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A Scalable Similarity-popularity 
Link prediction Method
Said Kerrache*, Ruwayda Alharbi & Hafida Benhidour

Link prediction is the task of computing the likelihood that a link exists between two given nodes in 
a network. With countless applications in different areas of science and engineering, link prediction 
has received the attention of many researchers working in various disciplines. considerable research 
efforts have been invested into the development of increasingly accurate prediction methods. Most of 
the proposed algorithms, however, have limited use in practice because of their high computational 
requirements. The aim of this work is to develop a scalable link prediction algorithm that offers a higher 
overall predictive power than existing methods. the proposed solution falls into the class of global, 
parameter-free similarity-popularity-based methods, and in it, we assume that network topology is 
governed by three factors: popularity of the nodes, their similarity and the attraction induced by local 
neighbourhood. in our approach, popularity and neighbourhood-caused attraction are computed 
directly from the network topology and factored out by introducing a specific weight map, which is 
then used to estimate the dissimilarity between non-adjacent nodes through shortest path distances. 
We show through extensive experimental testing that the proposed method produces highly accurate 
predictions at a fraction of the computational cost required by existing global methods and at a low 
additional cost compared to local methods. the scalability of the proposed algorithm is demonstrated 
on several large networks having hundreds of thousands of nodes.

The Internet, the World Wide Web, the brain and human society are some examples of systems that, despite 
seeming completely different at first sight, all share a fundamental property: they are all composed of interacting 
entities. Individual objects in these systems are not isolated, but rather connected through links or relationships. 
Mounting scientific evidence shows that these systems are better understood by investigating their properties as 
networks, where nodes represent individual components, and links refer to relationships, interactions or influ-
ences that exist among nodes1. Network science aims at understanding and creating effective tools for charac-
terizing and quantifying complex systems. The first step in this endeavour is to observe and record the existing 
interactions in order to build the network. In most cases, however, it is not possible to observe all interactions 
between the individual components. This can be due either to limitations in the data collection process or because 
certain relationships have not yet been established2. The process of identifying the links that are missing from 
the network is known as link prediction. Recommending new friends or collaborators in social networks3, recon-
structing networks2 and discovering unknown interactions in biological networks4 are few examples of the variety 
of applications that can benefit from predicting non-existing links.

Link prediction has proven to be a challenging problem, and a lot of efforts have been invested into the devel-
opment of increasingly accurate prediction methods5. Often times, however, the improved accuracy comes at 
the price of a higher computational cost. The aim of this work is to develop a link prediction method that offers 
a high prediction quality at a reasonable computational requirement. The proposed method is inspired from the 
similarity-popularity model6,7. Our assumption is that the network topology is driven by the popularity of the 
nodes, their similarity as well as local attraction induced by their neighbourhood. In our approach, popularity 
and neighbourhood-caused attraction are deduced directly from the network topology, whereas similarity is esti-
mated via shortest path distances. Extensive experimental evaluation shows that the proposed method produces 
highly accurate results at a computational cost that is several order of magnitude lower than that required by 
state-of-the-art global methods.
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Background and Related Work
The data for a link prediction problem consists simply in a network G V E( , ), where V  is the set of nodes and E is 
the set of edges. We assume that the network G contains no loops and that multiple edges between nodes are not 
allowed. We denote by U the set of all possible links between the nodes of G. By definition, ⊆E U, and if n is the 
number of nodes in the graph (that is, =n V ), then the set U contains exactly −n n( 1)/2 elements, which is the 
maximum number of undirected edges that can exist in the network. The set −U E is the set of non-existent 
links, and the edges in this set are referred to as negative edges, whereas those in E are called positive edges. The 
link prediction problem consists in discovering which elements of −U E are missing from the network or may 
appear in the future5. This is typically achieved by assigning a score sij to every edge i j( , )  to be predicted. The 
higher score the more likely the edge actually exists.

Research on link prediction can be classified according to the type of information used in the prediction pro-
cess into topological-based link prediction, where only the information available in the graph adjacency matrix is 
used, and non-topological-based (or semantic) link prediction, where the algorithms use node features in addition 
to the topological information to improve the prediction quality8. Link prediction methods can also be classified 
according to the type of model that is assumed to control the network topology. For instance, the model can 
be probabilistic2 or geometric7. Another important aspect that differentiates link prediction algorithms is the 
amount of topological information used to predict a single link. Global link prediction methods make use of the 
whole adjacency matrix to predict any given link, whereas local methods use only a small portion of the matrix to 
collect the local information necessary for prediction. Consequently, global methods tend to be computationally 
more intensive than their local counterparts.

topological ranking methods. The effectiveness of topological similarity measures in predicting links in 
networks was first extensively investigated in the work of Liben-Nowell and Kleinberg9. They proposed local and 
parameter-free approaches for link prediction, which have been later widely employed by the research commu-
nity due to their simplicity, computational efficiency and performance. In their work, the authors compute likeli-
hood scores for each pair of non-connected nodes using the common neighbours (CNE)10 index, Jaccard’s (JID)11 
index, Adamic and Adar (ADA)12 index, hub promoted Index (HPI)13 and preferential attachment (PAT)10, and 
then rank the non-existing edges according to their scores, with the highest ranked edges being considered more 
likely to be connected. All these methods can be categorized as node-neighbourhood-based approaches except 
for PAT. By comparing the results obtained using different topological similarity indexes on five co-authorship 
networks, they concluded that topological information indeed improves link prediction performance. This work 
has motivated the introduction of several topological similarity measures for link prediction14–17. Zhou et al.  
introduced the resource allocation (RAL)18 index that, similarly to ADA index, gives more weight to nodes with 
low degrees. Zhu and Xia19 took the effort further by introducing an information-theoretic model that uses 
multiple topological features. The importance of each feature is determined by the value of information it con-
tributes in deciding whether a link exits or not. Recently, inspired by a local-learning rule of neuron networks 
named Hebbian rule, Muscoloni and Cannistraci proposed Cannistraci-Hebb (CH)20 model (previously named 
Cannistraci-Ressourse-Allocation (CRA) rule21,22). The theory behind it is called local community paradigm, 
where two nodes are likely to be connected if their common neighbours are strongly connected, forming thus a 
local-community. CH model is a local, parameter-free deterministic model for link prediction in monopartite 
and bipartite networks that outperforms in general link-predictors that are considered as a reference.

Semantic methods. Semantic methods combine topological information with content or semantic data 
related to nodes to improve prediction. In this setting, the link prediction problem is typically cast as a classifica-
tion problem, where the classifier is trained to discriminate between positive instances (connected couples) and 
negative instances (disconnected couples). To predict missing links, Hasan et al.3 used topological features, such 
as the shortest path distances, in addition to several semantic features, for instance, the number of matching key-
words. Their experimental results show that semantic similarity improves the accuracy of the link prediction. In 
addition to topological and semantic similarity, Wang et al.23 used the joint co-occurrence probability of nodes as 
a feature and used a logistic regression classifier to predict links based on these features. Their experiments show 
that the performance is improved when all three features are combined.

Although proven useful, semantic data may not always exist, may be imprecise, or in many cases difficult to 
collect. Another limitation of semantic methods is that they require domain-knowledge to select the features to 
be used.

probabilistic methods. Probabilistic models have been particularity successful in solving the link predic-
tion problem. Among these models, global prediction frameworks based on the community structure of the 
network have been proposed by Clauset et al. in4, and by Guimerà and Sales-Pardo in2. Clauset et al. introduced 
a Hierarchical Random Graph model (HRG)4 that can be used to predict the existence of links between the graph 
nodes. The hierarchical structure consists of a binary tree with leaves representing the nodes of the network. 
Internal nodes, on the other hand, correspond to nested clusters, each associated with the probability of a link 
existing between any two of its children. Hence, the probability that two nodes are connected can be determined 
by locating their lowest common ancestor in the tree. This method was used successfully to predict links in par-
tially known social and biological networks. In2, the authors introduced Stochastic Block Model (SBM) in which 
the nodes are partitioned into groups, and the probability of existence of a link between two nodes depends on the 
groups to which they belong. Their mathematical framework allows to capture the community structure and esti-
mate links reliability. The latter describes the probability that a link exists, and in addition to predicting missing 
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links, it can also be used to identify spurious ones. It is worth mentioning that due to combinatorial explosion, 
the use of these two global probabilistic methods (HRG and SBM) is in practice limited to small-sized networks5. 
Liu et al. presented Fast Blocking probabilistic Model (FBM)24, a greedy-based approach in which link densities 
within and among communities are used to estimate the probability of a link. HRG, SBM and FBM are global link 
predictors that use only the topological information (adjacency matrix) for the prediction. FBM has significantly 
less computational complexity comparing to HRG and SBM.

Similarity-popularity models. Similarity-popularity models6,7 are a family of complex network models 
that ascribe the network topology to two properties: the similarity between nodes and their popularity. Boguna et 
al.6 proposed a hidden variables model that assumes the existence of a hidden metric space underlying real net-
works. This metric space encodes the similarity between nodes: nodes that are at a smaller distance from one 
another exhibit more similarity than those that are at a larger distance. Additionally, each node is assigned a 
hidden degree κ that represents its popularity. These hidden degrees are drawn from a power-law degree distribu-
tion γ−~P k k( ) , with γ > 2. The probability that a pair of nodes i and j are connected is then given by6: 

κ κ = + α−( )r d d d; , (1 / ) , (1)i j c

where d is the distance between node i and j, κ κ~dc i j with κi and κj being the expected degrees of i and j, and 
α > 1.

A direct implication of Eq. (1) is that the connection probability is inversely proportional to the distance 
between the nodes. Hence, all other things being equal, similar nodes tend to connect more than dissimilar nodes. 
The connection probability is one the other proportional to the product of the hidden degrees of the two nodes: 
if all other things are kept equal, then more popular nodes have more chance to connect than less popular nodes. 
The connection probability is therefore a trade-off between the two properties, similarity and popularity. In25, 
the authors investigated a variation of the hidden metric space model in which the underlying space possesses 
a hyperbolic geometry, and in26, HyperMap (HYP), a method for estimating the parameters of the hyperbolic 
model from data is presented. The estimated model can then be used to compute the probability of existence of 
links between any pair of nodes in the network.

Results
In this paper, we generalize the model proposed in6 and assume that in addition to similarity and popularity, the 
likelihood of existence of a link between two given nodes also depends on the attraction forces induced by their 
local neighbourhood. Namely, we assume that the likelihood of a link between two nodes i, j is proportional to: 

π ηΨ = +i j s( , ) ( ) , (2)ij ij ij

where sij is the similarity between i and j, πij is a measure of the popularity of the two nodes, and ηij represents the 
attraction between the nodes caused by their local neighbourhood. The popularity term πij reflects the tendency 
of the two nodes to connect to other nodes in the networks and is therefore chosen to be an increasing function 
of the nodes’ degrees. There are many possible choices for πij, but in this work we propose a formula that will 
prove to scale well for large networks. First, let the function φ be defined as: 

φ = + .x x( ) log ( 1) (3)

The popularity term πij is then given by: 

π
φ κ φ κ

φ κ
=

+( ) ( )
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,
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where κi and κj are the degrees of i and j respectively, and κmax is the maximum degree in the network. The pur-
pose of adding the constant one inside the logarithm in the definition of φ is to avoid indefiniteness when dealing 
with isolated nodes (having degree 0). The denominator in Eq. (2) is used for normalization, so that the value πij 
lies in the interval [0, 1]. Unlike the popularity term πij, which depends only on the degrees of the two nodes, ηij 
depends on the local topology in the vicinity of the two nodes: 
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where Γij is the set of common neighbours of i and j, and κk is the degree of node k. By convention ηij is set to 0 if 
Γij is empty. Note that, similarly to πi j, , η ∈ [0, 1]ij  and is larger when i and j are connected via low degree nodes 
compared to when being connected by neighbours having high degrees. Finally, the similarity term sij can be 
written as a function of the hidden distance between the two nodes as follows: 
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+
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Hence, ∈s [0, 1]ij , with =s 0ij  for nodes at infinite distance, and it is equal to 1 for nodes at zero distance. Except 
for the similarity term sij, all quantities in Eq. (2) can be easily computed given the observed network. The distance, 
or dissimilarity, on the other hand, must be inferred from the network topology. To achieve this, we proceed as 
follows: for every edge ∈i j E( , ) , we assign the length ω i j( , ) given by: 

ω
π

η
=

+
i j( , )

2
1

,
(7)

ij

ij

 In this formula, the length of an edge is inversely related to local attraction. This is consistent with the phenome-
non of clustering caused by hidden metric spaces: nodes with strong local attraction forces are more likely to be 
at a short distance in the hidden space compared to nodes with weak local attraction. The nominator in Eq. (7) 
has for role to factor out the popularity effect: popular nodes do not require a short distance to connect and can 
therefore be assigned a large edge length. Unpopular nodes, on the other hand, are assigned low edge length to 
enable them to connect. Using the obtained weight map, it is possible to approximate the dissimilarity between 
non-adjacent nodes by their shortest path distance. Once computed, the latter can be used to assign a score 
ψ = Ψ i j( , )ij  to any negative link i j( , ). The higher the score ψij the more likely that a link exists between i and j. 
The proposed link prediction procedure is therefore a global and parameter-free similarity-popularity-based pre-
dictor. Figure 1 shows an example of computing the score ψij for a disconnected couple of nodes i j( , ) using the 
proposed approach.

From the computational perspective, the critical step in the proposed method is the computation of the short-
est path distances. If the set of links to be predicted is small, it is possible to use Dijkstra’s algorithm. If, on the 
other hand, the prediction involves all disconnected couples in the network, we end up with the all-couples short-
est path problems, which can be solved in O n( )3  using Floyd-Warshall’s algorithm. Since most real networks are 
sparse, however, it is in general more efficient to run Dijkstra’s algorithm n times, which results in an overall 
running time of +O nm n m( log )

2 , where m is the number of edges. This is computationally better than running 
Floyd-Warshall’s algorithm if the network is sparse. A more efficient approach for reducing the running time is to 
impose a horizon cut-off when running Dijkstra’s algorithm. In this setting, given a horizon cut-off h, all paths 
having more than h edges are discarded. Consequently all nodes that cannot be connected via paths having at 
most h edges are considered disconnected and are assigned an infinite distance. The usual definition of shortest 
path distances corresponds to = ∞h . Using a small value for h can dramatically reduce the computation time 
and, as we shall see in the experimental evaluation, causes virtually no reduction in performance in real networks. 
This renders the method scalable for very large networks as demonstrated by the experimental results. The pro-
posed method is summarized in Algorithm 1. There, ( )ShortestPathDistance V E w h, , { },ij  computes the shortest 
path distances between nodes in the graph V E( , ) using wij as weights and h as horizon cut-off.

Figure 1. Example of link prediction using Algorithm 1. (a) Shows the input network. The algorithm assigns to 
each disconnected couple a score representing the likelihood of the existence of an edge between these nodes. 
To compute the score ψij for the disconnected couple i j( , ), the network is first weighted using Eq. (7) as shown 
in (b). The distance dij is then estimated as the length of the shortest path between i and j (highlighted in red). 
Notice that the weight map causes the shortest path to pass through the peripheral small-degree nodes instead 
of the central hub node. Finally, the score is assigned to i j( , ) according to Eq. (2).
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experimental evaluation. To assess the performance of the proposed algorithm (referred henceforth as 
ALG1), we conduct a series of experiments on synthesized and real network data. The first experiment con-
sists in assessing the effect of the horizon cut-off on the predictive power of Algorithm 1. We then compare the 
proposed method to a set of well known global link prediction methods that have high accuracy in general but 
are in most cases computationally intensive, and hence are not scalable to large networks. Comparison to local 
methods, which are fast and scalable in general, is conducted next on simulated and real networks of different 
types and sizes. We also investigate the effect of network topological properties on the proposed algorithm. The 
last experiment compares the time performance of the proposed algorithm to existing methods and demonstrates 
its scalability. In the next sections, the performance metrics used for the evaluation are presented followed by a 
description of the experiments conducted.

Performance metrics. The test data used to evaluate the performance of link prediction algorithms is created 
from ground truth networks by removing a set of links that is then used as a test set. As customary in link predic-
tion literature, we shall use a fixed and small removal rate of 10%. In other words, the prediction algorithm is 
presented with 90% of the links, whereas the remaining 10% are used to assess its predictive power. Traditionally, 
the main performance measure used to evaluate the performance of link prediction methods has been the area 
under the receiver operating curve (AUROC)5, which can be computed as the probability that a false negative link 
(that is, a removed link) is assigned a score that is higher than that of a true negative link (a negative link in the 
original network). However, despite the fact that the AUROC metric is unbiased for imbalanced datasets, recent 
studies18,20,27,28 have pointed out that it is unsuitable to use it for evaluating link prediction algorithms. Link pre-
diction problems are characterized by a large skew within the class distribution, particularly in sparse networks. 
The size of the negative set, defined as the set of non-existent edges except the removed ones used for the test, is 
much larger than the set of the positive set, defined as the edges removed for the test. Using the area under ROC 
curve, especially in large networks, can provide an overly-optimistic view of the performance, since the rate of 
mistakes comparing to the negative set size can hide their actual magnitude27,29. The area under the 
precision-recall curve (AUPR) metric can provide a better evaluation when dealing with imbalanced datasets29, 
since it considers only the performance of the positive set. This is particularly true for link prediction18, where the 
positive set is usually very small compared to the negative set. Another performance measure that avoids the 
pitfalls of the AUROC is top-precision (TPR), also referred to as top-k predictive rate or r-precision18, and some-
times simply (although inaccurately) as precision. This measure has been adopted as a performance metric in 
recent works on link prediction20,28. After ranking the non-existent links according to the prediction score, 
top-precision is computed as the percentage of positive links (the ones removed to be used as the test set) within 
the top k ranked links, where k is usually taken as the total number of removed links5,18.

In this paper, we adopt top-precision as the main metric for measuring the performance of link prediction 
algorithms. As we are using multiple datasets to compare the performance of the algorithms, we also need to 
aggregate results obtained using different networks. Since these networks exhibit very different topological prop-
erties, simply averaging the results may lead to erroneous conclusions. To remedy this problem, we will use an 
adapted version of the top-precision-ranking metric proposed recently in20,28. Instead of simply ranking the algo-
rithms as originally proposed in20,28, we conduct a statistical test for the results of each network and only consider 
statistically significant differences. More precisely, for each network, we conduct a two-tailed paired t-test for each 
couple of algorithms. If the results of the two algorithms are not statistically significantly different at the specified 
confidence level, both algorithms are assigned the score 0 for this network. If, on the other hand, the results are 
statistically significantly different, the algorithm with the better results is assigned the score 1, whereas the other 
algorithm is assigned -1. These pairwise scores are summed to obtain a network score for every algorithm. The 
algorithms are then decreasingly ranked based on these network scores and in case of a tie, the average rank is 
used. The final evaluation score of an algorithm is computed as the average rank over all networks. In what fol-
lows, we shall refer to this average as the average significant rank.

The effect of the horizon cut-off. To assess the effect of the horizon cut-off h on the performance of the proposed 
method, we run the algorithm with different values of h on several real networks and compare the results. For 
each network, we randomly remove 10% of the edges and set them aside as test set. In this experiment, we use two 
sets of networks: one consisting of 40 small networks (having less than 1000 nodes), and the other containing 40 
large networks (having more than 1000 nodes). The number of test runs per network is 1000 for small networks 
and 100 for large networks. For small networks, we compute the average significant ranks at = .p 0 05 based on 
AUPR, AUROC and top-precision. For large networks, we limit the results to top-precision as it is our main 

Algorithm 1.
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performance measure and also to keep the computation time reasonable. Figure 2 shows the obtained average 
significant ranks (detailed per-networks results can be found in Tables 4–7 of SI). As can be seen in Fig. 2(c,d), 
top-precision is essentially insensitive to the variations of h. The same applies to a large extent to AUPR (Fig. 2(a)), 
except for =h 2 which seems to be the only value that gives lower quality results. The AUROC, on the other hand, 
is sensitive to changes in the horizon cut-off as can be seen from Fig. 2(b), where we can see that =h 3 produces 
the best results. Since we are mainly concerned with top precision, however, we shall use the value =h 2 in the 
remaining experiments as it produces the same quality as higher values of h but at a much lower computational 
cost as it is demonstrated in the time performance experiment at the end of this section.

Comparison against global methods. In this experiment, we compare the performance of the proposed approach 
against a set of well-known global link prediction algorithms, namely: Hierarchical Random Graph (HRG)4, 
Stochastic Block Model (SBM)2, Fast Block probabilistic Model (FBM)24 and HyperMap (HYP)26 (see Background 
and Related Work section for a description of these algorithms). All these methods use only the topological infor-
mation (adjacency matrix) for predicting the links. They are also known for producing fairly accurate predictions, 
but this often comes at a high computational cost. The comparison is conducted on 18 small real networks of 
various types and orders ranging from 35 nodes (DNA Citation network) to 643 nodes (Political Blog network). 
The size restriction is essentially due to the high computational cost of the global methods used for comparison. 
The average significant ranks obtained with a p-value of 0.05 are shown in Fig. 3 (left), whereas the detailed 
per-network results are reported in Table 8 of SI. The results show that the proposed method performs consist-
ently better against the other methods. It has the best average significant rank although the statistical significance 
tests reported in Table 1 show that the superiority against SBM is not statistically significant at 95% confidence 
level. As shown in the time performance experiment, this level of performance of the proposed method is 
achieved at a computational cost that is a mere fraction of what the other global methods require including SBM. 
Indeed, most real-life networks are large in size, which makes the availability of scalable link prediction methods 
such such as the proposed algorithm crucial for practical applications.

Comparison against local methods on real networks. We evaluate the performance of the proposed method by 
comparing it to 12 local prediction algorithms. In this section and subsequent ones, we report the results of a 
representative sample of these methods consisting of: Adamic-Adar index (ADA), common neighbours (CNE), 
Cannistraci-Hebb model (CH), hub promoted index (HPI), Jaccard index (JID), preferential attachment (PAT) 
index, and resource allocation index (RAL). All the methods used for comparison use only the local graph infor-
mation to rank the disconnected couples and therefore have a running time that is O n( )2  making them easily 

Figure 2. The effect of the horizon cut-off h on the performance of Algorithm 1. We report the average 
significant ranks at = .p 0 05 using different values of h. In (a–c), we show the ranks based on the area under the 
PR curve (AUPR), the area under the ROC curve (AUROC) and top-precision (TPR) respectively. These results 
are obtained using 40 small networks. The average top-precision significant ranks on a set of 40 large networks 
are shown in (d).

Figure 3. Comparison of Algorithm 1 against global and local link prediction methods on real networks. We 
show the average significant rank at = .p 0 05 based on top-precision (the lower the better). Comparison against 
global methods is done using 18 small networks. For local methods, we use 40 small networks (with up to 1000 
nodes), 40 large networks (with up to 30,000 nodes) and 26 very large networks (with up to 400,000 nodes).
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scalable to large networks5,30. More than a hundred networks of various types and with sizes ranging from less 
than 50 nodes to several hundred thousands nodes are used in the evaluation process. Figure 3 shows the average 
significant ranks based top-precision obtained using three sets of networks: a set of 40 small networks having less 

Global methods

FBM HRG HYP SBM ALG1

FBM 0.01 0.00 0.08 0.00

HRG > 0.00 0.00 0.00

HYP > > 0.00 0.00

SBM < < 0.21

ALG1 < < <

Local methods on real networks Local methods on simulated networks

Small networks nPSO networks

ADA CNE CH HPI JID PAT RAL ALG1 ADA CNE CH HPI JID PAT RAL ALG1

ADA 0.00 0.26 0.00 0.00 0.09 0.05 0.00 ADA 0.00 0.29 0.00 0.00 0.00 0.00 0.00

CNE > 0.00 0.00 0.00 1.00 0.00 0.00 CNE > 0.00 0.00 0.00 0.00 0.00 0.00

CH < 0.00 0.00 0.40 0.00 0.00 CH < 0.00 0.00 0.00 0.00 0.00

HPI > > > 0.59 0.00 0.00 0.00 HPI > > > 0.00 0.00 0.00 0.00

JID > > > 0.00 0.00 0.00 JID > > > > 0.00 0.00 0.00

PAT < < 0.02 0.00 PAT > > > > > 0.00 0.00

RAL < < < < < < 0.00 RAL < < < < < < 0.42

ALG1 < < < < < < < ALG1 < < < < < <

Large networks Watts-Strogatz networks

ADA CNE CH HPI JID PAT RAL ALG1 ADA CNE CH HPI JID PAT RAL ALG1

ADA 0.00 1.00 0.00 0.00 0.00 0.93 0.00 ADA 0.00 0.00 0.00 0.00 0.00 0.08 0.00

CNE > 0.00 0.00 0.00 0.00 0.05 0.00 CNE < 0.00 0.00 0.00 0.00 0.00 0.00

CH < 0.00 0.00 0.00 0.67 0.00 CH > > 0.00 0.00 0.00 0.00 0.00

HPI > > > 0.00 0.30 0.00 0.00 HPI < < < 0.30 0.00 0.00 0.00

JID > > > > 0.00 0.00 0.00 JID < < < 0.00 0.00 0.00

PAT > > > < 0.00 0.00 PAT > > > > > 0.00 0.00

RAL < < < < 0.00 RAL > < > > < 0.00

ALG1 < < < < < < < ALG1 > > > > > < >

Very large networks Barabàsi-Albert networks

ADA CNE CH HPI JID PAT RAL ALG1 ADA CNE CH HPI JID PAT RAL ALG1

ADA 0.00 0.05 0.00 0.00 0.00 1.00 0.00 ADA 0.00 0.00 0.00 0.00 0.00 0.00 0.01

CNE > 0.00 0.00 0.00 0.00 0.30 0.00 CNE < 0.00 0.00 0.00 0.00 0.00 0.53

CH < 0.00 0.00 0.00 0.15 0.00 CH > > 0.00 0.00 0.00 1.00 0.00

HPI > > > 0.18 1.00 0.00 0.00 HPI > > > 0.00 0.00 0.00 0.00

JID > > > 0.37 0.00 0.00 JID > > > > 0.00 0.00 0.00

PAT > > > 0.00 0.00 PAT < < < < < 0.00 0.00

RAL < < < 0.00 RAL > > < < > 0.00

ALG1 < < < < < < < ALG1 < < < < > <

CAIDA AS networks

ADA CNE CH HPI JID PAT RAL ALG1

ADA 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CNE > 0.00 0.00 0.00 0.00 0.00 0.00

CH < < 0.00 0.00 0.00 0.00 0.00

HPI > > > 0.00 0.00 0.00 0.00

JID > > > > 0.00 0.00 0.00

PAT > > > < < 0.00 0.00

RAL > > > < < < 0.00

ALG1 < < < < < < <

Table 1. Results of statistical significance test of the difference in mean significant ranks. The results reported 
are those of the two-sample, one-tailed Mann-Whitney-Wilcoxon test of the mean significant ranks based on 
top-precision. For each entry, the upper triangle of the table reports the test p-values adjusted using the 
Benjamini, Hochberg, and Yekutieli method. Results significant at 95% confidence level are reported in boldface 
text. The lower triangular part reports, when significant at 95% confidence level, the comparison of the average 
significant rank with = .p 0 05 between the algorithm in the row and the one in the column.
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than 1000 nodes, a set of large networks having more than 1,000 nodes and less than 30,000 nodes, and one con-
sisting of 26 very large networks having up to 400,000 nodes. Table 2 shows the average top-precision results for 
a sample of 12 networks. The full detailed results are reported in Tables 9–12 of SI. As the results show, the pro-
posed method gives the highest top-precision in the majority of the networks and has the lowest average signifi-
cant rank in all three types of networks. This is further confirmed by the results of the statistical significance tests 
reported in Table 1.

Comparison against local methods on the CAIDA AS relationships dataset. In this experiment, we compare the 
performance of the proposed algorithm against local methods on the CAIDA AS relationships dataset, which 
contains 122 CAIDA AS graphs collected from January 2004 to November 2007. The data was collected peri-
odically, once a month during 2004 and 2005, then weekly in 2006 and 2007. Each of the 122 networks contains 
the full AS graph derived from a set of RouteViews BGP table snapshots. As a pre-processing step, we removed 
the network collected on 17/09/2007 which is clearly and outlier as its size is abnormally small compared to the 
other networks (see Table 3 of SI). Our goal is to assess the strength of the algorithms at predicting the future 
evolution of the network given its present state. For this, we consider all couples of networks ordered according 
to the date of collection and use the earlier network to predict the later one. Newly appeared edges, that is, those 
present in the second network but not in the first one, are used as a test set. We run the algorithms on all 7,260 
network couples and compute the top-precision obtained by each algorithm on every couple. To account for the 
systematic increase in top-precision due to the increase of the test set size, we compute the relative top-precision 
which we define as the top-precision of the algorithm divided by the top-precision of a random link predictor 
(hence, the random predictor has, by definition, a relative top-precision of 1). In Fig. 4, we scatter plot relative 
top-precision against the interval separating the collection dates of the two networks measured in weeks. We 
also plot the smoothed version of the data (line plot) obtained using LOWESS (Locally Weighted Scatterplot 
Smoothing) with 80% of the data used for estimating each top precision value. The results show that Algorithm 1 
gives the best predictions for all interval durations followed by CH for short to medium predication intervals and 
ADA for longer intervals. As shown by the statistical significance tests in Table 1, Algorithm 1 gives the highest 
top-precision overall followed by CH then ADA.

Comparison against local methods on synthetic networks. To gain a better understanding of the performance of 
the proposed algorithm relatively to neighbourhood-based methods and the effects of network topology on its 
predictive power, we conduct an experimental evaluation using synthetic networks generated using the following 
well-known complex networks models: 

•	 Nonuniform popularity-similarity optimization (nPSO) networks: Several studies on complex networks have 
suggested the existence of hidden geometrical spaces behind their topologies6,7,25,31–33. The popularity-simi-
larity optimization (PSO) model33 suggests that complex networks can be embedded into a hyperbolic space, 
where nodes are mapped to angular and radial coordinates. Nodes with high similarity are mapped to close 
angular coordinates, and popular nodes, characterized by high degrees, are assigned to lower radial coordi-
nates compared to other nodes. The nonuniform popularity-similarity optimization (nPSO) model34 is a 
variation of the popularity-similarity-optimization (PSO) model in which the angular coordinates are sam-
pled from a Gaussian mixture distribution with C components instead of a uniform distribution; allowing 
thus the formation of community structures, each corresponding to a component of the Gaussian mixture. A 
parameter called temperature (T ) controls the mixing of the communities; more links are generated between 
nodes that are far in the disk when the temperature T  is increased, leading thus to a lower clustering coeffi-

Network n m ADA CNE CH HPI JID PAT RAL ALG1

Terrorist 62 152 0.2923 0.2443 0.2762 0.1568 0.0549 0.1059 0.2907 0.2936

SFBD Food Web 128 2,106 0.0724 0.0700 0.0860 0.0566 0.0113 0.1654 0.0725 0.1215

E.Coli 418 519 0.0243 0.0088 0.0009 0.0012 0.0003 0.0118 0.0278 0.0334

Web Edu 3,031 6,474 0.4267 0.2273 0.1928 0.2675 0.0103 0.0121 0.4247 0.5032

Advogato 5,155 39,285 0.1329 0.1214 0.1548 0.0122 0.0023 0.0502 0.1390 0.1539

PGP 10,680 24,316 0.3110 0.2591 0.3136 0.0824 0.0107 0.0212 0.2831 0.3434

EAT 23,219 304,938 0.0665 0.0652 0.0911 0.0016 0.0003 0.0126 0.0413 0.0651

AS CAIDA 2007 
11 05 26,475 53,381 0.0480 0.0444 0.0488 0.0004 0.0000 0.0327 0.0350 0.0534

Func-Func 46,027 106,510 0.0546 0.0395 0.0007 0.0060 0.0000 0.0497 0.0437 0.0799

Livemocha 104,103 2,193,083 0.0119 0.0116 0.0262 0.0002 0.0000 0.0152 0.0113 0.0307

Amazon 334,863 925,872 0.1677 0.1272 0.1636 0.0888 0.0345 0.0004 0.1584 0.1850

Twitter Follows 404,719 713,319 0.0017 0.0008 0.0017 0.0003 0.0000 0.0013 0.0021 0.0025

Table 2. Sample results of comparison between Algorithm 1 and local link prediction methods on real 
networks (full results in SI). We report top-precision obtained using 1000 test runs in the case of small networks 
and 100 test runs for larger networks. In each test run 10% of the edges are removed and used as test set. For 
every network, the results having the best significant rank with = .p 0 05 are shown in bold. The columns n and 
m show the number of nodes and edges of the networks.
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Figure 4. Comparison of Algorithm 1 with local link prediction methods on the CAIDA AS relationships 
networks. For each algorithm, we scatter plot relative top-precisions vs. the prediction interval in weeks. The 
line plots are obtained by smoothing the data using LOWESS (Locally Weighted Scatterplot Smoothing) with 
80% of the data used for estimating each y-value.

Figure 5. Comparison of Algorithm 1 with local link prediction methods on nPSO networks. We report the 
average top-precision obtained using 100 randomly generate networks for every combination of n k,  and T  
(here γ is fixed to 3).
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cient. In addition, half the average node degree k and the exponent of the power-law degree distribution γ are 
provided as an input parameter to the model.

•	 Watts-Strogatz networks: The Watts-Strogatz model35 allows the generation of small-world networks, that is, 
networks with small diameter. It constructs a ring lattice of n nodes, each of them is connected to its k previ-
ous and k next neighbours, then each link is rewired with a probability p to a uniformly selected node from 
the remaining nodes if the link is not already present.

•	 Barabàsi-Albert networks: Real networks are usually characterized by a power law degree distribution that 
distinguishes them from random networks. The Barabàsi-Albert model36,37 is one of the first models that 
allows the generation of scale-free networks by adding gradually nodes with k undirected edges and attaching 
the other end of each of them to another node in the network with a probability proportional to the degree of 
that node.

For the experiment on nPSO networks, we generate networks with 8 communities =C( 8) having the follow-
ing parameters: =n 1000, 5000, 10000, =k 4, 6, 8, 10, 12, 14, = . . .T 0 3, 0 5, 0 7 and γ = 3. This value assigned 
to γ is commonly encountered in real networks. For each of the 54 combinations of these parameters, we generate 
100 samples randomly. Each sample is then used to test the link prediction methods by removing 10% of the edges 
and using them as a test set. Figure 5 shows the average top-precision results obtained with different values of the 
network parameters. All methods show a decrease in performance as the networks become larger and less clus-
tered, that is when T  increases. On the other hand, the performance increases when the density of the networks 
increases (larger k). The proposed algorithm gives consistently good results when the networks are sparse 
( =k 4, 6). For denser networks, CH gives the best results for = .T 0 3, that is, in highly clustered networks, but 

Figure 6. Comparison of Algorithm 1 with local link prediction methods on Watts-Strogatz networks. In the 
plot, we show the average top-precision obtained using 100 randomly generate networks for every combination 
of n k,  and p.

Figure 7. Comparison of Algorithm 1 with local link prediction methods on Barabàsi-Albert networks. In the 
plot, we report the top-precision averaged over 100 randomly generated networks as function of k.
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when clustering becomes weaker at = .T 0 5 or 0.7, Algorithm 1 and RAL take the lead. The latter two methods 
also produce the best results overall as can be seen from the statistical tests results of Table 1.

A similar procedure is followed for tests on the Watts-Strogatz networks. The following parameters are used: 
=n 1000, 5000, 10000, =k 4, 6, 8, 10, 12, 14 and = . . .p 0 001, 0 01, 0 1. Results of average top-precision are 

shown in Fig. 6, whereas Table 1 includes the associated statistical significance tests. Clearly, popularity-based 
methods such as the proposed algorithm perform very poorly in this type of networks. This is due to the fact that 
despite exhibiting the small-world property, Watts-Strogatz networks are not scale-free networks, a property 
shared by many, if not the majority, of real networks. Consequently, methods that rely on node degree to score 
links fail to accurately predict the topology of this type of networks. Interestingly, the rank results in 
Watts-Strogatz networks also show an almost reversal of the algorithms’ ranks compared to the other types of 
networks. Methods such as JID and HPI index, which performed poorly elsewhere, produce here the best results. 
The fact that the topology of real networks rarely follow the Watts-Strogatz model, however, limits the successful 
use of these methods in practical situations.

For Barabàsi-Albert networks, we generate 100 random samples of networks having a combination of the 
following parameters: =n 1000, 5000, 10000 and =k 4, 6, 8, 10, 12, 14. Average top-precision results are 
shown in Fig. 7, and Table 1 includes the associated statistical significance tests. Since Barabàsi-Albert networks 
evolve according to the preferential attachment principle, whereby new connections are more likely to be made 
with nodes having already high degrees, the preferential attachment method (PAT) gives the best results followed 
immediately by CNE and Algorithm 1.

Effect of network topology on the performance of the proposed method. To understand the effect of network topol-
ogy on Algorithm 1, we use the results obtained on the real networks employed in the previous experiments to 
plot the grouped histograms shown in Fig. 8. Four topological properties are considered: the order of the network 
(n), its density, its average clustering coefficient and its relative max-degree defined as κ= −RMD n/( 1)max . The 
networks are grouped according to the best performing method based on top-precision. Clear distinctions 
between the five prediction algorithms can be observed from the figure. ADA performs comparatively well in low 

Figure 8. Effect of network topology on the performance of the proposed method. Using the real networks 
employed in the experimental evaluation, we plot the histograms of number of nodes, n, density, average 
clustering coefficient (C) and relative max-degree (RMD) grouped according to the best performing method 
(only the five most frequent methods are considered).

Figure 9. Time performance of the proposed algorithm. The evaluation is performed using randomly 
generated networks using Barabàsi-Albert model with =k 8. The time reported is the average time required by 
the algorithms to compute the score of all non-existing links. In (a), we report the running time of Algorithm 1 
using different values of the horizon cut-off h. Each data point is the average over 10 runs on 100 different 
networks. In (b), we report the time performance of Algorithm 1 with = ∞h  against global prediction 
methods. Each data point is the average over 100 different networks. In (c), we report the time performance of 
Algorithm 1 with =h 2 against local methods. Each data point is the average over 10 runs on 100 different 
networks.
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to medium dense networks that are highly clustered. CH and RAL are effective in highly clustered networks with 
medium to high density. PAT produces good results in networks with high RMD, which are typically small and 
highly dense networks (such as food web networks) but scales poorly to medium and large networks. Finally, the 
results show that the proposed algorithm maintains a high predictive power over a wide spectrum of networks. It 
produces particularity strong results in highly sparse and weakly clustered networks, a type of networks that 
pauses clear difficulties to neighbourhood-based methods (such as ADA, CH and RAL) due to the absence of a 
rich local structure. Algorithm 1 remedies to this lack of information by taking into account the popularity and 
the estimated similarity of the nodes to predict connections. On the other hand, when the network is dense and 
clustered, the algorithm relies on the local attraction term, ηij, to take advantage of the available information and 
produce accurate predictions.

Time performance. To compare the time performance of the proposed method to the other methods, we ran-
domly generate several Barabàsi-Albert networks with varying number of nodes and use them as input for the 
link prediction algorithms. We used the implementation provided by the authors of the four methods HRG, SBM, 
FBM and HYP, and our implementation for the remaining methods (see SI for details on the implementation). 
Figure 9 shows the running time of the algorithms in seconds as a function of the number of nodes in the net-
work. The plot in Fig. 9(a) shows the effect of the horizon cut-off h on the running time of Algorithm 1. Clearly, 
using the limit =h 2 produces considerable gain in performance compared to other values, even small ones such 
as 3 or 4. The results of Fig. 9(b) demonstrate that even with the extreme limit = ∞h , that is running full Dijkstra, 
the proposed method is several orders of magnitude faster than the existing global methods. Finally, Fig. 9(c) 
shows the comparison against local methods. We can see that although Algorithm 1 requires more time to finish 
due to running Dijkstra, it has a growth rate that is comparable to the other methods and maintains a reasonably 
low computational cost even for large networks.

Discussion
The proposed link prediction method falls into the class of global, parameter-free similarity-popularity-based link 
predictors, in which we assume that network topology is governed by three factors: the popularity of the nodes, 
their similarity, and the attraction caused by their local neighbourhood. In our approach, popularity and local 
attraction are computed directly from the network topology and are factored out through a weight map that is 
used to estimate the similarity between non-adjacent nodes via shortest path distances. The proposed algorithm 
is non-iterative and, therefore, does not suffer from convergence issues as do many other link prediction methods, 
especially Monte Carlo type ones. The experimental analysis shows that the proposed approach achieves high pre-
dictive power at a much lower computational cost compared to existing global methods. In comparison to local 
methods, the proposed algorithm offers more accurate results at a low additional computational cost. Indeed, as 
demonstrated experimentally, the algorithm can in fact be used on very large networks having hundreds of thou-
sands of nodes. By combining different sources of information to predict links, namely popularity, similarity and 
local attraction, the proposed algorithm maintains a high predictive over a wide spectrum of network types and 
sizes. It is particularly powerful in highly sparse and weakly clustered networks, a type of networks that proves 
challenging for local methods.

The computationally intensive part of the proposed algorithm is solving the shortest path problem for all links 
to be predicted. We have seen that imposing a horizon cut-off when running Dijkstra’s algorithm can considerably 
reduce the computation time without loss of precision. It is also theoretically possible to relax the condition of 
having exact distances and settle for an approximation of these distances. This especially true given that the edge 
lengths are heuristically assigned. It would be interesting to investigate the use of graph embedding methods38 
to approximate shortest path distances and reduce the computational cost when working with large networks. 
Finally, depending on the type of network at hand, it is conceivable that properties other than popularity and 
other forms of local attractions may affect the likelihood of connection between nodes. A generalization of the 
present method can in principle be designed for such cases.

Methods
To demonstrate the effectiveness of the proposed approach, we use simulated networks as well as 106 real net-
works having different sizes and originating from different domains: social, biological, technological and infor-
mational39–54. Description and statistics on some important structural properties of these networks are presented 
in Table 2 of SI. Statistics on the CAIDA AS relationships networks are reported in Table 3 of SI. The reported 
performance results are calculated as averages over several test runs. In each trial, a randomly selected set of edges 
is removed from the network and used as part of the test set along with the original set of negative links. The net-
work composed of the remaining edges is presented to the prediction algorithms.

In addition to the comparison with global link prediction methods discussed earlier, the proposed method is 
compared to several local topological ranking methods which are described in what follows (the description of 
the remaining local methods used in the evaluation is included in the SI):

•	 Adamic-Adar index (ADA) assigns to each couple i j( , ) the score sij defined by: 

∑ κ
=

∈Γ

s 1
log ( ) (8)

ij
k kij

 where Γij is the set of nodes adjacent to both i and j, and κk is the degree of node k.
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•	 Common neighbours (CNE) assigns the score = Γsij ij .
•	 Cannistraci-Hebb index (CH) assigns the score ∩ κ= ∑ Γ Γ∈Γs /ij k k ij kij

, where Γk is the set of nodes adjacent 
to node k.

•	 Hub promoted index (HPI) assigns the score κ κ= Γs /min( , )ij ij i j .
•	 Jackard index (JID) assigns the score κ κ= Γ + − Γs /( )ij ij i j ij .
•	 Preferential attachment index (PAT) assigns a score which depends only on the degrees of i and j making it a 

pure popularity method: 

κ κ= .s (9)ij i j

•	 Resource allocation index (RAL) assigns the score: 

∑κ
= .

∈Γ

s 1

(10)
ij

k kij
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