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Variable transformation of singular 
cylindrical vector beams using 
anisotropic crystals
Svetlana n. Khonina1,2, Alexey P. Porfirev1,2* & nikolay L. Kazanskiy1,2

We demonstrated and investigated, both theoretically and experimentally, the transformation 
of cylindrical vector beams with an embedded phase singularity under the condition of focusing 
perpendicularly to the axis of the anisotropic calcite crystal. Theoretical and numerical analysis, 
performed on the basis of decomposing the light field into a set of plane waves for an anisotropic 
medium, allowed us to study the dependence of the structural transformation of the initial laser 
beam on the polarisation and phase state in detail. the proposed approach allows one to perform 
the visual recognition of cylindrically-polarised vector beams of various orders and can be used for 
the demultiplexing of information channels in the case of polarisation-division multiplexing. The 
experimentally-obtained results agree with the theoretical findings and demonstrate the reliability of 
the approach.

Nonparaxial propagation of laser modes in a medium with strong anisotropy leads to complex polarisation-phase 
transformations1–3, which allow for the formation of inhomogeneously polarised beams4–9, as well as beams 
with vortex phase singularities10–13. In the latter case, it is possible to observe the transformation of the initial 
circularly-polarised beam with non-zero spin angular momentum into a laser beam with non-zero orbital angular 
momentum. These effects can also be produced by focusing laser radiation along the axis of an anisotropic crystal, 
due to the interaction of the ordinary and extraordinary beams14.

When laser beams propagate perpendicularly to the crystal axis2,3,15–22, various effects are observed. In par-
ticular, for Bessel beams, pronounced astigmatic distortion of the ring structure of the beam occurs3,18,21,22. For 
Gaussian beams, the astigmatic transformation is hardly noticeable23, since natural crystals, as a rule, have a 
slight relative difference between the ordinary and extraordinary refractive indices. To enhance the astigmatic 
transformation and make it visually noticeable, sharply focused vortex Gaussian beams are used. In this case, the 
influence of the polarisation of the illuminating beam becomes especially important24. In the present paper, the 
variable transformation of singular cylindrical vector beams (CVBs)25–27 using an anisotropic crystal is investi-
gated theoretically, numerically, and experimentally. In order to introduce into the initial CVB a complex singular 
phase of superposition of optical vortices, we used a spatial light modulator (SLM). Earlier, SLMs were also used 
for modification of incident laser radiation and the generation of amplitude-squeezed high-order vector beams 
by means of a collinear interferometric technique28. Because of the use of the SLM, the vortex composition and 
the weight ratio in this superposition can change dynamically. Following this, when the generated field is focused 
perpendicularly to the axis of an anisotropic crystal, a selective (polarisation-dependent) astigmatic transfor-
mation of the individual components of the electric field occurs. This phenomenon has been studied previously 
in uniformly-polarised vortex beams24. In this paper, the more general case of cylindrically-polarised singular 
beams is considered. CVBs, including high orders, are of practical interest in such areas as compressed optical 
data transfer29, amplitude-polarisation modulation of focal distributions30–32, sharp focusing33–37, and others. The 
combination of CVBs with a singular phase, on the one hand, provides an additional degree of freedom of the 
formed distributions34–38, but on the other hand, their interaction leads to unexpected effects, including polarisa-
tion transformations39–41. These effects require additional research, especially when focusing inside an anisotropic 
medium.
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Results
theoretical analysis. We start by analysing the nonparaxial propagation of an electromagnetic wave per-
pendicular to the crystal axis using the plane wave decomposition method42 for an anisotropic medium43. If the 
c-axis of the crystal is directed along the coordinate axis Y, then the dielectric permittivity tensor is as follows (in 
the absence of charges, we assume the magnetic permeability μ is equal to 1): 
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where ε0 and ε1 are the ordinary and extraordinary dielectric constants, respectively, of the uniaxial crystal.
The electric component of the electromagnetic wave propagating along the optical axis z has the following 

form43: 
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where (u, v) are the Cartesian coordinates at the distance z from the initial plane defined in the Cartesian coordi-
nates (x, y), e0(α, β) and e1(α, β) are the eigenvectors of the ordinary and extraordinary beams, respectively. With 
regard to the tensor described by Eq. (1), it has the following form: 
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and the eigenvalues are defined by the following expressions: 
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The coefficients in Eq. (2): 
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where Sx,y(α, β) are the components of the spatial spectrum for the transverse components Ex,y(x, y, 0) of the input 
electric field: 
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where Ω is the domain of the input field definition.
After substituting Eqs. (3)–(5) into Eq. (2), we obtain the expressions for the individual field components in 

the following form: 
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The contribution of the y-component of the original field in the integral in Eq. (7) (the second term in the 
integral) is small: this term disappears in an isotropic medium (that is, when γ1(α, β) = γ0(α, β)). Thus, when the 
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laser beam passes through a crystal whose axis is directed along the coordinate axis Y, the x-component of the 
field is not significantly distorted, propagating as in an isotropic medium. This effect was noted earlier in21,22,24. 
The integral in Eq. (8) contains only the y-component of the original field, which undergoes an astigmatic trans-
formation due to its complex form. A detailed analysis of this effect was carried out earlier for the Bessel21 and 
Gaussian beams24.

As follows from Eq. (9), the most complex transformation occurs with the longitudinal component of the 
electric field. However, it is not visually noticeable, since the energy of the longitudinal component is insignifi-
cant compared to the contribution of the transverse components even for tight focusing8,23. Similar results were 
obtained previously for beams with homogeneous polarisation based on the Rayleigh-Sommerfeld vector inte-
grals for an anisotropic medium24,43.

Next, we consider the more general case of cylindrically-polarised beams with a singular phase. For this, in 
addition to Eqs. (7)–(9), it is necessary to consider the components of the spatial spectrum in Eq. (6). The field in 
Eq. (6) with cylindrical polarisation of p-th order is described as follows34–37,44,45 (we will call these polarisations 
p-th order radial and azimuthal polarisation, respectively): 
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where φ is the polar angle.

Figure 1. Modelling of the focusing of the Gaussian beam with cylindrical polarisation of various orders p in 
the absence of phase singularity (the crystal axis is directed along the coordinate axis Y; yellow colour for the x-
component, green colour for the y-component).
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It can be seen from Eq. (10) that the radial and azimuthal polarisations are similar up to a rotation of 90 
degrees or the x- and y-components interchanging; therefore, we further analyse only the radial polarisation in 
the polar coordinates. We also consider the presence of a singular phase in the laser beam in the form of a super-
position of Q optical vortices with different mq-th orders: 
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where E0(r) is an arbitrary axisymmetric field corresponding to the illuminating beam.

Figure 2. Modelling of the focusing of the Gaussian beam with the first-order vortex phase (m = 1) for 
cylindrical polarisation of various orders p.

Figure 3. Modelling of the focusing of the Gaussian beam with the second-order vortex phase (m = 2) for 
radial polarization of various orders p.
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Then, writing Eq. (6) in polar coordinates and substituting Eq. (11) into it, the following expression is 
obtained: 
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2 2∫σ σ σ α β= = + . It is clear that the presence of a vortex singularity in the 

beam leads to a change in the polarisation state of the beam.

numerical modelling. In this section, we present the results of a numerical study of the propagation of 
focused cylindrical beams with a phase singularity perpendicular to the axis of a calcite crystal (CaCO3), having 
dielectric permittivity ε0 = 2.232 and ε1 = 2.376. For comparative modelling of focusing singular beams with 
cylindrical polarisation of various orders, we use a Gaussian beam as an illuminating beam: 
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where w is the waist radius Gaussian beam. The following parameters were used in the simulation: laser radiation 
wavelength λ = 532 nm, Gaussian beam waist radius w = 100 μm, lens focal length f = 7.5 mm.

Figure 1 shows the results of the numerical modelling of the focusing of a Gaussian beam with p-th-order 
cylindrical polarisation in the absence of phase singularity. The results clearly show that, as predicted in the 
theoretical part, the x-component of the beams does not change its structure, only transforming on a scale in 
accordance with the distance from the focal plane. The y-component of the beams is subjected to an astigmatic 
transformation. The overall intensity is a sum of the intensities of the x- and y-components (the longitudinal com-
ponent is small and not visually observed) and can be dynamically changed by rotating the polarisation analyser.

At sharp focusing in free space, the radial polarisation (second row of Fig. 1) differs noticeably from azi-
muthal polarisation (first row of Fig. 1) in the presence of the longitudinal component of the electric field25,33,36. 
However, in the considered case, the results for cylindrical polarisations are similar up to rotation. This is due to 
the insufficiently-high numerical aperture of the focusing element. The CVBs with an even order of azimuthal 
polarisation (third row of Fig. 1) have a non-zero intensity value in the centre, associated with the astigmatic 
transformation of the y-component consistent with the even cosine function. For even orders of radial polarisa-
tion, this phenomenon is not observed, since the y-component is consistent with an odd sine function. To obtain 
this effect, regardless of the type of polarisation (the dependence on parity of the polarisation order will remain), 
it is necessary to rotate the crystal around its axis at an angle of 45 degrees.

The introduction of a phase singularity into the initial laser beam additionally complicates the generated 
intensity patterns. The results of modelling for the Gaussian beam with the first-order vortex phase (m = 1) 
for cylindrical polarisations of various orders p are shown in Fig. 2. In this case, a non-zero intensity value at 
the centre of the beam appears if the parity of the order of polarisation p and the vortex number m coincide. 

Figure 4. Modelling of the focusing of the Gaussian beam with the singular structure mcos( )φ  for radial 
polarization of various orders p.
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Moreover, this effect does not depend on the type of polarisation, and rotation of the crystal is not required. Thus, 
the addition of the vortex phase singularity into the beam makes it possible to reveal more information about the 
polarisation state of the beam.

Phase singularity for the recognition of the type of polarisation has been used in several works46–48, but a 
confident difference is provided only for uniform and inhomogeneous polarisation46. In order to distinguish the 
first-order radial polarisation from the azimuthal, sharp focusing is necessary47. The approach proposed in this 
paper allows one to visually distinguish the CVBs of different orders, even in the paraxial case. This possibility 
is required for compressed transmission of information based on polarisation multiplexing of communication 
channels29,48. As seen from Fig. 2, in the paraxial case, the patterns for azimuthal and radial polarisations differ 
only by a rotation of 90 degrees and a mutual interchanging of the x- and y-components. Therefore, this paper 
considers only radial polarisation in what follows.

Figure 3 shows the simulation results of focusing the Gaussian beam with the second-order vortex phase (m = 2)  
for radial polarisation of various orders p. In this case, a non-zero value also appears in the centre of the beam if 
the parity of the order of polarisation p and the order of the vortex m coincide.

It should be noted that when the order of polarisation p coincides with the order of the optical vortex m (the 
first and second rows of Fig. 2 and the second row of Fig. 3), a bright light spot forms on the optical axis. This 
effect follows from Eq. (12), since in this case, the sum contains a non-vortex term and, therefore, a non-zero 
intensity value will be on the optical axis. Illustrations of this effect are also shown in Fig. 4, which demonstrates 

Figure 5. Modelling of the focusing of the Gaussian beam with the singular structure φ φ+cos( )0  for radial 
polarization of various orders p.
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the modelling results of the focusing of the Gaussian beam with the singular structure, which is the superposition 
of conjugated optical vortices φ φ φ= + −m im imcos( ) [exp( ) exp( )]/2, for radial polarisation of various orders p.

The singularity of the angular cosine (or sine) structure φmcos( ) consists of the phase jump and phase uncer-
tainty on the lines where φ =mcos( ) 0. Since this structure is not invariant to rotation (similarly to beams with the 
cylindrical polarisation of orders p > 1), additional transformation effects will be observed during rotation of this 
singular structure. Figures 5 and 6 illustrate this effects for cos( )0φ φ+  and φ φ+cos(2 )0 , respectively. As can be 
seen from the results shown in Fig. 5, for the rotation of the singular structure cos( )φ , significant transformations 
of the transverse intensity patterns of both field components are observed. Particularly interesting transforma-
tions occur when cos( )φ  is rotated 90 degrees, i.e., when the singular structure becomes an orthogonal distribu-
tion sin( )φ . In this case, the x- and y-components of the field actually interchange for p = 1 (compare the first and 
third rows in Fig. 5); for p = 2, the components rotate 90 degrees (compare the fourth and sixth rows in Fig. 5); 
for p = 3, more complex changes occur, which lead to the appearance of a bright light spot in the centre (compare 
the seventh and ninth rows in Fig. 5). Similar effects can be observed when the singular structure cos(2 )φ  is 
rotated 45 degrees, when it is converted into sin(2 )φ  (see Fig. 6). As the results Fig. 6 show, the y-component 
rotates 90 degrees in almost all considered cases when we compare the field before and after the focal plane.

Particularly interesting transformations occur when the order of polarisation coincides with the phase singu-
larity (p = m). In this case, the transverse field components actually interchange places and in the area of the 
central spot, polarisation changes to orthogonal (compare the first and third rows in Fig. 5, as well as the third and 
fourth rows in Fig. 6). The structure φmcos( ) has a 2m-th order symmetry, and, as m increases, even small rota-
tion angles are enough to obtain visually-noticeable changes. To obtain an orthogonal state, it is sufficient to rotate 
through the angle of 90 degrees per metre.

Experiments. The results obtained in experiments for some simulated cases are shown in Figs. 7, 8, 9, 10, 11 
and 12. The x-components of the experimentally-generated laser beams are in good agreement with modelling 
results. However, the CaCO3 crystal used in the experiment was not thick enough to perform a full transforma-
tion of the y-components of the generated CVBs, and the y-components were very low. Because of this, we present 
only the total intensity distribution and the intensity distribution for the x-components of the generated CVBs. 
The experimentally obtained results confirm the theoretical prediction, mentioned above, that anisotropic crys-
tals can be used not only for determining the polarisation order, but also for a visual detection of the difference 
between azimuthal and radial polarisation (see Figs. 2 and 8). Slight deviations of the experimental results from 
the simulation results can be explained by the aberrations of the optical system, thus leading to the splitting of 

Figure 6. Modelling of the focusing of the Gaussian beam with the singular structure cos(2 )0φ φ+  for radial 
polarization of various orders p.
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higher-order vortices into low-order vortices with smaller TCs49,50, as well as deviations of the profile of the laser 
beam from the ideal.

conclusion and discussion
The presented investigation has shown that, when cylindrically-polarised singular beams are focused perpen-
dicularly to the axis of an anisotropic crystal, a selective (polarisation-dependent) astigmatic transformation 
of individual components of the electric field occurs. The transverse intensity distribution of the focused field 
depends not only on the polarisation state of the beam incident on the crystal, but also on the detection plane: the 
transverse intensity changes significantly before and after the focal plane. The introduction of phase singularities 
into the initial CVB beam, both as separate optical vortices of different orders and as the result of their superpo-
sition, allows one not only to better understand the details of the astigmatic transformation, but also to visually 
detect the polarisation state of the radiation incident on the crystal. In particular, when the order of polarisation 
coincides with the order of the optical vortex, a bright light spot forms on the optical axis. In addition, orthogonal 
polarisation transformations occur in this case.

An additional degree of freedom in analysing the characteristics of a beam incident on a crystal is provided by 
rotating the crystal around its axis. Analogous results can be obtained by rotating the input beam. In fact, in this 
case it is possible to regulate the astigmatic transformation of the various components of the electric field. The 
use of a polarisation analyser at the output of the crystal provides the additional possibility of transforming the 
intensity pattern, which can help obtain more information about the characteristics of the beam.

Figure 7. Experimentally obtained intensity distributions of focused CVBs of different orders p passed through 
the biaxial crystal in the absence of phase singularity (the crystal axis is directed along the coordinate axis). The 
size of images is 350 × 350 μm.
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The experimentally-obtained intensity distributions for the total fields and their x-components agree with the-
oretical predictions and modelling results. However, the thickness of the CaCO3 crystal used in the experiments 
was insufficient for the transformation of the y-component of the generated CVBs: the value of the y-component 
was very low and did not affect the total field distribution. In order to increase the transformation, the crystals 
with a high birefringence can be used; for example, TiO2 crystal has even more birefringence: Δn = ne − no = 
(2.978 − 2.668) = 0.310 at wavelength 532 nm (in contrast with Δn = ne − no = (1.488 − 1.663) = 0.175 for 
the CaCO3 crystals. However, the TiO2 is quite expensive. The birefringence of liquid crystals (LCs) is slightly 
higher than birefringence of CaCO3 (Δn ≈ 0.2). However, it is more interesting that LC’s birefringence changes 
(decreases) with increasing temperature, which can provide an additional degree of freedom in the considered 
transformations. A similar dynamic effect can be achieved using electrically controlled crystals, such as Potassium 
Dideuterium Phosphate (DKDP)51.

When using high-NA focusing, additional effects associated with the amplification of the longitudinal com-
ponent of the electric field are possible52. However, it is rather difficult to implement high-NA focusing inside a 
crystal, since crystals with high birefringence also usually have high refractive indices (no = 1.488, ne = 1.663 for 
CaCO3, no = 2.978, ne = 2.668 for TiO2). Thus, even if we can achieve high NA = sinσ in air (the longitudinal 
component becomes significant at NA > 0.7), when the radiation passes through the crystal, the angle σcrystal (at 
which the rays go out) will decrease in proportion to the refractive index (sinσcrystal = sin σ/ne ≈ 0.4 according to 
Snell’s law).

The demonstrated results can be useful for detecting singular fields with different orders of both the vortex 
phase and cylindrical polarisation in optical communication systems operating on the principle of mode- and 
polarisation-division multiplexing. In particular, an interesting opportunity to distinguish azimuthal polarisation 

Figure 8. Experimentally obtained intensity distributions of focused CVBs of different orders p with the first-
order vortex phase (m = 1). The size of images is 350 × 350 μm.
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of the p-th order from radial polarisation of the same order was demonstrated. In addition, the CVBs with 
the complex shape of the intensity distribution hold promise for the realization of efficient optical trapping of 
nano- and microparticles53,54. Thus, it has recently been shown that choosing the right polarisation distribution 
enhances the trapping efficiency for particles of certain sizes55. Such complex CVBs also allow one to improve 
the axial trapping efficiency for non-spherical nano- and microobjects, similar to the case of trapping of carbon 
nanotubes56. Structured spin angular momentum in highly focused CVBs can also be effectively transferred to the 
optical torque for the non-magnetic absorptive particle57. Moreover, of note here is the demonstrated possibility 
of the generation of the CVBs with complex shape of the intensity distribution changing after the propagation 
through the focal plane; indeed, this is useful for the laser processing of bulk transparent materials as well as 
polymers for fabrication of complex three-dimensional metastructures by single-shot pulse laser printing: the 
possibility of the use of the structured laser beams for fabrication of chiral three-dimensional metamaterials 
has recently been demonstrated58 and provided a new promising technique for high-throughput laser material 
processing.

Figure 9. Experimentally obtained intensity distributions of focused radially-polarized beams of different 
orders p with the second-order vortex phase (m = 2) passed through the biaxial crystal (the crystal axis is 
directed along the coordinate axis). The size of images is 350 × 350 μm.

Figure 10. Experimentally obtained intensity distributions of focused Gaussian beams with the singular 
structure φmcos( ) and radial polarization of different orders p. The size of images is 350 × 350 μm.
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Methods
The optical setup for the experimental investigation of the astigmatic transformation of vortex beams performed 
by a biaxial crystal is shown in Fig. 13. The input laser beam was extended and spatially filtered with a system 
composed of a microobjective MO1 (10×, NA = 0.2), a pinhole PH (aperture size 40 μm), and a lens L1 (focal 
length 150 mm). The collimated laser beam was directed onto the display of a transmissive spatial light modula-
tor SLM (HOLOEYE, LC 2012 with 1024 × 768 pixel resolution). The SLM was used to realise the phase masks 
employed in the experiments. A diaphragm (D) blocked the zero diffraction order, and a combination of lens 

Figure 11. Experimentally obtained intensity distributions of focused Gaussian beams with the singular 
structure cos( )0φ φ+  and radial polarization of different orders p passed through the biaxial crystal (the crystal 
axis is directed along the coordinate axis). The size of images is 350 × 350 μm.
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L2 and lens L3, both with focal lengths of 150 mm, imaged a plane conjugated to the plane of the SLM display in 
the input pupil of a microobjective MO2 (16×, NA = 0.3). The microobjective MO2 focused the generated beam 
inside a cubic biaxial CaCO3 crystal C (8 × 8 × 8 mm), and a microobjective MO3 (16×, NA = 0.3) imaged the 
transformed optical field distributions onto the sensor of a CMOS-video camera. A polariser P was used as an 
analyser of light polarisation. To generate the first, second, and third-order CVBs, we used commercially available 
high-quality S-waveplates of first and second order (also called zero-order vortex half-wave plates, Thorlabs Inc.) 
and their combinations with a λ/2 waveplate59.

Figure 12. Experimentally obtained intensity distributions of focused Gaussian beams with the singular 
structure cos(2 )0φ φ+  and radial polarization of different orders p passed through the biaxial crystal (the 
crystal axis is directed along the coordinate axis). The size of images is 350 × 350 μm.

Figure 13. Experimental setup for investigation of transformation of the CVB of the different orders performed 
by a biaxial crystal. A combination of the first-order S-waveplate S1, the second-order S-waveplate S2 and a λ/2-
waveplate was used for generation of the CVBs of different orders.
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