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Linagliptin affects IRS1/Akt 
signaling and prevents high 
glucose-induced apoptosis in 
podocytes
Akira Mima1,6*, Toshinori Yasuzawa2,3,6, Tomomi Nakamura3 & Shigeru Ueshima3,4,5

Diabetes-induced podocyte apoptosis is considered to play a critical role in the pathogenesis of diabetic 
kidney disease (DKD). We proposed that hyperglycaemia can induce podocyte apoptosis by inhibiting 
the action of podocyte survival factors, thus inactivating the cellular effects of insulin signalling. In this 
study, we aimed to determine the effects of linagliptin on high glucose-induced podocyte apoptosis. 
Linagliptin reduced the increase in DNA fragmentation as well as the increase in TUNEL-positive cells 
in podocytes induced by high-glucose condition. Furthermore, linagliptin improved insulin-induced 
phosphorylation of insulin receptor substrate 1 (IRS1) and Akt, which was inhibited in high-glucose 
conditions. Adenoviral vector-mediated IRS1 overexpression in podocytes partially normalised DNA 
fragmentation in high-glucose conditions, while downregulation of IRS1 expression using small 
interfering RNA increased DNA fragmentation even in low-glucose conditions. Because reactive 
oxygen species inhibit glomerular insulin signalling in diabetes and Kelch-like ECH-associated protein 
1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important 
intrinsic antioxidative systems, we evaluated whether linagliptin increased Nrf2 in podocytes. High-
glucose condition and linagliptin addition increased Nrf2 levels compared to low-glucose conditions. 
In summary, linagliptin offers protection against DKD by enhancing IRS1/Akt insulin signalling in 
podocytes and partially via the Keap1/Nrf2 pathway. Our findings suggest that linagliptin may induce 
protective effects in patients with DKD, and increasing IRS1 levels could be a potential therapeutic 
target in DKD.

Diabetic kidney disease (DKD) is the most common cause of chronic kidney disease and end-stage renal disease 
(ESRD)1. Insulin/insulin receptor substrate-1 (IRS1) signalling can increase nitric oxide (NO) production, which 
is mediated by the PI3K/Akt pathway, thereby increasing anti-inflammatory effects2. NO induces vasodilata-
tion and inhibits podocyte apoptosis3. Diabetes can inhibit insulin/IRS1 signalling in mesangial and glomerular 
endothelial cells, probably through the protein kinase C (PKC) β2 pathway2.

Vascular endothelial growth factor (VEGF)-A can activate the anti-apoptotic proteins survivin or Bcl-2, thus 
decreasing endothelial cell apoptosis4. Insulin enhances VEGF-A expression, which in turn leads to increased Akt 
and eNOS phosphorylation, thus protecting against renal cell apoptosis. Furthermore, in our previous study, dia-
betes could increase podocyte apoptosis in DKD via activation of PKCδ/p38 mitogen-activated protein (MAPK) 
to enhance Src homology-2 domain containing phosphatase-1 (SHP-1) expression, which in turn resulted in 
VEGF resistance5. Thus, it is likely that the loss of effect of insulin on glomeruli may contribute to the develop-
ment of DKD.

Incretins are the family of gut hormones including glucagon like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide. Our recent study indicated that a GLP-1 analogue improved diabetes-induced inflam-
mation, preventing mesangial expansion and glomerulosclerosis beyond glycaemic control6. As GLP-1 is rapidly 
degraded by dipeptidyl peptidase-4 (DPP-4), DPP-4 inhibitors that are widely used to treat type 2 diabetes could 
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be a potential treatment for DKD in part because of their pleiotropic actions. A recently published large clinical 
trial, CArdiovascular safety and Renal Microvascular outcomE study with LINAgliptin in patients with type 2 
diabetes at high vascular risk (CARMELINA®), established hard renal endpoints using DPP-4 inhibitors for the 
first time and clearly showed that linagliptin administration prevented the progression of microalbuminuria to 
overt proteinuria in patients with type 2 diabetes7.

Based on the above findings indicating the effect of incretins on insulin signalling, we hypothesised that lina-
gliptin may decrease high glucose-induced podocyte apoptosis through enhancement of insulin/IRS1 signalling 
in podocytes. Furthermore, it has been reported that interaction between Kelch-like ECH-associated protein 1 
(Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) can increase anti-inflammatory effects8. Previous 
reports have also reported that diabetes-induced inflammation and oxidative stress could induce intrinsic anti-
oxidant response through the Keap1/Nrf2 pathway9,10. Incretin-related drugs decreased inflammatory status and 
enhanced Nrf2 system in DKD11. Therefore, we evaluated whether linagliptin affects this signalling in podocytes.

Results
High glucose-induced podocyte apoptosis is suppressed by linagliptin. Nephrin protein expres-
sion was recognized in cultured podocytes. In contrast, its expression was not recognized in cultured endothelial 
cells (Fig. 1a). DNA fragmentation in podocytes exposed to high glucose (25 mM) levels for 96 h increased by 
136 ± 17% when compared to that in podocytes exposed to low glucose (5.5 mM) conditions. The addition of lin-
agliptin (50 nM) reduced high glucose-induced podocyte apoptosis by 25 ± 20% (Fig. 1b). However, D-mannitol-
induced hyperosmolality did not increase DNA fragmentation (Fig. 1c). Immunocytochemical analyses of 
podocytes showed that the number of TUNEL/DAPI double-positive cells increased in high-glucose conditions 
by 216 ± 21% compared to that in low-glucose conditions. However, the addition of linagliptin reduced this 
increase by 47 ± 13% (Fig. 1d).

Effect of glucose on DPP-4 expression and linagliptin’s effects on insulin signalling and 
IRS1. First, we evaluated whether high glucose could affect DPP-4 expression in cultured podocytes. High 
glucose (25 mM) levels increased protein DPP-4 expression by 158 ± 36% in podocytes (Fig. 2a).

As Akt activation is known to exert anti-apoptotic effects and it is inhibited in glomerular endothelial cells 
by diabetes, we characterised the direct effect of glucose levels on insulin signalling and Akt activation in podo-
cytes. Insulin increased phosphorylation of Akt (p-Akt) by 652 ± 189%. However, this increase was reduced 
by 43 ± 21% in high-glucose (25 mM) conditions. Linagliptin partially normalised insulin-induced p-Akt by 
131 ± 20% compared with that in high-glucose conditions without linagliptin (Fig. 2b). Insulin-induced tyrosine 
phosphorylation of IRS1 (p-IRS1) was increased by 165 ± 38%. In contrast, p-IRS1 was significantly reduced by 
29 ± 10% in podocytes incubated in high-glucose conditions compared with that in low-glucose (5.5 mM) condi-
tions. Linagliptin addition reversed the inhibitory effect of high glucose on IRS1 activation by 120 ± 5% (Fig. 2c).

Effect of linagliptin on insulin signalling in the glomeruli. After 5 week of diabetes, blood glucose 
levels increased by 389 ± 93% and kidney weight per body weight increased by 150 ± 34% in diabetic SD rats 
compared to control SD rats (Table 1).

Histological analysis of the glomeruli showed that its area was increased by 171 ± 12% greater in diabetic SD 
rats than in control SD rats (Fig. 3a).

In the glomeruli, insulin stimulated p-Akt by 219 ± 50% vs control SD rats. In diabetic SD rats, insulin-induced 
p-Akt levels were reduced by 59 ± 6% compared to control SD rats (Fig. 3b). Moreover, insulin stimulated p-IRS1 
by 308 ± 200% vs control SD rats (Fig. 3c). Like p-Akt, insulin-induced p-IRS1 levels were reduced by 71 ± 22% 
in diabetic SD rats compared to control SD rats. However, no statistically significant differences were found 
between these groups (Fig. 3c). In addition, we studied linagliptin’s effect on renal function including renal insu-
lin signalling. Linagliptin decreased albuminuria by 64 ± 35% compared to untreated diabetic SD rats (Table 1). 
Quantitative analysis of periodic acid-Schiff staining showed that linagliptin treatment reduced glomerular area 
by 27 ± 9% compared to untreated diabetic SD rats (Fig. 3a). In the glomeruli of diabetic SD rats, linagliptin par-
tially normalized insulin-induced phosphorylation of Akt by 201 ± 66% when compared to untreated diabetic SD 
rats (Fig. 3b). As in the case with p-Akt, linagliptin reversed insulin-induced tyrosine phosphorylation of IRS1 
by 154 ± 99% compared to untreated diabetic SD rats. However, there were no statistically significant differences 
between these two groups (Fig. 3c).

Effect of IRS1 overexpression on DPP-4 expression and apoptosis in podocytes. To deter-
mine whether podocyte apoptosis was mediated by IRS1, the expression of IRS1 was increased by Ad-IRS1. 
Transfection of podocytes with Ad-IRS1increased IRS1 expression by 356 ± 87%, compared to Ad-GFP (Fig. 4a). 
When podocytes were infected with Ad-IRS1, protein levels of DPP-4 was reduced by 48 ± 28% (Fig. 4b). 
Infection with Ad-IRS1 significantly decreased high glucose-induced podocyte apoptosis by 54 ± 21% (Fig. 4c). 
Next, IRS1 expression was downregulated by siIRS1 in podocytes. The addition of siIRS1 in podocytes reduced 
its expression by 69 ± 3%. Similarly, knockdown of IRS1 with siRNA decreased protein levels of IRS1 by 55 ± 12% 
compared to control siRNA (Fig. 4d,e). The addition of siIRS1 increased DNA fragmentation by 239 ± 34% even 
in low-glucose (5.5 mM) conditions (Fig. 4f).

Effect of linagliptin and the overexpression or knockdown of IRS1 on Keap1/Nrf2 path-
way. The addition of linagliptin (50 nM) did not change DNA fragmentation in IRS1 silencing podocytes 
(Fig. 5a).

High glucose increased the expression of Nrf2 by 139 ± 35% compared with low glucose. Furthermore, when 
podocytes were incubated in low-glucose condition, the addition of linagliptin increased the expression of Nrf2 
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Figure 1. Effect of high glucose and linagliptin on apoptosis in cultured podocytes. (a) Immunoblot analyses 
of nephrin in cultured podocytes and endothelial cells. Podo; podocytes. Endo; endothelial cells. bd; below 
detection limit. (b) DNA fragmentation in podocytes incubated with low glucose (5.5 mM) or high glucose 
(25 mM) for 96 h in the absence or presence of linagliptin (50 nM). Lina; linagliptin. *P < 0.05. **P < 0.01. 
(c) Effect of D-mannitol-induced hyperosmolality on DNA fragmentation. Low; low glucose. High; high 
glucose. Lina; linagliptin. ns; not significant. (d) Immunocytochemical staining with TdT-mediated dUTP 
nick end (TUNEL) and 4′,6-diamino-2-phenylindole (DAPI) (merged image). Magnification: X40. Low; low 
glucose. High; high glucose. Lina; linagliptin. *P < 0.05. These data are expressed as means ± SD. Results are 
representative of one of three independent experiments.
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by 120 ± 20% (Fig. 5b). However, the addition of linagliptin or overexpression of IRS1 did not affect protein levels 
of Keap1 (Fig. 5b,c,d). Lastly, knockdown of IRS1 with siRNA in podocytes did not change protein expression of 
Keap1 and Nrf2 (Fig. 5e).

Discussion
In this study, we aimed to investigate the effects of linagliptin on high glucose-induced podocyte apoptosis and 
found that linagliptin offers protection against DKD through amelioration of IRS1/insulin signalling in podo-
cytes. The possible explanation for linagliptin-induced renal protective effects is that (i) high glucose-induced 
podocyte apoptosis was recovered by overexpression of IRS1 and (ii) addition of linagliptin reversed high 

Figure 2. Effect of linagliptin on insulin signalling in cultured podocytes. (a) Immunoblot analysis of DPP-4. 
Podocytes were incubated with low glucose (5.5 mM) or high glucose (25 mM). *P < 0.05. (b,c) Immunoblot 
analysis of Akt and IRS1 phosphorylation. After 96 h of exposure to low glucose (5.5 mM) or high glucose 
(25 mM), podocytes were incubated with insulin (10 nM, 5 min) in the absence or presence of linagliptin 
(50 nM). (b) phospho-Akt. (c) phospho-IRS1. Low; low glucose. High; high glucose. Lina; linagliptin. **P < 0.01. 
These data are expressed as means ± SD. Results are representative of one of three independent experiments.
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glucose-induced inhibition of insulin-induced tyrosine phosphorylation of IRS1. This is the first study to report 
the biochemical pathway by which insulin/IRS1 exerts protective action in podocytes.

Podocyte loss is one of the important features of DKD. Podocyte apoptosis is an early stage of DKD pro-
gression and therefore, evaluation of podocyte apoptosis could be the best early prognostic marker of DKD12,13. 
Although the mechanism of diabetes-induced podocyte apoptosis is still unclear, previous reports clearly showed 
that inhibition of insulin and VEGF actions by SHP-1 plays a key role in development of podocyte apoptosis5,14,15. 
In addition, VEGF-induced tyrosine phosphorylation of nephrin was inhibited in the podocytes of diabetic rats5.

Similar to glomerular endothelial cells, resistance to insulin signalling and actions for podocytes is also selec-
tive for the activation of insulin/IRS1/Akt cascade, which is clearly supported by overexpression of IRS1 using 
adenoviral vector or knocking down IRS1 using siRNA in the present study. In addition, this study demon-
strated that linagliptin reversed high glucose-induced podocyte apoptosis through enhancing insulin/IRS1/Akt 
signalling.

Previous reports indicated that linagliptin ameliorated renal pathological changes and albuminuria in chronic 
kidney disease mouse models without affecting blood glucose levels16. One possible mechanism of glomerulo-
sclerosis in DKD is endothelial-to-mesenchymal transition (EndMT), which may play a key role in the develop-
ment of kidney fibrosis. EndMT is defined as a complex process in which cells detach from the endothelial layer 
resulting in endothelial dysfunction and acquiring a myofibroblastic phenotype17. Extracellular matrix, such as 
type I and IV collagen, or α-smooth muscle actin, which is regulated by transforming growth factor-β (TGF-β) 
and bone morphogenetic protein 4, is increased in the glomeruli of DKD18. Notably, linagliptin decreased the 
expression of TGF-β-induced EndMT in endothelial cells in diabetic conditions17.

It has been reported that both soluble and membrane-anchored forms of DPP-4 are increased in the rodent 
models of diabetic nephropathy17,19. In contrast, another study suggested that the great majority of soluble DPP-4 
is the bone marrow rather than kidney20. Soluble DPP-4 can activate mannose-6-phosphate/insulin-like growth 
factor II receptor (M6P/IGF-IIR), increasing the interaction of advanced glycation end product (AGE) with its 
receptor, RAGE21. Membrane-anchored DPP-4 can affect cation-independent mannose 6-phosphate receptor 
(CIM6PR), activating the transforming growth factor-β (TGF-β)/Smad signalling pathway22. Thus, both DPP-4 
pathway could develop diabetic nephropathy. Linagliptin may reduce both signalling pathway, decreasing albu-
minuria and renal fibrosis.

Previous reports indicated that linagliptin could attenuate glomerular area expansion in diabetic rodents with-
out changes in blood glucose, insulin level and body weight23. These findings may explain increases in DPP-4 
enzyme is recognized in the kidney of diabetes. Further, it is possible that monocyte chemoattractant protein 
(MCP)-1/CCR2 pathway and invasion of inflammatory cells in kidney can be a pivotal role in developing diabetic 
nephropathy24. Linagliptin could decrease AGE/RAGE, reducing inflammation and reactive oxygen species25. 
Considering these results, linagliptin may have pleiotropic effects beyond glycemic control.

Our study showed that mannitol-induced osmotic stress did not increase podocyte apoptosis. These results 
mean diabetic conditions, not high osmolarity could increase podocyte apoptosis. Further, our laboratory and 
others have published data previously regarding the increases in inflammation and oxidative stress, increasing 
podocyte apoptosis in the kidney of diabetic rodents5,26. Clinically, kidney biopsies from patients with type 2 
diabetes showed that loss of podocytes12. Our previous results indicate loss of insulin signalling in the glomeruli 
of diabetic rats play a significant role in developing diabetic nephropathy2. The novelty of our new findings is due 
to linagliptin’s effects on insulin signalling, preventing podocyte apoptosis in diabetic nephropathy. The concen-
tration of linagliptin that used in the clinic is up to 100 μg/kg BW, while the concentration we used in vitro study 
was very low. Although convincing, there is a limitation in this point.

Several clinical trials using DPP-4 inhibitors showed decreased rates of microalbuminuria progression. A 
recent sub-analysis study of Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes 
Mellitus-Thrombolysis in Myocardial Infarction (SAVOR-TIMI) 53 indicated that saxagliptin markedly decreased 
both overt proteinuria and microalbuminuria27. Unlike SAVOR-TIMI 53, the Efficacy, Safety and Modification 
of Albuminuria in Type 2 Diabetes Subjects Renal Disease with LINAgliptin (MARLINA-T2D) study did not 
show substantial renal improvements owing to the small sample size28. The cardiovascular and kidney clinical 
trial CARMELINA® clarified the renal outcomes of linagliptin. For the first time, this trial set the renal endpoint 
using DPP-4 inhibitors: composite renal endpoint [renal death, sustained ESRD, sustained decrease of 40% or 
more in estimated glomerular filtration rate (GFR)]. The study demonstrated not only cardiovascular safety, but 
also marked reduction in albuminuria and microvascular composite outcomes, including diabetic retinopathy in 

NDM SD DM SD DM SD + Lina

Number 5 3 4

Body weight (g) 418.5 ± 31.4 333.3 ± 31.8** 289.6 ± 22.6**

Blood glucose (mg/dL) 102.2 ± 6.9 398.0 ± 95.3** 433.0 ± 82.1**

rKW/BW (g/100 g BW) 0.80 ± 0.10 1.20 ± 0.27* 1.26 ± 0.20*

UAE (µg/mg Cr) 95.6 ± 73.7 695.9 ± 207.8** 439.1 ± 60.3** #

Serum insulin (ng/mL) 3.32 ± 0.62 0.90 ± 0.16** 0.75 ± 0.13**

Table 1. General characteristics of experimental groups. NDM SD, nondiabetic model Sprague-Dawley; 
DM SD, diabetic model Sprague-Dawley; Lina, linagliptin; rKW/BW, right kidney weight/body weight; UAE, 
urinary albumin excretion. Data expressed as means ± SD. *P < 0.05, **P < 0.01 vs. NDM SD, #P < 0.05 vs. DM 
SD.
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patients with type 2 diabetes. However, no significant effects regarding ESRD, death due to kidney disease, and 
kidney composite outcome were observed in this study7.

The glomerular capillary tuft, which is a highly complex and specialised microvascular bed that filters plasma 
and protects from losing protein to urine, comprises podocytes, endothelial cells, and basement membrane. In 
contrast, increase in glomerular area could be associated with declining GFR in DKD29.

Several large-scale clinical studies, including CARMELINA, reported that DPP-4 inhibitors could ameliorate albu-
minuria without affecting GFR7. These results suggest that DPP-4 inhibitors induced renoprotective effects mainly on 
podocytes and endothelial cells, rather than mesangial cells. Our present study and previous reports showed that lina-
gliptin directly affected both podocytes and endothelial cells, decreasing albuminuria. However, the effect of linagliptin 
on mesangial cells, which in turn may affect GFR, is still unclear. Therefore, further study will be needed to clarify this.

Figure 3. Effect of linagliptin on Akt and IRS1 in the glomeruli of diabetic Sprague-Dawley (SD) rats. (a) 
Representative light microscopic appearance of glomeruli (PAS staining) and morphometric analysis of 
glomerular area. NDM; nondiabetic SD rats, DM; STZ-induced diabetic SD rats; Lina, linagliptin. Bar=100 
μm. **P < 0.01. (b,c) Representative immunoblots of tyrosine phosphorylation of Akt (b) and IRS1 (c) from 
glomeruli. Solubilized glomeruli were subjected to immunoprecipitation followed by immunoblotting. NDM; 
nondiabetic SD rats, DM; STZ-induced diabetic SD rats; Lina, linagliptin. *P < 0.05. ns; not significant. These 
data are expressed as means ± SD. Results are representative of one of three independent experiments.
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Figure 4. Effect of IRS1 on glucose-induced podocyte apoptosis. (a) Immunoblot analysis of IRS1. Podocytes 
were transfected with adenoviral vectors containing green fluorescent (Ad-GFP or Ad-IRS1) protein. *P < 0.05. 
(b) Immunoblot analysis of DPP-4. Podocytes were transfected with adenoviral vectors containing green 
fluorescent protein (Ad-GFP or Ad-IRS1). *P < 0.05. (c) Podocytes were transfected with adenoviral vectors 
containing green fluorescent (Ad-GFP or Ad-IRS1) protein and then incubated with low glucose (5.5 mM) 
or high glucose (25 mM). Podocyte apoptosis was measured by DNA fragmentation. Low; low glucose. High; 
high glucose. *P < 0.05. **P < 0.01. (d) IRS1 mRNA expression in podocytes. Podocytes were transfected 
scrambled control siRNA (siControl) or small interfering RNA (siRNA) against IRS1 (siIRS1). **P < 0.01. (e) 
Immunoblot analysis of IRS1. Podocytes were transfected with scrambled control siRNA (siControl) or small 
interfering RNA (siRNA) against IRS1 (siIRS1). *P < 0.05. (f) Podocytes were transfected with scrambled 
control siRNA (siControl) or small interfering RNA (siRNA) against IRS1 (siIRS1) and then incubated with 
low glucose (5.5 mM) or high glucose (25 mM). Podocyte apoptosis was measured by DNA fragmentation. 
Low; low glucose. High; high glucose. *P < 0.05. **P < 0.01. These data are expressed as means ± SD. Results are 
representative of one of three independent experiments.
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Nrf2 is a master modulator of cellular detoxification responses, and the induction of antioxidant responses 
occurs through the activation of Nrf2 transcription signal8,30,31. Bardoxolone methyl, a synthetic oleanane tri-
terpenoid that activates Nrf2, has been found to interact with cysteine residues on Keap1, resulting in Nrf2 

Figure 5. Effect of linagliptin on Nrf2/Keap1. (a) Podocytes were transfected with scrambled control siRNA 
(siControl) or small interfering RNA (siRNA) against IRS1 (siIRS1) in the absence or presence of linagliptin 
(50 nM). Podocyte apoptosis was measured by DNA fragmentation. Lina, linagliptin. *P < 0.05. ns; not significant. 
(b,c) Immunoblot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated 
protein 1 (Keap1). After 96 h of exposure to low glucose (5.5 mM) or high glucose (25 mM), podocytes were 
incubated with or without linagliptin (50 nM). (b) Nrf2. (c) Keap1. *P < 0.05. (d) Immunoblot analysis of Keap1. 
Podocytes were transfected with adenoviral vectors containing green fluorescent (Ad-GFP or Ad-IRS1) protein. 
ns; not significant. (e) Immunoblot analysis of Nrf2 and Keap1. Podocytes were transfected with scrambled control 
siRNA (siControl) or small interfering RNA (siRNA) against IRS1 (siIRS1). ns; not significant. These data are 
expressed as means ± SD. Results are representative of one of three independent experiments.
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translocation to the nucleus. However, a phase 3 clinical trial of bardoxolone methyl in patients with DKD was 
terminated owing to cardiovascular safety concerns. In contrast, a recent phase 2 clinical trial of bardoxolone 
methyl (The TSUBAKI study) markedly improved renal function without safety concerns in patients with DKD 
(American Society of Nephrology Kidney week 2017). Thus, Nrf2 activation seems to be a potential therapeutic 
target for DKD. Unlike previous reports using DPP-4 inhibitors, our results showed that linagliptin increased 
protein expression of Nrf2, while Keap1 levels remained unchanged. Linagliptin affected upstream antioxidant 
signalling, and downregulation of endogenous antioxidant response was observed. Furthermore, linagliptin 
could not affect protein expression of Keap1, which induces ubiquitination of Nrf2. Previous reports showed that 
phosphorylation of Akt and GSK3β increased Nrf2 activation without Keap1 system32. Thus, linagliptin-induced 
increase in Nrf2 expression might be mediated by mechanisms other than ubiquitin-proteasome system.

In summary, diabetes inhibited insulin/IRS1/Akt signalling in podocytes, resulting in podocyte apoptosis. 
Upregulating IRS1 expression or addition of linagliptin reversed this inhibition, thereby protecting against podo-
cyte apoptosis. Thus, linagliptin may induce protective effects in patients with DKD in real-world clinical situa-
tions, and increasing IRS1 levels could be a potential therapeutic target in DKD.

Methods
Animal studies. All animal protocols were approved by the Kindai University in accordance with the 
National Institutes of Health guidelines (approval number: KAAG-26-010). We used age-matched male Sprague-
Dawley (SD) rats (Shimizu, Kyoto, Japan). Diabetes was induced in 7-week-old SD rats by a single intravenous 
injection of STZ (50 mg/kg body weight; Sigma, St Louis, MO) in 0.05 mol/l citrate buffer (pH 4.5) or citrate buffer 
for controls. Blood glucose levels, determined 1 week after the injections by glucose analyser (Sanwa Kagaku, 
Aichi, Japan) and levels >16.7 mmmol/l, were defined as having diabetes. One week after diabetes, linagliptin 
(3 mg/kg body weight; Boehringer Ingelheim, Ingelheim, Germany) or vehicle were administered for 4 weeks. 
Doses of linagliptin was decided based on the previous reports17,33. Regular human insulin (10 mU/g; Lilly, 
Indianapolis, IN) or diluents were injected into the inferior vena cava for 10 min to study insulin signalling.

Cell culture and reagents. Podocytes from a conditionally immortalised cell line were provided by P. 
Mundel and cultured as described previously5. Briefly, podocytes were cultured in RPMI-1640 (Sigma, St. Lois, 
MO, USA) medium containing 10% foetal calf serum (FCS), 100 U/mL penicillin, 0.1 mg/mL streptomycin, and 
2 mM L-glutamine. For propagation, podocytes were cultivated with a culture medium supplemented with 50 U/
mL recombinant mouse γ-interferon (PeproTech, London, UK) at 33 °C with 5% CO2. To induce differentia-
tion, the cells were cultured on 10-cm culture dishes coated with type I collagen at 37 °C without γ-interferon. 
Podocytes were cultured in RPMI-1640 containing 10% FCS. After reaching subconfluence, the cells were 
exposed to low glucose (5.5 mM + 19.5 mM mannitol) or high glucose (25 mM) with linagliptin (50 nM) in RPMI 
containing 0.1% FCS for 96 h. Stimulation with insulin (10 nM) was carried out in RPMI containing 0.1% FCS 
for 5 min. Endothelial cell lines TKD2 were purchased from National Institutes of Biomedical Innovation, Health 
and Nutrition (Osaka, Japan). Endothelial cells were cultured in RITC80-7 containing 2% FCS. D-(+)-glucose 
was purchased from Sigma. Linagliptin was provided by Boehringer Ingelheim (Ingelheim, Germany) and doses 
of linagliptin for in vitro study was decided based on the previous reports17.

Isolation of Glomeruli. Rat glomeruli were isolated from the renal cortex by the sieving method as 
described previously2.

Adenoviral vector infection. Adenoviral vectors containing green fluorescent protein (GFP, Ad-IRS1) 
were constructed. These adenoviral vectors were used to infect podocytes as reported previously2.

Small interfering RNA studies. Small interfering RNA (siRNA) against IRS1 (siIRS1) and scrambled con-
trol siRNA (siControl) were purchased from Santa Cruz. Differentiated podocytes (0.5×105) were seeded in to 
6-cm culture dishes and were grown until they were 60% to 80% confluent. The cells were transfected with siRNA 
using siRNA transfection system (Santa Cruz) according to the recommended protocol. After 48 h of transfection, 
cells were exposed to low glucose (5.5 mM) or high glucose (25 mM).

Immunoblot analysis. Samples were dissolved in 0.5% NP-40, which was used after optimisation studies. 
Proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Blots were 
subsequently incubated with anti-IRS1 (Cell Signaling, Danvers, MA, USA), anti-phospho-IRS (Merck Millipore, 
MA, USA), anti-Akt (Cell Signaling), anti-phospho-Akt (Cell Signaling), anti-DPP-4 (Abcam, Cambridge, UK), 
anti-Keap1 (Cell Signaling), anti-Nrf2 (Cell Signaling), and anti-β-actin (Cell Signaling).

Real-time PCR analysis. IRS1 mRNA was assayed by Real-time PCR and normalized to GAPDH. PCR 
primers were mouse, IRS1 CACACGGATGATGGCTACATG, GTTTGTCCACAGCTTTCCATAG; mouse, 
GAPDH ATGTTCCAGTATGACTCCACTCACG, GAAGACACCAGTAGACTCCACGACA.

DNA fragmentation analysis. DNA fragmentation was measured by quantitation of cytosolic 
oligonucleosome-bound DNA using ELISA kit, according to the manufacturer’s instructions (Roche Diagnostics, 
Indianapolis, IN, USA).

Immunocytochemistry. For immunocytochemical analysis, the cells were fixed with 2% paraformal-
dehyde and permeabilised with 0.1% Triton X. Apoptotic cells were detected using TdT-mediated dUTP nick 
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end (TUNEL) labelling kit, according to the manufacturer’s instructions (Merck Millipore). 4′,6-Diamino-
2-phenylindole (DAPI) staining was performed as described previously2.

Histological studies. Kidney sections for light microscopy analysis were fixed in 4% paraformaldehyde 
phosphate buffer. Sections were stained with periodic acid-Schiff. Glomeruli were digitally photographed and the 
images were imported to ImageJ software (National Institutes of Health, Bethesda, MD, USA; https://imagej.nih.
gov/ij/) and analysed morphometrically.

Data analysis. Data are expressed as mean ± standard deviation (SD). Comparisons among more than two 
groups were performed by one-way ANOVA, followed by post hoc analysis with paired or unpaired t test to eval-
uate statistical significance. All analyses were performed using StatView (SAS Institute, Cary, CA, USA). Values 
of P < 0.05 were considered statistically significant.

Data availability
Authors declare that all data is available.
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