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Effect of Bacillus subtilis on 
corrosion behavior of 10MnNiCrCu 
steel in marine environment
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Bacillus widely exists in wet natural environment such as soil, water and air, and is often studied as 
one of representative microorganisms for microbiologically influenced corrosion(MIC) research. In 
this paper, the growth curve of Bacillus subtilis isolated from marine environment was determined 
by turbidimetry and its effect on corrosion behavior of 10MnNiCrCu steel was studied by open circuit 
potential, AC impedance, polarization curve and scanning electron microscopy(SEM). The results 
showed that with the change of the growth curve of Bacillus subtilis(BS), the open circuit potential(Eocp) 
shifted positively and then negatively, and the charge transfer resistance shown by AC impedance 
was much lower than that of the sterile system, increasing first and then decreasing. The polarization 
curves showed that the corrosion current density in BS medium was obviously higher than that in sterile 
system. The corrosion morphology observation showed that although a biofilm by BS developed on the 
steel surface, the localized corrosion of 10MnNiCrCu steel was aggravated due to the acidness of the 
metabolite itself and the biofilm with access for electrolyte ions.

MIC is a major problem involved in many industries such as natural gas, fuel pipeline and water resources1,2. All 
materials in contact with natural environment such as water, soil and moist air are subjected to different degrees 
of MIC3. The essence of MIC is that due to the activity of microorganisms, the electrode reaction in the corrosion 
process is changed and complex electrochemical process of material corrosion is accelerated or inhibited4. Studies 
have shown that extracellular polymer substances(EPS) produced by bacteria are directly related to the MIC 
process. EPS usually contains various organic groups, such as fatty acids, proteins and polysaccharides, which can 
change surface charge, wettability and free energy. In general, EPS changes the steel surface for bacterial adhesion 
and survival, and develops an overall and inhomogeneous biofilm on the metal surface5,6.

Bacillus sp, as one of the most widespread microbial species, is ubiquitous in various natural environments7. Its 
metabolites contain cyclic peptides, antibiotics, polyglutamic acid, polyaspartic acid and polypolysaccharide, and 
can form biofilms with spores8. Research showed that EPS produced by Bacillus was the main component of the 
biofilm formed on the metal surface and provided the biologically active compound which affected the corrosion 
process9. More and more attention has been paid to the corrosion effect of Bacillus on metals, but the mechanism 
is still unclear, and there is still much controversy. J. A. Rajasekar10 proposed that Bacillus cereus accelerated 
microbial corrosion of 2024 aluminum alloy due to the main function of peroxide. The accumulation of corrosion 
products led to the destruction of the oxide layer on the surface of aluminum alloy, thus forming a less compact 
biofilm and alumina layer on the surface of aluminum alloy accelerated pitting corrosion. Qing Qu11 studied the 
effect of B. subtilis C2 (BS) on the corrosion behavior of cold rolled steel in artificial seawater. The results showed 
that the pH and open circuit potential of cold rolled steel in BS-containing solution decreased significantly. It was 
confirmed that the reason for the increase of corrosion of cold rolled steel in the presence of B. subtilis C2 was the 
organic acid produced in the metabolic activity of BS in earlier stage, which accelerated the corrosion. Masoumeh 
Moradi12 studied the effect of Bacillus Vietnam on the corrosion behavior of different alloys. The existence of 
protease was confirmed by LC-MS/MS analysis, which indicated that the activity of protease could prevent the 
corrosion of copper alloys.

It was proposed that protease could coordinate with copper ions according to its molecular structure and bind 
with water molecules, thus reducing the oxygen utilization rate of cathodic reaction and inhibiting the corro-
sion process of copper-based alloys. The research of N. Bolton13 showed that Bacillus pumilus could increase the 
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corrosion rate of galvanized steel but had no effect on the corrosion rate of carbon steel. It was believed that the 
adhesion of microbial metabolites (including enzymes on metal surface) was the mechanism leading to corrosion. 
R. F. Jack14 suggested that the microbial membrane formed by B. subtilis promoted the corrosion of carbon steel, 
and that the metabolites in the membrane might be the cause of accelerated corrosion.

Because of the difference of strains and materials, the above work mostly describes the corrosion phenomena 
in the study, and the proposed corrosion mechanism also varies. However, there is a consensus that the biofilm 
formed on the metal surface has an important impact on the corrosion of microorganisms. Therefore, by compar-
ing the effect of biofilm on metal corrosion on metal surface, we can understand the important role of biofilm in 
metal corrosion process more clearly.

The 10MnNiCrCu steel is used as a structural material in the shipbuilding industry because of its superior 
mechanical properties. However, the corrosion of materials under the influence of various microorganisms will 
inevitably be involved in the marine ships due to their service environment. In this work, B. subtilis was isolated 
and purified from marine environment. The corrosion mechanism of 10MnNiCrCu steel in Bacillus and sterile 
system was discussed in order to provide a new theoretical basis for the study of MIC.

Experimental
Materials.  The main chemical compositions of 10MnNiCrCu steel in the experiment are C(<0.12%), 
Si(0.40–0.70%), P(<0.015%), S(<0.010%), Mn(0.70–1.10%), Ni(0.50–1.10%), Cr(0.60–0.90%), Cu(0.40–0.60%), 
Ti(<0.020%) V(<0.080%) and Fe balance. The 10MnNiCrCu steel sample was processed into two specifications. 
The samples used for electrochemical measurements were machined to sheet electrodes with an exposed surface 
of 10 mm × 10 mm, and the rest was sealed with epoxy resin in a cylindrical cavity. A copper wire was soldered 
to each sample for electrochemical measurements. The samples used for morphology observation were 10 mm 
×10 mm × 10 mm cubes. Before the experiment, the working surface of each sample was polished with 240 to 
1200# sandpapers, then rinsed with distilled water and degreased with acetone. The samples were placed in a 
deoxygenation chamber and tested after UV disinfection for 30 minutes.

Bacteria and culture.  The Bacillus subtilis used in the experiment was taken from the seawater near Laizhou 
Bay. The composition of the medium used was as follows: 10 g peptone, 3 g beef extract, 5 g sodium chloride in 1 L 
deionized water, and the pH value was adjusted with 1 mol·L−1 NaOH(7.0 ± 0.2). The medium was autoclaved at 
121 °C for 20 min. A single BS solution was prepared by introducing the enriched bacteria into the sterile medium 
at a volume ratio of 1:10. The inoculated medium was used as the experimental system of bacteria and cultured 
in a constant temperature incubator (28 °C). In addition, the same amount of sterile liquid medium was used as 
the sterile system.

The growth curve of Bacillus subtilis was determined by turbidimetry. The purified Bacillus subtilis was cul-
tured in a constant temperature incubator for 7 days. According to the pre-set time gradient, the absorbance at 
600 nm wavelength was measured by TU-1810 ultraviolet-visible spectrophotometer. The value was recorded 
three times and taken average as the characterization of the bacterial quantity during a certain period of growth.

Electrochemical measurements.  The electrochemical workstation(PARSTAT2273, USA) was used for 
electrochemical analysis. The 10MnNiCrCu steel is used as working electrode, a platinum sheet (10 × 10 × 
0.1 mm) used as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. After 
stabilization of the system, the open circuit potential was measured. Electrochemical impedance spectroscopy 
(EIS) was carried out in the frequency range of 10−2–105 Hz at intervals of 1 day and the amplitude of the sinusoi-
dal voltage signal was 10 mV. The Data were processed using ZSimpWin software to analyze the structure of the 
equivalent circuit and the parameters of the components. The electrochemical polarization curve was tested and 
scanned on the 7th day of the experiment. The scanning rate is 0.33 mV/s, and the scanning range is ±350 mV 
relative to the open-circuit potential. The data are analyzed by C-view software.

The samples for corrosion morphology observation were immersed in the above-mentioned bacterial 
culture solution and sterile culture system. After 7 days, the specimens were taken out, washed with distilled 
water, degreased and dried with acetone, sprayed with palladium, and observed under scanning electron 
microscope(SEM).

Results
Growth curve.  Figure 1 shows the growth curve of BS by turbidimetry. It can be seen that bacteria grew 
slowly in 1–2 days. The reason was that the bacterial metabolic system needed to adapt a new culture after its 
inoculation. At the same time, enzymes, coenzymes and other metabolic intermediates were produced15,16, thus 
the bacteria were in a lag phase. During 2–3 days, the bacteria entered the logarithmic growth phase after the 
preparation of the adjustment period. Sufficient material base was provided for the growth of microorganisms in 
this period, the external environment was also in the best state, and the bacteria grew fast.

After 4 days, the bacteria entered a stable phase, in which the number of bacteria was the largest. The cell pro-
liferation reached a stable stage due to the consumption of nutrients or growth inhibited by the accumulation of 
metabolites, and the growth and death rate were balanced. The determination of growth curve of Bacillus subtilis 
was supposed to give theoretical basis for the analysis of subsequent experiments.

Open circuit potential.  It is seen from Fig. 2 that Eocp in both sterile and Bacillus systems has shifted pos-
itively during the first day. It indicated that a product film developed in the early stage of the experiment due to 
the material of 10MnNiCrCu steel itself, which changed the state of the electrode surface and protected it tempo-
rarily17. Since then, the Eocp in sterile system shifted negatively due to oxygen absorption corrosion and stabilized 
after 5 days18. According to the growth curve of bacteria, bacteria proliferated and adsorbed on metal surface in 
the logarithmic growth phase within 2–3 days.

https://doi.org/10.1038/s41598-020-62809-y


3Scientific Reports |         (2020) 10:5744  | https://doi.org/10.1038/s41598-020-62809-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

The corrosion slowed down, the Eocp moved positively and the proliferation of bacteria consumed dissolved 
oxygen in the system. The potential shifted negatively within 3–4 days as a result of partial destruction of the 
formed product film. The bacterial metabolism was vigorous in Bacillus system during this period. The formation 
of organic acids in metabolites adsorbed on metal surface was conducive to the destruction of corrosion product 
film and accelerated the corrosion rate of metals. After 4 days, the number of bacteria reached a relatively stable 
state. The Eocp of 5d-6d was obviously lower than that of sterile system, which indicated that BS accelerated the 
corrosion of 10MnNiCrCu steel to a certain extent.

Compared with sterile solutions, the decrease of Eocp in BS-containing system can be attributed to the forma-
tion of biofilm, which inhibits the diffusion of cathode depolarizers (e.g., oxygen, hydrogen ions), leading to a 
reduction in cathode reduction potential. Therefore, according to the theory of mixed potentials, Eocp decreases in 
the presence of BS biofilm. The formation of biofilm in the early stage slows down the corrosion rate. The apparent 
negative shift of the potential in the later period is the result of a comprehensive effect. With the growth of bacte-
ria and further corrosion, the dissolved oxygen in the system decreases, the influence of metabolites leads to the 
destruction of biofilms and the continuous attack of metals by chloride ions in the solution.

EIS measurements and analysis.  Figure 3 shows Nyquist and Bode diagrams of 10MnNiCrCu steels 
immersed in sterile and Bacillus systems for 7 days.

It can be seen from Nyquist diagram that due to frequency dispersion, all Nyquist plots show irregular sem-
icircles, indicating that the corrosion of 10MnNiCrCu steel is controlled by the charge transfer process. The 
capacitive reactance arc of both systems increase with the immersion time, indicating that the impedance value of 
the system increases for that the biological/corrosion product film formed on the surface protects the steel tem-
porarily to a certain extent and slows down corrosion. In BS media, as the immersion time increases, the diameter 
of the semicircle increases first and then decreases, revealing that the corrosion rate decreases and then increases. 
The decrease of the corrosion rate can be attributed to the formation of the biofilm, while the increase shows the 
destruction of the film.

As is seen from the Bode diagram, there is two time constant in the sterile system, and the peak values occur 
at lower frequencies. In Bacillus system, there are two time constants in 2–3d, indicating that it is related to the 
two-layer structure formed during the corrosion process. The impedance values at low frequencies increased 
gradually from 1d to 7d, and there were obvious peaks at the lowest frequency in 2-3d. It can be concluded that 

Figure 1.  Growth curve of Bacillus subtilis with time.

Figure 2.  Eocp of 10MnNiCrCu steel in media with and without BS over time.
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the structure of bio/corrosion product film formed on the surface of electrode in earlier stage was looser. The 
capacitance of the product film(Qb) decreased during 5-7d, which showed that with the proliferation of BS and 
the influence of organic acids in metabolites on the product film, the bio/corrosion product film was destroyed 
and the contact between metal substrate and external corrosive media was further increased, which aggravated 
the corrosion.

Considering adsorption of biofilm and corrosion product on the substrate surface and their indistinguishable 
role, in this study, an equivalent circuit including a quadratic constant as shown in Fig. 4 is used. The sterile sys-
tem is represented by circuit diagram (a) and the BS system is represented by circuit diagram (b). Rs represents the 
solution resistance, Rb represents the protective film resistance on the electrode surface, Rct represents the charge 
transfer resistance, Qb represents the protective film capacitance, Qdl represents the double layer capacitance, Q 
represents the constant phase component CPE(when n = 1, CPE = C, that is, the capacitance at this time is the 
ideal capacitance). The results of fitting parameters are listed in Table 1.

Charge transfer resistance (Rct) is an index for evaluating the corrosion rate of metals. Cetin D pointed out 
that the increase of charge transfer resistance(Rct) would increase the porosity of the protective film and Warburg 

Figure 3.  Nyquist and Bode diagrams of 10MnNiCrCu steel immersed in sterile and Bacillus systems for 
7d (a represents the Nyquist diagram, b represents the magnitude diagram, and c represents the phase angle 
diagram).
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elements are generated, resulting in an increase in the potential of the capacitive element parallel to it19. Figure 5 
shows the Rct values of the two systems changing with time.

It can be seen from Fig. 5 that the charge transfer resistance Rct in BS system is obviously smaller than that in 
sterile system, which increased first and then decreased. It not only showed that the corrosion rate of metal sur-
face decreased first and then increased, but also revealed that tendency of the porosity and the surface heteroge-
neity. The increase of Rct in both systems indicated that a protective film gradually developed during this period. 
In the Bacillus system, there was a sharp decline within 6–7d, which indicated that the biofilm was destroyed 
and the corrosion rate of metal was obviously accelerated. In the sterile system, the Rct continuously increased 
and then achieved a relatively stable state, It showed that the corrosion process of metals in the sterile system was 
weak.

Polarization curves.  Figure 6 shows the potentiodynamic polarization curve of 10MnNiCrCu steel 
immersed in sterile and BS system for 7 days. Tafel curve is fitted by C-view software, and the corresponding 
electrochemical parameters are obtained, as shown in Table 2. From the figure and the data in the table, it can 

Figure 4.  The equivalent circuit models used to fit the EIS experimental data for 10MnNiCrCu steel immersed 
in (a) sterile media and (b) BS system.

T
(d)

Rs
(Ω·cm2)

Qdl × 10−4

(μF·cm−2) n1
Rct
(Ω·cm−2)

Qb × 10−4

(μF·cm−2) n2
Rb
(Ω·cm−2)

Sterile

1 3.07 1.78 0.81 7431 — — —

2 14.33 1.29 0.84 7401 —

3 8.40 1.34 0.90 32080 — — —

4 15.75 1.41 0.90 37910 —

5 3.58 1.32 0.94 42030 — — —

6 5.76 1.47 0.93 45270 —

7 10.14 1.57 0.92 46170 — — —

Bacillus

1 11.97 17.69 0.76 709.3 2.45 0.86 577

2 28.43 14.6 0.72 1102 2.04 0.908 18310

3 17.74 2.89 0.88 1816 2.89 0.88 22920

4 19.41 3.27 0.88 39160 4.39 0.90 5875

5 0.89 3.64 1 42470 1.82 0.90 12.23

6 5.74 3.51 0.98 46110 1.78 0.91 18.89

7 0.01 3.12 0.91 20.6 1.78 1 34320

Table 1.  Parameter fitting values of each element in the equivalent circuit in Fig. 4.
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be seen that a passivation zone occurs in both systems, indicating that a corrosion product layer formed in both 
systems during the corrosion process. In the presence of microorganisms, a mixed layer of biofilm and corrosion 
product film may develop in the BS system. In BS system, the slope of cathodic polarization curve is obviously 
larger than that of anodic polarization curve. It shows that the anode is in the active dissolution state without 
passivation, and the corrosion reaction is controlled by the cathode20,21. With the decrease of dissolved oxygen 
concentration in the solution, the cathodic reaction is inhibited to some extent. While in the sterile system, the 
anode slope (158.35 mV·dec−1) is slightly larger than the cathode slope (109.57 mV·dec−1), indicating that the 
corrosion reaction is mixed-controlled. According to the fitting data, the corrosion potential of 10MnNiCrCu 
steel in sterile environment is −1.2272 V, while in the presence of bacteria, the corrosion potential is −1.174 V, 
and the corrosion current density is 1.0861 μA/cm2 and 1.21 μA/cm2 respectively. It shows that there are corrosive 
conditions in both systems. While in the Bacillus system, the passivation area is narrower, indicating that acidic 
products produced by Bacillus metabolism damage the surface protective film. This is consistent with the results 
of the discussion and analysis in the impedance section.

Surface morphology analysis with SEM.  Figure 7 shows the surface morphology of 10MnNiCrCu steel 
observed by SEM after 7 days immersion in sterile and BS-containing medium, respectively.

It is seen that both of the surfaces of 10MnNiCrCu steel had been subjected to corrosion of different degrees 
and with different characteristics after immersion, and the corrosion morphology in the two media is quite differ-
ent. In sterile solution, the metal substrate was relatively complete, and the structure and properties of the internal 

Figure 5.  Variation of Rct value over time for 10MnNiCrCu steel immersed in sterile and BS system.

Figure 6.  Tafel polarization curve of 10MnNiCrCu steel electrode in sterile and BS system after immersed for 7d.

Condition
Ecorr
(V)

Icorr
(μA/cm2)

Ba
(mV·dec−1)

Bc
(mV·dec−1)

Sterile −1.2272 1.0861 158.4 109.6

Bacillus −1.1740 1.2100 64.3 202.5

Table 2.  Fitting values of Tafel polarization curves of 10MnNiCrCu steel electrodes in sterile and BS systems.
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metal was less affected. In BS solution, a large number of bacteria covered the metal surface and formed a bio/
corrosion product film with a loose structure and a great deal of metabolites. Due to the influence of metabolites, 
cracks appeared on the metal surface and further induced the corrosion extending to the metal interior. Pitting 
corrosion occurred in the localized area of the metal. Since no mechanism has been established to study the metal 
corrosion by bacteria by now, it is more consistent to say that metal corrosion is related to the biofilm formed by 
microorganisms, and the metabolic activity of bacteria is very important for the formation of biofilm. The cor-
rosion area of 10MnNiCrCu steel in BS solution is relatively large, and the pitting corrosion caused by the partial 
destruction of the corrosion product film is mainly due to the acid and other organic products.

Discussion
MIC is the corrosion and destruction of materials (including metals and alloys) caused by microorganisms and 
their EPS involved in the corrosion system. The potential mechanism of MIC can be attributed to the control of 
protein molecules on the movement of reactants to the metal surface.

In essence, the activity of corrosive microorganisms changes the electrode reaction in the corrosion process. 
Heyer A reported that the cell walls of bacteria generally showed electronegativity, which would help them adher-
ing to metal surfaces22.

In Bacillus system, gas exchange and solution diffusion were blocked in the occluded area, resulting in oxygen 
deficiency inside and oxygen enrichment outside the area. Thus, the occluded cell generated under biofilm and 
oxygen concentration corrosion occurred23.

→ ++Fe Fe 2e (1)2

H O 1/2O 2e 2OH (2)2 2+ + → −

The structure of metal substrate was affected by the reaction. Obvious cracks emerged on the metal surface 
and corrosion was accelerated, for that bacterial metabolites, such as organic acids, destroyed the product film24,25.

With the corrosion process, a bio/corrosion product film developed on the metal surface and slowed down the 
corrosion rate temporarily, as proved by the variation of Eocp. However, the internal redox reaction of metals led 
to accumulation of a large number of internal ferrous ions.

The chloride ions in the solution were attracted and migrated inside the metal to maintain the charge balance 
and further promoted the formation of occluded cell. In addition, the biofilm had channels and voids26. A large 
number of Cl− exist whether in sterile or in BS solutions and chloride ions generally accelerate corrosion. In this 
study, due to the destruction of the film, chloride ions attacked the surface, penetrated the interior of the metal 
and resulted in the chemical reactions and internal corrosion.

+ + → ++ −Fe 2H O 2Cl Fe(OH) 2HCl (3)2
2 2

Fe(OH) 3Cl FeCl 2OH (4)2 3+ → +− −

+ → +FeCl 3H O Fe(OH) 3HCl (5)3 2 3

The instability of Fe(OH)3 in solution could not prevent the metal from corrosion. The continuous entry ena-
bled the rapid increase of internal chloride ions, which had a special effect on anticorrosive metals depending on 
their passivation film by destroy the film partially and make it incomplete. A large number of metal cations and 
chloride ions accumulated to form soluble metal chlorides and then hydrolyzed into insoluble metal hydroxides 
and free acids. The acidic environment with high concentration of chloride ions further promoted the dissolution 
of internal metals.

Figure 7.  Surface morphology by SEM of 10MnNiCrCu steel immersed in (a)sterile medium and (b)BS 
medium for 7 days.

https://doi.org/10.1038/s41598-020-62809-y
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In addition, organic acids, the metabolite of bacteria, contained anionic functional groups capable of binding 
with metals, thus acting as corrosion inducers. The most common low carbon chain fatty acid is acetic acid, which 
is highly corrosive to steel when concentrated in microbial sediments. Pedersen reported that Pseudomonas 
promoted passive decomposition by excreting organic acids, resulting in an increase in the corrosion rate of met-
als27. The presence of organic acids accelerated the rate of charge transfer between anode and cathode to a certain 
extent, thus accelerating the corrosion process28. The schematic diagram as shown in Fig. 8 described the effect of 
BS on the corrosion process of metals.

Conclusions
The corrosion behavior and mechanism of 10MnNiCrCu steel in media containing Bacillus subtilis were studied 
by growth curve testing, electrochemical analysis and surface morphology observation. The main conclusions of 
this study are as follows:

In the presence of Bacillus subtilis, a bio/corrosion product film with a loose structure and a great deal of 
metabolites developed on the metal surface due to bacterial adhesion and growth. Due to the propagation of 
bacteria and the covering of product film, gas exchange and solution diffusion were blocked in the occluded 
area, then the occluded cell generated under biofilm and oxygen concentration corrosion cells occurred; acidic 
products in bacterial metabolites such as organic acids contained anionic functional groups capable of binding 
with metals, which acted as corrosion inducers and destroyed product film, resulting in a large number of obvi-
ous cracks on the metal surface; the biofilm provided access for electrolytes and induced the continuous attack of 
chloride ions on the surface and interior of the metal, leading to pitting corrosion.
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