression is affected by gravity, an increase in slope causes some of the water to overflow from the depres-
sion. Under extreme conditions, when the slope reaches 90 degrees, the depression cannot store water.

After the elimination of one outlier curve, the remaining RDOCs of the same slope were homogenized (Fig. 9). 
After homogenization, the shape of the RDOCs still exhibited slight differences between the rainfall events of the 
different return periods. These results imply that homogenization is an effective method of processing RDOCs. 
Furthermore, the RDOCs of the same rainfall intensity were also homogenized, and a final average RDOC was 
obtained (Fig. 10a). As shown in Fig. 10a, the shape of the RDOC first increases rapidly and then slows gradually. 
After slowly rising again, it then reaches a steeper gradient and the surface outflow rate approaches one.

To more accurately divide the stages of the RDOC, the outflow threshold was adopted in reference to the con-
nected threshold used by Peñuela et al.23. The outflow threshold occurred when the rate of increase of the surface 
outflow was equal to the excess relative depression storage (i.e., the slope of the curve was equal to one). Using this 
method, two outflow threshold points, OT1 and OT2 (Fig. 10b) were obtained, and the overall RDOC process 
was divided into three stages.

In this study, the three partitioned stages were defined as the (1) surface-wetting stage, (2) gentle rising stage, 
and (3) rapid rising stage. During the surface wetting stage, the growth rate of surface outflow exceeded that of 
depression storage. This was possibly the result of the convergence of accumulated water on the surface resulting 

Figure 7.  RDOCs constructed under different hydrological factors. Each curve is the average of three replicates. 
Each column (a–d) has a single slope (αº) and each row (a1–a3; b1–b3; c1–c3; d1–d3) has a single rainfall 
intensity (i mm/min).
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Figure 8.  Homogenized RDOCs of different slopes with a rainfall return period of (a) 2 years (0.824 mm/min), 
(b) 5 years (1.044 mm/min), and (c) 10 years (1.209 mm/min). Each curve is homogenized by three depression 
rates and is the average of three replicates.

Figure 9.  Homogenized RDOCs of different rainfall return periods. Each curve is homogenized by three 
depression rates and four slopes and represents the average of three replicates.
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in a rapid flow moving toward the boundary of the soil trough. In the gentle rising stage, the relative depression 
storage increased significantly more than the surface outflow rate. From a theoretical viewpoint, the volume of 
water stored in depressions should gradually increase, while the surface outflow rate typically remains unchanged 
in this stage. However, under actual conditions, the surface outflow rate also increased slightly. This may be due 
to the soil crust caused by water scouring, which led to a decrease in the infiltration rate and an increase in the 
surface outflow. Furthermore, it accelerated the speed of the surface outflow, as surface roughness was reduced. 
Finally, during the rapid rise stage, the surface outflow rate increased rapidly because the volume of water stored 
in the depressions reached the maximum storage capacity and spilled out. Theoretically, all depressions should 
reach the spillover point simultaneously. However, uneven distribution of rainfall and the uncertainty of the flow 
paths of overland flow caused the respective spillover points to differ by variable degrees. Additionally, spillover 
occurred before the maximum depression storage was reached, and contributed to the corresponding relative 
depression storage of OT2 being less than one.

Construction of the relative depression storage–outflow function (RDOF).  To apply the RDOC 
to the calculations of a hydrological model, it is necessary to express the curve as an RDOF. Considering the 
complexity of the shape of the RDOC, we combined the first two stages and solved the curve-fitting step-by-step. 
In this study, we defined the two stages after integration as the slow rising stage and the fast-rising stage (Fig. 11). 
The junctional point of these stages was then defined as the outflow threshold, which is equal to the original OT2.

The formulae for the surface outflow rate (SOR) and relative depression storage (RDS) are as follows:

=SOR R
R

;
(2)yield

out

=RDS DS
DSM

, (3)

where Rout is the surface outflow (mm), Ryield is the runoff yield (mm), DS is the depression storage (mm), and 
DSM is the maximum depression storage (mm). These equations were formulated in reference to the parabolic 
equation used to construct the storage capacity curve26. The equation for the first stage is expressed as follows:
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Figure 10.  Homogenized RDOC: (a) original and (b) after stage partitioning.

Figure 11.  Schematic of the stage division in RDOF construction.
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where SORT is the surface outflow rate corresponding to the outflow threshold point, RDST is the relative depres-
sion storage corresponding to the outflow threshold point, and B is the reciprocal of the curve index of the slow 
rising stage. Similarly, the equations for the second stage is expressed as follows:
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where D is the reciprocal of the curve index of the fast-rising stage. Combining Eqs. 4 and 5, the formula for the 
SOR can be expressed as follows:
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When applied in a hydrological model, Eq. 6 can be inserted between the surface runoff yield and the con-
centration processes that account for the effects of depressions. The actual surface outflow under the influence 
of depressions at a given moment may then be calculated. The DSM parameter can be obtained through digital 
elevation model (DEM) processing or estimated using local empirical formulae. The amount of water stored in 
depressions in the initial state (DS0) can be estimated by local conditions. For example, in the long-term and 
rain-free season, the DS0 may be close to zero. Therefore, the relative depression storage in the initial state (RDS0) 
can be calculated by Eq. 7, as follows:

= .RDS DS
DSM (7)0

0

By substituting the calculated RDS0 into Eq. 6, the formula for calculating the SOR at the initial moment is 
obtained:
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Furthermore, when the SOR0 and Ryield of the initial state are combined, the Rout at the current moment can be 
calculated as follows:

= × .R R SOR (9)out yield 0

The depression storage of the next moment (DS′) may then be updated using Eq. 9 to produce:

′ =
+ −

.DS
DS R R

DSM (10)
0 yield out

Finally, the updated depression storage may be used to update the relative depression storage (RDS′) and sur-
face outflow rate (SOR′) of the next moment as follows:
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; (11)
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These processes are then repeated to calculate the results for all the periods.
When applying Eq. 9 to calculate the Rout, the Ryield is generally used as the runoff yield at the initial moment of 

the period. The surface outflow and runoff yield processes occur simultaneously and continuously. This leads to 
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the introduction of a forward difference error. To reduce the effect of this error, it is necessary to take 5 mm as the 
basic unit of runoff yield, and Ryield must be divided into multiple units. By repeatedly using Eqs. 9–12 to calculate 
the Rout of each unit, the final Rout of a period can be obtained.

Analysis of hydrological responses to RDOF parameters.  To better apply the RDOF to real-world 
hydrological forecasting, it is necessary to critically evaluate the parameters of the RDOF. To this end, the homog-
enized parameters of the RDOF were first calculated; these can be directly used in an area with no data or as 
initial parameters before further calibration. Secondly, the hydrological responses to the RDOF parameters were 
analyzed. These responses can provide insight into how best to adjust the parameters based on the local slope, 
depression rate, and dominant rainfall intensity. For this purpose, the initial values of the homogenized RDOF 
parameters (Fig. 11) were computed and are visualized in Fig. 12. As shown in Fig. 12, the relative depression stor-
age corresponding to the outflow threshold was 0.66, and the surface outflow rate was 0.36. To characterize the 
degree of fit, we used the Levenberg-Marquardt method and general global optimization methods for calculation. 
When the parameter B is 0.45, the square of the correlation coefficient in the slowly rising phase is 0.9236, that is, 
R² = 0.9236. Meanwhile, the R² of the fast-rising stage fit was 0.9946 and the value of D was 1.29. From an overall 
perspective, the results of the curve-fitting are reliable (i.e., R² > 0.9).

Analysis of hydrological response to outflow threshold.  To explore the influence of single hydrolog-
ical factors on the OT, we continued to adopt the idea of homogenization. One hydrological factor was selected 
each time as the research object, the results of the remaining hydrological variables were averaged, and the final 
OT values were calculated. The calculated results are summarized in Table 3, and the plots are shown in Fig. 13.

It can be seen from Fig. 13 that except for the changes in the OTs under different depression rates, which 
show a tendency to increase with an increase in DR (Fig. 13a), the results of homogenization under different 
rainfall return periods and slopes are all relatively heterogeneous (i.e., scattered), although some clustering can be 
observed. This implies that analyses conducted under complete homogenization may mask some of the underly-
ing patterns of the phenomenon. Therefore, changes observed in the OT under different rainfall return periods 
and slopes were further analyzed, and the calculation results of the OTs using the average depression rate only are 
summarized in Table 4 and Fig. 14.

Although the OTs of varying rainfall intensities and slopes exhibit little regularity, certain overall tendencies 
can be seen. To fully display these tendencies, trend lines were drawn, as shown in Fig. 14. It can be seen that 
obvious changes in the OT occurred when the slope increased from 2.5° to 5° and when the rainfall return period 
increased from 5 to 10 years. These findings demonstrate the nonlinear influence of each hydrological factor on 

Figure 12.  Characteristic parameters of the homogenized RDOF.

Hydrological factors

Outflow threshold point

SORT RDST

Depression rate (%)

8 0.427 0.67

12 0.352 0.65

16 0.287 0.64

Rainfall return 
period (years)

2 0.356 0.72

5 0.335 0.71

10 0.394 0.61

Slope (°)

2.5 0.25 0.61

5 0.308 0.61

7.5 0.385 0.68

10 0.4 0.7

Table 3.  Outflow threshold points of the RDOF under the influence of different hydrological factors.
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the OT. For a more comprehensible visualization, OT changes under the influence of different hydrological fac-
tors were integrated, as shown in Fig. 15.

From Fig. 15, the impacts of the three hydrological factors (i.e., depression rate, rainfall intensity, and slope) 
on the OT can be seen to vary in direction. The magnitude of these impacts on the changes in SORT was also 
greater than for RDST. It is implied that the selection of homogenized RDOF parameters exhibits less deviation 
for RDST than for SORT.

With the increase in the depression rate, the surface outflow rate and the relative depression storage corre-
sponding to an OT show a decreasing trend. This is due to the increased depression rate, wherein more water is 
stored by the depression before surface outflow growth, resulting in the reduction of SORT. Also, it will increase 
the time needed to spillover, which increases the heterogeneity of the rainfall and the uncertainty of the outflow 
path. Ultimately, this leads to a slightly earlier spillover time in local areas compared to the spillover time of the 
total areas and causes RDST to decrease.

Figure 13.  Changes in SORT and RDST under the influence of different hydrological factors: (a) depression rate; 
(b) rainfall return period; (c) slope.

Slope 
(°)

Outflow threshold points by rainfall return period

2-year 5-year 10-year

SORT RDST SORT RDST SORT RDST

2.5 0.188 0.64 0.244 0.66 0.316 0.56

5 0.327 0.73 0.35 0.73 0.426 0.62

7.5 0.406 0.77 0.339 0.71 0.616 0.74

10 0.381 0.71 0.425 0.78 0.438 0.67

Table 4.  Outflow threshold points of the RDOF under the influence of different slopes and rainfall return 
periods.
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With increased rainfall intensity, the surface outflow rate corresponding to the OT shows an increasing trend, 
while the relative depression storage shows a decreasing trend. This is because the greater rainfall intensity accel-
erates the processes of surface wetting and outflow, leading to an increase in the surface outflow rate correspond-
ing to the OT. The reason for the decrease in the relative depression storage corresponding to the OT is likely due 
to the faster outflow rate and reduced infiltration rate resulting from the greater rainfall intensity.

With increases in slope, the surface outflow rate and relative depression storage corresponding to the OT 
display an increasing trend. The increased slope accelerates the speed of surface outflow, causing the growth of 
SORT. However, the increased slope also leads to the reduction of the maximum depression storage, narrowing 
the difference between the RDST corresponding to the OT and that of the outflow point of the entire area.

Analysis of hydrological response to B and D.  Homogenization was also used to investigate the hydro-
logical responses of different hydrological factors to parameters B and D in the RDOF. With the application of 
every hydrological factor, the Levenberg–Marquardt method was used to optimize the values of B and D. The 
optimization results are summarized in Table 5.

In terms of depression rate and rainfall return period, the values of B both show a decreasing tendency with the 
increase in the depression rate or rainfall intensity. However, changes in the depression rate have a greater impact 
on B than those of rainfall intensity. The increase in the depression rate from 8% to 12% resulted in a significant 
change in the value of B (−0.3674), while the increase in the rainfall return period from 2 years (0.824 mm/min) 
to 10 years (1.209 mm/min) caused a difference in B of only −0.195. For parameter D, the increase in the depres-
sion rate and rainfall intensity increased in D. Under the conditions of low depression rate and rainfall intensity, 
the value of D is less than one, whereas it gradually exceeds one with an increase in the depression rate and rain-
fall intensity. This is represented graphically by the curve changing from convex to concave, indicating that once 
spillover occurs, the influence of overflow water on surface outflow will increase.

From the angle of the slope, one point each on B and D is inconsistent with the overall trend. Figures 8 and 16a 
(which were further homogenized) show that the outliers of B at a slope of 5° may be caused by discretional out-
flow thresholds of various slopes, which should originally be reduced with increases in slope. The rapid reduction 
of D at a slope of 10° is likely caused by the existence of more than one outflow threshold in several of the curves. 
Indeed, the depressions can lead to multiple outflow threshold points under varying terrain conditions. However, 
for the simplified model, only one outflow threshold was used, and the original value of D should present a trend 

Figure 14.  Changes in the outflow threshold point under the influence of different slopes and rainfall return 
periods: (a) SORT and (b) RDST.

Figure 15.  Diagrammatic sketch of changes in the outflow threshold point under the influence of different 
hydrological factors: (a) depression rate; (b) rainfall intensity; (c) slope.
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of gradual enlargement with increases in slope24. The overall variation in parameters B and D under different 
slope conditions are shown in Fig. 16b.

Conclusions
In this study, the concept of an RDOC was proposed to describe overland flow characteristics under the influence 
of topographic depressions. The experiments were conducted using a variable-controlled approach with different 
rainfall return periods, slopes, and depression rates, while ensuring a consistent initial soil moisture content. The 
function of the RDOC was investigated and the hydrological responses of the function parameters were analyzed.

From our research, we established that the proposed RDOC can reflect overland flow process, the ordinate of 
which is the relative surface outflow rate, expressed by Rout/(P-E-i), and it is equivalent to Rout / Ryield when ignor-
ing surface confinement. An average RDOC was obtained through homogenization. To construct the RDOF, 
the curve was partitioned into two stages and parameterized by the outflow threshold, which is the reciprocal of 
the curve index of the first stage (B) and the second stage (D). The function can be integrated into hydrological 
models as a depression calculation module between the runoff yield and the concentration modules. The com-
plete calculation procedure of the RDOF applied in a hydrological model is provided as part of this work, and 
the hydrological responses to the function parameters of different hydrological factors and parameter estimation 
were also performed.

This study provides a new method for analyzing overland flow process under the influence of topographic 
depressions. The proposed RDOF conveniently accounts for depressions when simulating hydrological processes. 
However, although we are confident with our results, a limited number of experiments were performed, and 
therefore more studies are required to confirm our findings.
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