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Early growth phase and caffeine 
content response to recent and 
projected increases in atmospheric 
carbon dioxide in coffee (Coffea 
arabica and C. canephora)
fernando e. Vega1*, Lewis H. Ziska2,7, Ann Simpkins1, Francisco infante3, Aaron p. Davis4, 
Joseph A. Rivera5, Jinyoung Y. Barnaby6 & Julie Wolf2

While [CO2] effects on growth and secondary chemistry are well characterized for annual plant species, 
little is known about perennials. Among perennials, production of Coffea arabica and C. canephora 
(robusta) have enormous economic importance worldwide. Three Arabica cultivars (Bourbon, Catimor, 
Typica) and robusta coffee were grown from germination to ca. 12 months at four CO2 concentrations: 
300, 400, 500 or 600 ppm. There were significant increases in all leaf area and biomass markers in 
response to [CO2] with significant [CO2] by taxa differences beginning at 122–124 days after sowing 
(DAS). At 366–368 DAS, CO2 by cultivar variation in growth and biomass response among Arabica 
cultivars was not significant; however, significant trends in leaf area, branch number and total above-
ground biomass were observed between Arabica and robusta. For caffeine concentration, there were 
significant differences in [CO2] response between Arabica and robusta. A reduction in caffeine in coffee 
leaves and seeds might result in decreased ability against deterrence, and consequently, an increase 
in pest pressure. We suggest that the interspecific differences observed (robusta vs. Arabica) may be 
due to differences in ploidy level (2n = 22 vs. 2n = 4x = 44). Differential quantitative and qualitative 
responses during early growth and development of Arabica and robusta may have already occurred 
with recent [CO2] increases, and such differences may be exacerbated, with production and quality 
consequences, as [CO2] continues to increase.

Because CO2 represents the sole source of carbon for photosynthesis, and because CO2 levels have been low 
for the recent geological past (<800,000 years before present), recent (317–412 ppm since 1960) and projected 
increases1 (450–600 ppm by 2050) represent a major shift in an essential resource needed for plant growth. The 
biological role of rising atmospheric carbon dioxide concentration [CO2] is well recognized as altering physical 
(e.g., growth rates, stomatal aperture), biochemical (e.g., carbon to nitrogen (C:N) ratios, photorespiration), phe-
nological (e.g., time to flowering), and reproductive (e.g., seed yield) characteristics for a wide variety of plant 
taxa, including agricultural crops2–6.

Because interspecific and intraspecific variation exists in response to resource changes, there has been a mer-
ited focus on quantifying intraspecific variation that could be used as a means of selection for adaptation to rising 
[CO2] levels. For example, studies have confirmed that there is significant intraspecific variation in the yield 
response to future CO2 levels for cowpea (Vigna unguiculata (L.) Walp.)7; common bean (Phaseolus vulgaris L.)8,  
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rice (Oryza sativa L.)9–11; wheat (Triticum aestivum L.)12,13 and soybean (Glycine max (L.) Merr.)14, such that 
breeders could begin to select for CO2 responsiveness among currently available germplasm.

However, such efforts have been focused, in general, to annual crops, particularly those of global importance 
(e.g., wheat, rice). Less attention, overall, has been given for CO2 selection among perennial crops. In that regard, 
coffee (Coffea arabica L. (Arabica coffee) and C. canephora Pierre ex A.Froehner (robusta coffee)) is one of the 
world’s most important perennial crops, and represents not only a widely traded agricultural commodity, but also 
a social and economic foundation for numerous tropical developing countries, with approximately 125 million 
people involved in coffee growing15. Although there are 124 Coffea species16, only two, Arabica and robusta are 
associated with the bulk of global coffee production17.

Arabica and robusta field responses to ca. 550 ppm CO2, with an emphasis on photosynthetic metabolism, is 
available18. Additional growth chamber studies evaluating temperature and [CO2] in the context of growth and 
photosynthetic acclimation response (including transformations in stomatal characteristics) are also available for 
coffee19–22. However, these data represent the growth and metabolic response of coffee following transfer of 12 to 
18-month-old coffee plantlets into Free-Air CO2 enrichment (FACE) or [CO2] growth chambers. At present, any 
differential growth response within, or between Arabica and robusta to recent and projected increases in CO2 
from germination through early growth (ca. 1 year) is not available. Yet, early exposure may be critical, as initial 
vegetative growth may represent the temporal period of greatest physiological sensitivity to additional CO2, for 
annuals23.

In addition to differential growth, there is substantial evidence that supplementary CO2 may reduce protein 
content and increase carbon to nitrogen (C:N) ratios for numerous plant taxa4,24,25 with potential effects on sec-
ondary compounds that have a high N content26. Caffeine (C8H10N4O2; 1,3,7-trimethylxanthine; ca. 29% N by 
molecular weight) may act as a defense against herbivores27–29 and consequently, CO2-induced changes in leaf and 
seed caffeine concentration may be of ecological interest30 including unforeseen consequences for climate change 
impact as a result of changes in plant-herbivore relationships31.

To determine the physiological impact of recent and projected increases in CO2 levels four Coffea taxa, i.e., 
three Arabica cultivars (Bourbon, Catimor, Typica) and robusta coffee, were grown from germination for approx-
imately one year at CO2 concentrations of 300, 400, 500 or 600 ppm, and measured growth (plant height, leaf area, 
biomass, leaf weight, number of branches, dry weight), C: N ratio, and caffeine concentration (mg g−1).

Results
Comparisons of plant height indicate significant increases at all sampling periods as a function of [CO2] above 
the 300 ppm baseline (Table 1; Fig. 1). However, by the 12-month period (357–368 days after sowing; DAS), there 
was no significant effect of [CO2] on plant height for robusta (Fig. 1). Similarly, [CO2] stimulation of leaf area was 
observed for all taxa at the 4 and 7-month period (122–124 and 203–211 DAS, respectively) in response to rising 
[CO2]; however, by the 12-month period, robusta plants had stopped responding (Fig. 2). Differences in leaf area 
as a function of [CO2] by Arabica/robusta were not significant (P = 0.20; Table 1).

Parameter [CO2] 4 T A/R [CO2] × CV [CO2] × A/R [CO2] × 4 T

122–124 DAS

Leaf Area *** *** ** 0.15 0.68 0.47

Abv. Ground Wt. * *** *** (*) 0.12 **

211–213 DAS

Leaf Area *** *** *** 0.44 0.35 0.27

Abv. Ground Wt. *** *** *** 0.73 * 0.21

366–368 DAS

% Nitrogen *** 0.12 * 0.30 0.66 0.38

C:N *** ** *** 0.30 0.37 0.27

Caffeine (mg g−1) * * * 0.27 * 0.26

Height (cm) *** *** *** 0.82 0.43 0.53

True Leaf No. 0.07 *** *** 0.99 0.63 0.91

Branch No. *** *** *** 0.27 * *

Leaf Area ** *** *** 0.89 0.20 0.60

Leaf Wt. ** *** *** 0.93 (*) 0.42

Branch Wt. ** *** *** 0.98 0.54 0.93

Stem Wt. ** *** *** 0.73 0.16 0.34

Total Wt. *** *** *** 0.97 (*) 0.57

Table 1. Statistical values for the three Arabica cultivars and robusta coffee response to recent and projected 
increases in atmospheric CO2 at three sampling periods (DAS, days after sowing). A/R is Arabica vs. robusta; 
[CO2] × CV is CO2 × Arabica cultivars only; [CO2] × 4 T is [CO2] × all four taxa. Total above ground weight 
and vegetative characteristics are in g per plant. Leaf area is in cm2. (*)Indicates a P value between 0.05 and 
0.10; *Indicates a P value between 0.05 and 0.01; **Indicates a P value between 0.01 and 0.001; ***Indicates a P 
value < 0.001.
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For above-ground plant biomass, increasing [CO2] resulted in [CO2] by Arabica cultivar responses at the 
4-month period (122–124 DAS), but not at 7 (203–211 DAS) or 12 months (357–368) (Table 1; Fig. 3). By the end 
of the study (~12 months), no effect of [CO2] was evident for robusta (Fig. 3); however, marginally significant 
differences (P < 0.1) between Arabica and robusta for above ground dry weight were observed (Table 1; Fig. 4). 
Overall, by 12 months, Arabica, on average, showed a significant response to increasing [CO2] for several veg-
etative parameters; whereas robusta was insensitive to [CO2] for several vegetative parameters (Table 1, Fig. 4).

In addition to growth and vegetative response, [CO2] induced changes in qualitative parameters, e.g., % N, 
carbon to nitrogen (C:N) ratio and caffeine concentration are of interest.

For the final harvest, when averaged for all taxa, significant effects were noted for C:N ratio for [CO2] (Table 1, 
Fig. 5A), and for Arabica vs. robusta (Table 1, Fig. 5B). Differences for the Arabica cultivars were also noted for 
C:N and caffeine, but not for % N (P = 0.12) (Table 1; Fig. 5C). Interactions, [CO2] × Arabica cultivars only, 
Arabica vs robusta or cultivar (all four taxa) were not significant for % N or C:N ratio (Table 1). When averaged 
for all taxa, there were no significant differences in caffeine (Table 1, Fig. 6A), in contrast to a significant difference 
in reductions of caffeine with increasing [CO2] for robusta but not Arabica (Table 1, Fig. 6B). No caffeine concen-
tration (mg g−1) differences were observed among the three Arabica cultivars (Table 1, Fig. 6C),

Discussion
Plant growth and development, assuming physiologically relevant temperatures, relies on four environmental 
(abiotic) resources: nutrients (macro- and micro-), light, water, and CO2. Any change in one (or more) of these 
resources could lead to a change in fitness among different genotypes32. In managed plant systems, there have 
been numerous studies indicating intraspecific variation to [CO2] with respect to vegetative and physiological 
characteristics, including yield, for a given crop species33. Sufficient variation has been reported so that screening 
or selecting for enhanced [CO2] responsive cultivars offers a potential means to increase crop yields and improve 
nutrition, which are important steps to help adapt production to global climate change2,13,33,34.
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Figure 1. Change in plant height (Average + SE) as a function of days after sowing (DAS) and [CO2] for three 
Arabica cultivars and robusta coffee.
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Efforts have been made to identify variation in productivity responses to elevated [CO2] for forest tree spe-
cies35. Such studies have found considerable intraspecific variation in photosynthesis, stem biomass and volume 
for poplar, pine, birch, eucalyptus, etc., at elevated [CO2], suggesting that under non-limiting environmental 
conditions, (e.g., temperature, nutrients, water), intraspecific variation could be used to select for increased pro-
ductivity as atmospheric CO2 increases36,37. However, similar efforts for intraspecific or interspecific selection to 
[CO2] among tree crops (e.g., apples, cacao) are, at present, unavailable, despite experiments showing that trees 
can be more responsive than herbaceous plants to elevated CO2

34.
In the current study, while Arabica cultivars showed a significant response to rising [CO2] above the mid-20th 

century baseline (i.e., 317 ppm) for leaf area and growth parameters, significant variation among Arabica cultivars 
was not evident for any DAS harvest. In contrast, robusta coffee was consistently less responsive to rising [CO2] 
for growth biomass traits. Accordingly, there is a clear interspecific (between species) difference between Arabica 
and robusta to rising CO2 with respect to the degree of [CO2] stimulation. Such divergence is evident in leaf 
weight, number of branches, and above ground biomass (Fig. 4).

In addition to differential growth response to rising [CO2], numerous reports have indicated CO2 induced 
changes in secondary plant chemistry4. Of ubiquitous note in these observed changes is the CO2 induced decline 
in protein and N, with subsequent increases in C:N ratio26. In the current study, similar N declines were observed, 
but no interspecific or intraspecific differences were recorded. However, caffeine concentration (mg g−1) when 
averaged for all Arabica cultivars and for robusta combined, declined with additional [CO2], and this decline was 
significantly more for robusta vs. Arabica. Whether such declines may improve or reduce beverage quality in the 
future remains to be determined.

If caffeine acts as a deterrent against herbivores27–29, a reduction in caffeine in coffee leaves and seeds might 
result in decreased ability against deterrence, and consequently, increase pest pressure on the plants. Even though 
the projected effects of climate change on the coffee berry borer (Hypothenemus hampei), coffee leaf miner 
(Leucoptera coffeella), coffee white stem borer (Monochamus leoconotus), root-knot nematode (Meloidogyne 
incognita), and coffee leaf rust have been examined38, none of these studies considers possible changes in caffeine 
levels, and other chemistry, as a result of increasing CO2 levels.
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Figure 2. Change in leaf area (cm2 per plant, average + SE) for three Arabica cultivars and robusta coffee at 
three different sampling times (days after sowing, DAS) in response to [CO2].

https://doi.org/10.1038/s41598-020-62818-x


5Scientific RepoRtS |         (2020) 10:5875  | https://doi.org/10.1038/s41598-020-62818-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

The results presented here indicate no significant intraspecific variation in response to [CO2] among Arabica 
cultivars and hence, no clear indication as to whether recent or projected changes in atmospheric CO2 could be 
used as a selection factor for Arabica coffee adaptation. However, there appear to be clear interspecific differences 
between Arabica and robusta in relation to both growth and caffeine concentration at [CO2] above a 300 ppm 
baseline. Such differences suggest potential for differential selection in fitness as CO2 continues to increase.

There are some obvious challenges in analyzing these data in the larger context of whether recent or projected 
[CO2] can be used to select for more CO2 responsive coffee cultivars or coffee species. For example, vegetative 
development is known to be the most sensitive stage of growth in relation to rising [CO2]23 and has been sug-
gested as a means to select for cultivar responsiveness in annual crops9,39. However, for tree crops, with slower 
relative growth, first year assessments may be useful in assessing initial response, but insufficient to discern 
longer-term differential effects on seed production (i.e., crop yield and quality). There are additional interspe-
cific and intraspecific issues related to environmental shifts likely to change in parallel to rising [CO2] such as 
precipitation and/or temperature that, in turn, will also influence selection and adaptation of coffee to climate 
change. Yet, as indicated by these initial data, it seems unlikely that Arabica and robusta will respond similarly to 
increasing [CO2] and such potential differences may have long-term qualitative and quantitative consequences 
for Arabica and robusta production globally. In addition, it will be of interest to compare interspecific differences 
between Arabica with C. eugenioides, the other parent of Arabica coffee in a future study to determine if a similar 
response pattern is observed for C. eugenioides.

The basis for differential responses to rising [CO2] between Arabica and robusta is uncertain. They may be 
related to: (1) interspecific variation, due to physical (morphological) or physiological differences, or a combina-
tion of both; (2) the effect of polyploidy, which amongst other features, influences cell size, genomic stability, gene 
expression and evolution rates40. All species of coffee are diploid (2n = 2x = 22), except Arabica coffee, which is an 
allotetraploid (2n = 4x = 44)41,42. One of the recorded features of polyploidy in coffee is that higher ploidy results 
in fewer but larger stomata43,44, and this may be linked to the different CO2 effects we record in coffee. Another 
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Figure 3. Change in total plant biomass (grams per plant, average + SE) for three Arabica cultivars and robusta 
coffee at three different sampling times (days after sowing, DAS) in response to [CO2].
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well-known consequence of polyploidy and specifically allopolyploids, is self-compatibility (self-fertilization)45–47. 
There are numerous evolutionary consequences for self-compatibility, including the reduction in genetic diver-
sity48; for cultivated (farmed) Arabica coffee, this would be compounded by the severe genetic bottleneck created 
through the domestication process49. This may explain the lack of difference in CO2 response in the three Arabica 
cultivars we have examined, although our sample size is not large enough to make any meaningful assessment.

There would appear to be potential for [CO2] to be used as a selective factor in adaptation and yield response 
for tree and perennial crops. Such efforts, however, are still in their infancy. The current study, the first to examine 
Arabica and robusta responses to recent and projected levels of CO2, from germination through the first year of 
growth, is suggestive of either interspecific differences or polyploidy level, but additional, long-term information 
will be needed to adequately determine how, and to what extent, recent and ongoing increases in [CO2] and/or 
climate change may act as a selection factor among Arabica cultivars. Moreover, it will be necessary to consider 
drought stress (reduced water availability), which so far has received scant attention in CO2 enrichment influ-
ences for coffee with regard to climate change50. It has been argued that the influence of climate change on coffee 
production has been overestimated, although work so far has focused on elevated air temperatures22. Indeed, 
mitigation of elevated temperatures due to elevated CO2 does seem to offer potential where there is adequate 
soil water availability (e.g., at field capacity)19,20 but in many circumstances it is soil water availability (including 
temporal availability), and its relationship with other climatic variables (including temperature), that is the main 
limiting factor when considering climate change induced morbidity and mortality50. The interaction between 
elevated CO2 and abscisic acid signaling, stomatal closure and CO2 influx, as well as other physiological and 
chemical processes involved with drought51, require careful investigation.

Methods
Seeds. Three Arabica cultivars widely grown throughout Latin America were tested: cv. ‘Bourbon’, cv. 
‘Catimor’, and cv. ‘Typica’52,53. Typica and Bourbon are the progenitors of most Arabica coffee cultivars grown 
worldwide and are believed to have originated from coffee grown in Yemen of Ethiopian origin54,55. Arabica coffee 
grown in Indonesia originated from Yemen, and seeds taken from Java (Indonesia) to Amsterdam and then to 
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the American continent led to the denomination Typica53. Seeds taken from Yemen and grown in Île de Bourbon 
(Bourbon Island; present day La Réunion) led to the denomination Bourbon18. Catimor is the result of crossing of 
two coffee cultivars: cv. ‘Caturra’ and cv. ‘Híbrido de Timor’ or ‘Timor Hybrid’ (a natural polyploid hybrid origi-
nating in Timor, an island in the Malay Archipelago, and resulting from a crossing between Arabica and robusta). 
Híbrido de Timor and the derived Catimor are resistant to coffee leaf rust (Hemileia vastatrix) and gained their 
resistance genes from robusta coffee52,53.

Mature coffee fruits for the Arabica cultivars were collected in August 2016, and again in September 2017 
from plants at Rancho El Porvenir (869 masl; N 15.13229, W 92.20151) in Chiapas, Mexico. Robusta has higher 
levels of caffeine compared to Arabica (ca. 1.7% vs. 1%, respectively)56 and is adapted to growth at lower eleva-
tions in Guineo-Congolian forests57 and thus warmer and mostly wetter conditions relative to Arabica, which 
originates from high altitudes forest in Ethiopia and South Sudan and is adapted to a cooler, more seasonal 
environment58. Robusta fruits were collected in 2016 and again in 2017 from plants at Ejido Salvador Urbina (693 
masl; N 15.04415 W 92.18578) in Chiapas, Mexico. Fruits were depulped, fermented, washed, and dried (ca. 12% 
moisture) and sent to the USDA-ARS Beltsville laboratory for germination.

Planting. Twelve plastic bins measuring ca. 60 cm × 50 cm × 33 cm deep (ca. 99 L by volume) were used 
to provide three monocultures of the four (three Arabica and one robusta) taxa for each [CO2] treatment (four 
chambers). Each bin was perforated with 12 holes (1 cm diam.) to allow for water drainage. A screen mesh was 
placed at the bottom of each bin prior to adding the growing medium (Pro-Mix BX; Premier Horticulture Inc., 
Quakertown, CA, USA) to minimize growing medium loss after watering.

Seeds were soaked in water 24 h prior to planting, to promote germination. Each bin was moistened before 
planting 72 seeds per tub, ca. 2.5 cm deep, and ca. 5 cm apart. For the first run, seeds were planted on August 
10, 2016 and the first germination occurred on September 5, 2016. For the second run, seeds were planted on 
September 12, 2017 and the first germination occurred on October 11, 2017. Rates of germination did not vary 
as a function of [CO2].
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For both trials, nutrients were initially provided at sowing and again at two months post-planting using a 
complete nutrient solution59. MiracleGro 24-8-16 (Marysville, OH) was provided at ca. 3 months following 
planting and given at 2–3 weeks’ intervals until final harvest. An iron chelate micronutrient (Sprint 330, Becker 
Underwood, Ames, IA, USA) was sprayed as needed. The growth medium/soil was maintained at, or close to, 
field capacity.

Environmental chambers. Providing pre-ambient [CO2] concentrations is not possible in situ; therefore, 
controlled environment chambers (Bio-Chambers, Incorporated, Winnipeg, Canada) were used. The temperature 
for each chamber was kept constant at 25 °C, day/night. Light, quantified as photosynthetically active radiation 
(PAR), was maintained at 400 µmol mol−1. The daily light period was 12 h light was supplied by height-adjustable, 
dimmable banks of metal halide and high-pressure sodium bulbs (400 µmol m−2 s−1).

CO2 concentrations were maintained by injection of either CO2 or CO2-free air using a TC-2 controller that 
monitors [CO2] in real time as measured by an infrared gas maintained in absolute mode. To maintain a range of 
recent and projected atmospheric CO2, concentrations were set at 300, 400, 500 and 600 ppm, 24 h day−1. These 
[CO2] values represent the measured Mauna Loa values from 1915 to 2015, and those projected by the end of the 
current century60. Actual mean [CO2] values (+SD, in [ppm]), from measurements recorded every three minutes 
throughout the experiments in each of the chambers, were 326 ± 38.6, 430 ± 42.7, 511 ± 26.2, and 607 ± 27.9 in the 
first run, and 303 ± 23.2, 409 ± 29.6, 499 ± 20.4, and 596 ± 23.0 in the second run.

Harvests. Destructive harvests were performed at three different times, ca. 4, 7, and 12 months post-planting. 
At each harvest, 3–5 plants within a bin (for all taxa and [CO2] treatments) were removed from the tubs, height 
determined (cm), then separated into leaf laminae, branches, stems, and roots. Leaf (cm2) area was determined 
photometrically using a leaf area meter (Li-Cor 3100, Lincoln, NE, USA). All plant material was weighed (g) after 
drying at 65 °C until dry weight was constant. Root binding did not occur as indicated by visual examination at 
the conclusion of the experiment when plants were removed from tubs.
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C:N ratios and caffeine analysis. For each sample, all leaves, per plant were pooled and oven-dried (65 °C) 
until the sample was completely dry. Each dried sample was ground using a Wiley Mill with a mesh size #20. Total 
C and N contents were determined using a Vario Max CN (Elementary Americas, Inc., Ronkonkoma, NY, USA). 
Nitrogen and carbon content were determined as a percentage of the dry weight of the sample.

For extraction and determination of caffeine, leaves within a replicate were flash frozen in liquid N and stored 
at −80 °C until lyophilized. Leaves were then pulverized using an A11 Basic Analytical Mill (IKA Works Inc., 
Wilmington, NC, USA). A total of 100 mg of pulverized leaf material was added into 15 ml centrifuge tubes with 
5.0 mL of a 70% methanol/water mixture. Tubes were then vortexed for 30 s and sonicated for 60 min. The slurry 
was centrifuged at 5,000 rpm for 10 min before being diluted (1:20), filtered, and ultimately stored in 1.5 mL 
HPLC vials. All reagents used for the analysis were of HPLC grade purity and prepared fresh on each day of 
the analysis. Instrumental analysis was performed using a Shimadzu Prominence High Performance Liquid 
Chromatograph (Shimadzu Scientific Instruments, Columbia, MD, USA) using a mobile phase of 80% methanol/
water and 15 mM phosphate buffer at pH 6.2. Separation was conducted using a Thermo Scientific Aquasil reverse 
phase C18 column (4.6 × 250 mm, 5 µm particle size; Thermo Fisher Scientific, Waltham, MA, USA) at a flow 
rate of 0.550 ml/min. Detection and quantification was done using a UV detector at 275 nm and determined using 
a calibration curve. The caffeine calibration curve was created using an HPLC grade caffeine standard (99.7% 
purity; ACROS Organics #10816-5000; Thermo Fisher Scientific, Waltham, MA, USA) across five concentrations 
2.5, 5, 10, 20, and 25 ppm. The fitted curve showed excellent linear responsivity as demonstrated by an r2 of 0.998. 
In addition, there was negligible variation between replicate injections at 10 ppm using the same standard as 
measured by its percent relative standard deviation of 0.385%.

The caffeine concentration in leaves can also be used as a proxy for concentrations in coffee beans, based on a 
correlation between caffeine concentration in seedling leaves and seeds61,62. Dias Chaves et al.61 focused on the 1st 
and 3rd pair of leaves in the seedlings, while de Moraes et al.62 used the 3rd and 4th pair. We found no significant dif-
ferences in caffeine content between the last pair of fully expanded leaves and all remaining leaves combined (coty-
ledons excluded; using March 2017 samples, i.e., first year, second sampling; 7 months and 18 days post-planting). 
Based on these results, we pooled all leaves at each sampling date for caffeine analysis. Mazzafera and Magalhães63 
found no correlation between leaves and seeds, but these were collected from mature plants, not seedlings.

Statistical analysis. Three replicate bins for each Arabica cultivar and for robusta coffee (i.e., 12 bins per 
chamber) were present for each of four [CO2] treatments. Within each chamber [CO2], bins were randomized; 
and randomized again after the first two harvests at 4 and 7 months to avoid edge effects. After the first run of 
the experiment (i.e., one year), the chambers were randomly reassigned [CO2] treatments and the experiment 
repeated. Humidity, PAR, and temperature were quantified before and at the end of each harvest to determine 
within chamber and among chamber variability. Values for each parameter were consistent between experimental 
runs. All measured parameters were based on tub averages (3–4 plants per tub) for both runs. All measured and 
calculated parameters were analyzed using analysis of variance including [CO2], Arabica cultivars, Arabica vs. 
robusta, and harvest time (Statview Software, Cary, NC, USA).
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