
1Scientific Reports |         (2020) 10:5549  | https://doi.org/10.1038/s41598-020-62537-3

www.nature.com/scientificreports

Stochastic Resonance in Insulator-
Metal-Transition Systems
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Stochastic resonance (SR) is an ingenious phenomenon observed in nature and in biological systems 
but has seen very few practical applications in engineering. It has been observed and analyzed in widely 
different natural phenomenon including in bio-organisms (e.g. Mechanoreceptor of crayfish) and in 
environmental sciences (e.g. the periodic occurrence of ice ages). The main idea behind SR seems quite 
unorthodox – it proposes that noise, that is intrinsically present in a system or is extrinsically added, 
can help enhance the signal power at the output, in a desired frequency range. Despite its promise and 
ubiquitous presence in nature, SR has not been successively harnessed in engineering applications. 
In this work, we demonstrate both experimentally as well as theoretically how the intrinsic threshold 
noise of an insulator-metal-transition (IMT) material can enable SR. We borrow inspiration from natural 
systems which use SR to detect and amplify low-amplitude signals, to demonstrate how a simple 
electrical circuit which uses an IMT device can exploit SR in engineering applications. We explore two 
such applications: one of them utilizes noise to correctly transmit signals corresponding to different 
vowel sounds akin to auditory nerves, without amplifying the amplitude of the input audio sound. This 
finds applications in cochlear implants where ultra-low power consumption is a primary requirement. 
The second application leverages the frequency response of SR, where the loss of resonance at out-
of-band frequencies is used. We demonstrate how to provide frequency selectivity by tuning an 
extrinsically added noise to the system.

Noise is an omnipresent yet unwanted characteristic of all natural systems. Since we cannot eliminate noise from 
useful signals, the commonly used engineering technique is to have a stochastic estimate of the noise and design 
engineering solutions that can improve the signal-to-noise ratio and reduce the overall impact of noise. In con-
trast, the motivation behind stochastic resonance (SR) is to harness the noise power in an intelligent way, similar 
to certain natural systems, to enable better engineering solutions. In the context of electrical systems, we are 
mostly interested to amplify a low-amplitude input signal with the help of noise; instead of the noise acting as 
distortion that reduces the information content of the signal. This enables us to transmit and detect low power 
signals through a noisy channel. The phenomena of SR has been observed and studied in diverse fields such as 
biological systems1,2, global climatic studies3–5 and theoretical physics6–8 etc. The main aim of this article is to 
demonstrate possible engineering applications of this natural phenomena, instances of which are can be found 
in9–11. The phenomenon of SR in a multistable system and its application in fault-diagnosis in mechanical systems 
has been discussed in12,13. Further14 and15 provide an extensive discussion about the use of SR in enhancement of 
energy harvesting in electromechanical systems.

There are two main kinds of stochastic resonance that have been explored16. Classical SR requires three main 
components, namely a bi-stable potential-well system (Fig. 1A), a weak signal whose power is insufficient to make 
the transition from one well to another and a noise source which enables the signal to overcome this potential 
barrier and make spontaneous transitions17. One example of such a system is of the form:

π ησ= − ′ + +x U x Asin ft t( ) (2 ) ( ) (1)

where the bi-stable potential profile, U(x) is described by:

= −U x x x( )
4 2 (2)
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Here, A is the amplitude of a sinusoidal signal, and σ(t) is the noise process with unit variance. The dynamical 
system has two stable equilibria namely at x= ±1, and an unstable equilibrium at 0. If the value of A is less that 
what is required to cross the potential barrier the system will stay at one of the stable states without any external 
influence. It has been shown6 that if the noise variance is in a certain range (η1, η2), the output oscillates between 
−1 and +1 at the frequency of the signal. The lower limit of the noise variance comes from the fact that at lower 
values of the noise power, the system does not have enough energy to overcome the potential barrier and make 
spontaneous transitions. Further, if the variance is too high the system will cross the barrier irrespective of the 
signal value (amplitude) and the output will have no correlation with the input, thereby breaking the notion of 
resonance. The theoretical aspects of SR in bi-stable systems has been studied in6,7,17,18. The Fitz-Hugh-Nagumo 
Model is capable of acting as a bi-stable, excitable or oscillatory system for different parameters, and therefore 
provides a great way to exhibit Stochastic Resonance.

The second type of stochastic resonance does not require a bi-stable system. Instead it requires an excitable 
system with a thresholding mechanism, where if the input crosses a certain value we record one event such as a 
spike at the output (Fig. 1B). In an SR driven excitable system, the input signal alone cannot provide a spike, but in 
conjunction with noise the system gains enough excitatory power to produce a temporary output and eventually 
relaxes back to the equilibrium state19,20. The relaxation process is governed by the system parameters. So we see a 
spike at the output whenever the noise crosses the threshold. Much like the previous case, the noise power should 
be bounded to avoid being stuck in the stable state and also prevent spontaneous spike generation uncorrelated 
with the input. In this paper, we demonstrate SR of the second kind where an electronic system is designed to 
show SR driven excitatory behavior, capable of performing signal-processing.

The term SR has also been used by authors in linear systems where the output of the system varies as a func-
tion of some particular characteristics of the noise21. shows and calculates SR in case of linear sustems with multi-
plicative noise where the SNR of the system exhibit extrema as the noise correlation time and asymmetry changes.

System Modeling
The circuit primitive (Fig. 2A) that produces SR is composed of an IMT device composed of vanadium-dioxide 
(VO2)22. The VO2 device has a pull-down metal-oxide-semiconductor (MOS) transistor that produces load-line 
characteristics. The VO2 device has two electrical states, namely a metallic (M) state and an insulating (I) state. It 
acts as a resistor in both these states, but the resistance in the insulating state (line AC in Fig. 2B) is much higher 
than that of its metallic state (line BD). The device spontaneously switches from one state to another depending 
on the voltage applied across it. When the voltage across the device reaches an upper threshold, νh (point A), the 
device transitions from insulating to metallic state. Correspondingly when the voltage across the device falls to 
a lower threshold, νl, it goes back to the insulating state (point D). Further, the device shows hysteresis, νh > νl 
(closed loop CABD, Fig. 2B). The capacitance Cint captures the cumulative effect of all the capacitive effects pres-
ent in the circuit.

The state equations for the circuit can be written as:

= −v v h i s( ( , )) (3)dd i0

−
= −C d v v

dt
i i( )

(4)int
dd

i
0

0

where v0 and vdd denote the output and supply voltage respectively as shown in Fig. (2A), s denote the state of the 
IMT device, i.e. =h i s R i( , )i m i, when it is in the metallic state and =h i s R i( , )i i i when it is in its insulating state 
(Rm and Ri denoting the resistance offered by the device in its metallic and insulating state respectively with Rm
≪..), ii is the current through IMT device, and i0 is the current through the MOSFET. The null-clines of these 
equations along with the circuit model is shown in the Fig. (2B).

The orange line in (B) represents the load line for the circuit given by the second equation. If this line crosses 
the null cline for the device somewhere to the right of D (metallic state) or to the left of A (insulating state), the 
system has one stable state (Fig. (2C)). Once the system reaches that state, it remains there (Fig. (2C)). But if the 
load-line crosses the device V-I curves in between A and D, the system has no stable states and continues to follow 
the trajectory ABDC in the state space (shown in Fig. (2B)). The system is therefore in an oscillatory state, and 
continuously oscillates between the metallic and insulating states (Fig. (2D)). Intuitively, when the voltage across 
the VO2 device becomes more than vh, it goes into its metallic state. Consequently, its resistance becomes low and 

Figure 1.  Stochastic Resonance (A) Bi-stable System exhibiting Classical Stochastic Resonance (B) Excitable 
system showing Stochastic Resonance.
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the internal capacitance get discharged thereby pulling the output voltage towards Vdd. But as v0 approaches Vdd the 
voltage across the device becomes too low and when it is less than vl the resistance of the device is switches to an 
insulating and the discharging process stops. The capacitor is now being charged by the current through the MOS 
and the whole cycle repeats.

The frequency of oscillation can be estimated by assuming that the inductive effects and the current through 
the device in the insulating state have negligible effect on the dynamics. Therefore setting ii to 0 and assuming that 
the MOSFET is in saturation while charging the capacitor Eq. (4) simplifies to:

C d v v
dt

i v v( )
2

(1 ) (5)int
dd

in
0

0
2

0
μ λ

−
= = +

i0 in this case is the saturation current as the MOS is now in saturation. μ μ= Cn ox
W
L

 denote the combined NMOS 
parameter, λ denotes the channel-length modulation parameter and the input voltage is = −v v vin gs th.

This can be solved to find the approximate fall time of the output as:
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The capacitor discharges through the metallic path when the device is in metallic state. As the voltage across 
the transistor is very low, i0 is negligible. Hence,

−
= −

−C d v v
dt

v v
R

( )
(7)int

dd dd

m

0 0

Therefore, the rise time is given by, =T R C lnr m int
v
v

h

l
. The fundamental frequency of oscillation for a constant 

vgs is therefore

Figure 2.  Illustration of the characteristics of the circuit model. (A) The equivalent circuit representation of our 
model. Vgs denotes the input node and V0 the output. The IMT device shows two resistances namely rm and ri 
depending on its state. (B) The null cline for the model. CAB and BDC denote the transition from insulating to 
metallic and metallic to insulator states respectively. PQ denotes the load-line for the CMOS in saturation. The 
two indigo regions denote the stable states and the pink region denotes the oscillatory state. The actual state of 
the system is determined by where the CMOS load-line crosses the device lines. (C,D) show the voltage output 
at the stable and oscillatory states respectively while the red and blue lines in the later show experimental and 
simulated values respectively. (E) The natural frequency of oscillation of the system in the oscillatory state as 
a function of a constant input voltage. It shows that the system is oscillatory only for a certain range of input 
voltage. (F) shows output amplitude vs frequency when the input is biased at a voltage inside the insulating 
region (left indigo region in B) and a sinusoid of amplitude 0.01 V added to that. It shows that the gain of the 
system goes down with frequency.
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F
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The dependence of fF with vin is shown in Fig. (2E). As we increase the input voltage the MOS current 
increases, therefore the capacitor charges faster and the frequency of oscillation increases, until the voltage is so 
high that v0 itself saturates at a voltage close to Vdd and the oscillations stop. Our system shows similar behavior to 
the linearized Fitz-Hugh-Nagumo model of a neuron as has been shown in18. Also the current through the device 
is therefore almost negligible when the device is in the insulating state (experimentally measured at ~50 μA) and 
when the state of the device switches to metallic we measured a large switching current which can be approxi-
mated by −v v

R
dd

m

0 . Experimentally, we observe this current to be about 6 mA and it discharges the capacitor quickly 
and collapses to a low value as the IMT device enters the insulating state.

To understand SR in the current electrical system, let us consider a periodic sinusoidal input signal to the 
system as given by:

π= +v V Acos f t(2 ) (9)in dc in

We consider two main sources of noise in this system. The first one is intrinsic and can be described as the 
random vh fluctuation arising from thermal and shot noise sources. The second noise source is extrinsic and is 
present at the input vin. We explore the effect of both these noises in the following segments. It will be seen that 
both of them have similar qualitative effect on the system, but differ quantitatively as they undergo different 
noise-transfer-functions (NTFs). In the following discussion we have assumed that the noise has a Gaussian pro-
file. This allows us to develop experimentally verified theoretical models. But at the same time it should be noted 
that other noise models can also be used in the treatment of SR, either numerically or analytically.

First let us examine the scenario where there is negligible noise. The value of Vdc in (9) is chosen in such a way 
so that the output of the system for the sinusoidal input is unable to cross the threshold for spontaneous oscilla-
tions. The circuit acts as a trans-conductance amplifier with a frequency-dependent gain. In the current design, 
the gain of the system is small and hence the output signal has the same order of magnitude as the input as shown 
in the Fig. (3A). The simulated output amplitude for different frequencies with the input amplitude being 0.01 V 
is shown in the Fig. (2F). We can see that the system exhibits a low-pass behavior.

Figure 3.  Effect of noise at the input and at the upper threshold of the device in time and frequency domain 
respectively. (A) The time and frequency domain output of the system for input π= + ( )v v Acos ft2in gs , where 

= .v 2 6in  volts and A = 0.01, such that the system does not go in the oscillatory zone. (B) Shows the SR in effect 
with noise added to the input with standard deviation 0.13. (D) Shows the effect of adding excessive noise (in 
this case 0.4). (C) Shows the same as (B) with the noise source now being Vh, where vin=2.58 volts and noise 
standard deviation 0.05, where as (E) shows the effect of excessive Vh noise with noise standard deviation 0.1.
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Now let’s consider the case where the system is perturbed by noise. vgs is fixed such that without noise vdd − v0 
is less than but close to vh, so the output is a sinusoid of small amplitude but there is no oscillations yet. We start 
to increase the noise power. As we increase the noise level value of v0 starts to fluctuate, the probability to cross the 
threshold vh increases and we can observe spikes as shown (Fig. (3B)). At a moderate noise level we can see that 
there is a high probability of spiking at the troughs of the input sinusoid and a low probability for the crests; and 
hence we see a number of spikes in each of the period of the input signal (Fig. 3B,C). As the spikes are centered on 
the troughs of the sinusoid the principle frequency component of the output is same as the input frequency which 
is also evident from the frequency spectrum of the output. If the noise is further increased, the probability of 
spiking increases and loses any correlation with the input (Fig. 3D,E). Consequently, the output amplitude at the 
input frequency falls off sharply.

Variation with noise power
Ideally we want the output power of the system to be at the same frequency as the input. From our discussions, it 
is clear that low levels of noise will result in low output noise power. At the same time, high noise power will result 
is lower outout power at the desired freqeuncy. Between these two extremes, the output will exhibit significant 
power at the input frequency as shown in the Fig. 3B,C. The variation of the output amplitude with the noise 
power is shown in Fig. 4 with Fig. 4A,D showing experimental results and Fig. 4B,E showing simulation results 
for the input noise and the Vh noise respectively. The plot shows the exact characteristics of SR, where the signal is 
amplified when the noise to the system is in between a certain range. The orange line in (4B) denotes the power at 
the fundamental frequency of the oscillator. We note that when the noise is too large there are continouos spikes 
and the power shifts from the input frequency to the fundamental frequency as shown in Eq. (8).

Figure 4.  Dependence of the output amplitude on the input and Vh noises. (A) Shows the experimental 
results how output amplitude changes with input noise for three bias points. (B) Shows the similar thing from 
simulation, along with how the power at the fundamental frequency varies with the noise. (G,H) Show the 
relative strength of the input frequency compared to the maximum amplitude and the average amplitude 
respectively in presence of the input noise. (C) Shows how the whole frequency spectra changes with noise. (D) 
is similar to (A) but it shows the experimental data for 3 different input frequencies. (E) Shows the simulation 
results for how output amplitude varies with the Vh noise. (I,J) Show the relative strength of this input frequency 
compared to the maximum amplitude and the average amplitude respectively in presence of the Vh noise. (F) 
Shows the effect of both the noise simultaneously on the output amplitude.
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Solving for the fixed points from the two governing Eqs. (3) and (4) of our system the steady state solution to 
the system for a fixed =v Vin dc is given by
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Since our input is π= +v V Acos f t(2 )in dc in , if A is small the output of the system will be the steady state output 
for Vdc  plus a sinusoidal component; which can be expressed as π θ= + +v v v cos f t(2 )O S B in . As we have an 
expression for the steady-state output voltage, assuming the input signal amplitude A to be inside the small signal 
range, we can estimate vB as the input amplitude amplified by the voltage gain of the system dv

dV
s

dc
. Hence, we can 

write vB as:
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For our simulation a typical value of vB is ~0.0294 V for = .A V0 01  which matches the experimental results. 
vB also changes with the frequency of the input signal whose value is plotted as a function of frequency in Fig. 2F.

The ideal noise level for harnessing resonance will be such that the system should go in the oscillating mode 
only when v0 is near its crest. If the noise level is so low that even the crest of v0 does not reach −v vdd h level, there 
will be no oscillation or resonance. On the other hand, if the noise is so high that the probability of crossing the 
threshold is almost similar in both the crest and the trough of v0 then the output will be independent of the input 
frequency.

Roughly, we can say that the minimum vh noise standard deviation σmin should obey σ− = − +v v v v 3s B dd h min, 
as the chances of noise fluctuations having values more than 3 σmin is 0.27% and can be safely neglected. For the input 
noise case all noise standard deviations should be multiplied by the gain of the system like Eq. (11) as it passes 
through the transistor gain unlike the vh noise which just get added to v0.

And the max value of noise standard deviation σmax can be roughly given by σ+ = − +v v v v 3s B dd h max, 
since higher levels of noise decorrelates the output power from the input signal frequency.

When the system is in the oscillatory region the output is not a sinusoid anymore, so we take the Fourier trans-
form of the signal. Let Ain be the coefficient of the input frequency component and Amax be the max coefficient 
among all frequencies. A A/in max gives a quantitative idea whether the input frequency is the strongest component 
in the output, which are plotted in Fig. 4G,I. To harvest max power from stochasticity we should work in a region 
where A A/in max is 1. Ain divided by the average amplitude of all frequencies A A/in avg  denotes how much the input 
frequency is dominant among all frequencies and can also be used as a useful metric which are shown in 
(Fig. 4H,J), which should ideally be as high as possible.

The whole frequency spectrum of the output is shown in Fig. 4C when the input noise is varied. We can 
see that the noise only enhances the input frequency and its harmonics, though at a lesser degree. This shows 
an important aspect of stochastic resonance as the noise do not enhance all frequencies but a particular one. 
Figure 4F show the power at input frequency as both the noises are present in the system. When one of the noise 
is large the amount of the other noise required for Stochastic Resonance decreases, as expected.

Variation with frequency
The Fig. 5 shows the variation of output amplitude with the input frequency for a fixed noise. The plot shows three 
major parts: for very low frequencies the output amplitude is quite constant. One such case is shown in the 
Fig. 5A. We can have an estimate of the number of spikes per period of the input signal as following: assume the 
first spike starts to appear around the region where π σ− = − +v v cos f t v v(2 ) 3s B in dd h w and after that boundary 
there are continuous spikes when π σ− ≤ − +v v cos f t v v(2 ) 3s B in dd h w(where σw is the input noise standard devi-
ation σin multiplied by the gain of the system in case of input noise or just the vh noise standard deviation σh in case 
of vh noise) This last part is not strictly true, but taking into account the fact that π−v v cos f t(2 )s B in  is even lower 
than its previous value the wait time between spikes is negligible and the approximation is quite reasonable. 
Therefore, the permissible time for spikes per period is given by

π
σ

=





− + + 




−T

f
v v v

v
1 cos 3

(12)in

s dd h w

B

1

hence, the approximate number of spikes is given by, =N T
Tsp

, where Tsp is the total charging-discharging time 

for one spike. At this range of low frequencies, vB is almost constant; hence N is inversely proportional to the fre-
quency. If there are N spikes in each perod of the signal then as Tsp is much smaller compared to the time period 
of the input signal, we can consider the output as a sum of N different impulse trains each shifted from the previ-
ous by an amount Tsp with the strength of each impulse being ∆ where ∆ is the area under one spike. The fre-
quency response of an impulse train of strength ∆ is another impulse train with strength f ∆, since we have N 
shifted versions of the same. The shift in time by Tsp is equivalent to multiplication by π−e j fT2 sp in the frequency 
domain; and the output amplitude at the input frequency can be written as:
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The output amplitude at that frquency is therefore given by = ∆
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The second part is important when the frequency is such that T is of the order of Tsp and there is only one spike 
per cycle. In this case, the permissible time for spikes is so small that if there is one spike in a particular period, 
then there cannot be any more spikes in the same period when the system relaxes back to the steady state. Hence 
the output is given by = ∆v fin  as there is just one equivalent train of spikes, and we can see that output grows 
linearly with frequency.

And last, when the frequency is comparable to the oscillator frequency, there are not even one spike per period 
due to the facts that (1) T is now very low hence the probability for spiking is also very low and (2) due to the low 
pass nature of our circuit, which means at high freuency the output is greatly attenuated and the same noise is 
unable to cause it to cross the threshold for spiking. Similar effects are seen when we insert noise at the input 
instead of at the vh level. The effect is exactly similar except from the actual values of the noise power.

Figure 5C,D show that if the input frequency is increased for low noises the output falls very fast as there are 
no spikes for higher frequencies. But for larger noise the power at the input frequency is still quite large. This 
large amplitude will be useless however, if there are other significant peaks in the frequency spectrum which are 

Figure 5.  Dependence of output on input frequency. (A) Output of the system with moderate (1.5 kHz) input 
frequency (B) Output with large (6 kHz) input frequency. (C,D) Show how output amplitude changes with 
input frequency for two different input noise levels from the simulation and the experiment respectively. The 
fundamental frequency is around 25 kHz for these. (F) Shows the amplitude vs frequency with the fundamental 
frequency double of that of (C). (G) Show the ratio of the amplitudes of the fundamental frequency and the 
largest frequency component other than the fundamental frequency corresponding to (F). (E,H) Are similar to 
(F,G) but the noise source is now the Vh noise instead of the input noise.
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very close to the input frequency or even less than it. Figure 5G shows the ratio of the amplitudes of the input 
frequency to the largest peak other than the input that is less than twice the input frequency. We see after a certain 
frequency level this falls off quite fast signifying that there are significant power allotted to frequencies that are 
close to or even less than input, which means for SR purposes we should never operate in these regions.

Application of SR in IMT devices
Though the phenomena of stochastic resonance has been seen in biological experiments and in slow environmen-
tal changes, engineering applications based on this has been a few9–15. The fundamental principle of harvesting 
the noise power to empower the signal or the information content of the input can prove quite useful if used for 
practical purposes. One use of this, which is quite evident from our experiments is that it can be used to detect 
weak signals in presence of noise. Another interesting application that we discuss below in detail is to preserve 
the frequency spectra of the input signal after thresholding as shown in23. This finds application in cochlear 
implants where high-fidelity can be maintained without amplifying the signal, that can cause harm to the patient. 
The frequency spectra for each vowel sound has a special nature. It has a fundamental frequency along with its 
harmonics, but most of the power is concentrated at one particular frequency often called ‘formant’ as shown in 
the Fig. 6B below. When a vowel is transmitted through the auditory nerve it generates an action potential for the 
nerve if its amplitude is more than a certain value. If we want to replicate the action of auditory nerves with the 
help of a cochlear implant the shape of the spectrum is not preserved after the thresholding as it is a non-linear 
process, and we get a signal with power mostly at the fundamental frequency (Fig. 6E).

This can be overcome in two ways, either by increasing the signal power, or by adding noise illustrated in 
Fig. 6. Increasing signal power by too much can cause pain in the ear and impair hearing, therefore not deemed 
suitable for our purposes. But by adding some small amount of noise along with the signal we make the system 
stochastic rather than deterministic. The probability of crossing the threshold then becomes dependent on the 
power that a particular frequency has in the input and hence the output reflects the input pattern as shown in the 
Fig. 6G,J,L. Similar to our previous discussions the amount of noise needed to best preserve the original structure 
is neither too low so as to not change the structure at all, or too high so that only the noise dictates the output. 
These two extreme cases along with the case where a moderate amount of noise is able to reconstruct the original 
signal is shown in Fig. 6F,H,G respectively. The amplitude of the output spectrum at the formant frequency vs the 
noise power is also shown in Fig. 6C,D for two different peak-to-peak input vowel amplitudes (100 and 50 mV 

Figure 6.  Effect of noise for thresholding vowel sounds. (A,B) Show the time and frequency domain 
representation of the vowel sound ‘ae’. (C,D) Show the power at the primary formant of the vowel at different 
noise level from the simulations and the experiments respectively for two different amplification of the input 
signal. (E) Show the frequency spectrum of the same vowel after passing through the neuron with amplitude 
0.1 V and bias 2.59 V with no noise. (F,G,H) Show the same vowel after thresholding but with noise 0.1, 0.2 and 
0.5 V added respectively. (I,K) Show the frequency spectra for two more vowel sounds namely ‘oo’ and ‘iy’. (J,L) 
Show the corresponding outputs from the system with input noise fixed at 0.2.
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respectively). Here the original vowel signal (Fig. 6A,B) is presented at the input of our circuit after appropriate 
amplification along with a bias Vdc. The amount of noise needed to preserve the signal structure depends on the 
amplitude of the signal, as the signal power goes up so does the amount of noise needed to get the similar output. 
Other two vowels are also shown in the subsequent figures, and also the output when the noise is similar to that 
used to extract the vowel ‘ae’, this means the same level of noise can be used to extract the vowel sounds without 
any prior knowledge of what sound it is.

Another potential application that has been studied utilizes the nature of frequency response that we see for 
the circuit. We see that the device in this setup acts as a non-linear low-pass filter. The low-pass nature is attrib-
uted from two facts; one as frequency increases the gain of the system decreases and the same amount of noise is 
insufficient for resonance. Second, as the frequency increases the number of spikes per period decreases dramat-
ically as the time period becomes comparable to the charging-discharging time of the capacitor itself. Also the 
frequency range that it amplifies can be determined by the amount of noise applied to its input. Hence, by chang-
ing just the amount of noise, particular high frequencies can be rejected as we experimentally note. Traditionally, 
changing the cutoff frequency of an analog filter requires a hardware change, but here we note that by changing 
the noise power we can shift the cutoff frequency. As a demonstration, we apply two sinusoids with frequencies 1 
and 5 kHz to the system. We observe that the 5 kHz frequency is suppressed at the output showing that the circuit 
can be used to reject high frequency noise by adjusting the noise power. We can see from Fig. 5 that the range of 
frequencies that gets amplified by the SR action depends on the noise level as well as the fundamental frequency 
of the system which is governed by the internal capacitance of the IMT device. By choosing the internal capaci-
tance appropriately we can have a low pass filter whose cut-off frequency can be changed by the amount of noise 
added to the system up to a certain extent (Fig. 7).

Materials and Methods
Samples.  Vanadium dioxide (VO2) is grown to a 10 nm thickness on a substrate of (001) TiO2 with molecular 
beam epitaxy24. The devices widths are defined by dry etching with CF4 and device lengths by the Pd/Au metal 
contacts which are deposited using electron beam evaporation. The VO2 devices varied in length from 100 nm to 
1um with resulting insulator-to-metal transition threshold voltages ranging from 0.7 V to 6 V. The largest devices 
of size 1 × 2 μm2 with relaxation oscillations of ~5 V amplitude were used to perform the experiments in order to 
maximize the small-signal amplification.

Experimental setup.  A single IMT oscillator is realized by connecting the two-terminal device in series 
with an external n-channel MOSFET. A VDD of 7 V and a gate voltage of 0.81 V was used to bias the transistor such 
that the load line passed through only the insulating region (Fig. 2B). An additional 200 mV of gate voltage would 
cause continuous relaxation oscillations. All experiments were performed by adding noise to the gate signal of the 
series transistor. The small-signal sinusoidal wave and noise were generated and combined using the Keysight 
81150 A Function Generator. The intrinsic vh noise standard deviation of the oscillator was measured to be 85 mV 
which is comparable to the standard deviation of the added gate noise and needs to be accounted for when biasing 
the transistor. The vowel sounds used in this paper were obtained from the North Texas vowel database25. Each 
vowel waveform was normalized to a 100 mV peak-to-peak signal on top of the gate voltage bias along with any 
added noise.

Simulations.  The modelling and simulations were done in MATLAB. The device characteristics and the noise 
values were measured and the data analyzed, to approximate the different device variables and noise magnitudes. 
The MOSFET was assumed to be in saturation throughout the operation and the IMT itself were modelled with 
hysteresis with different behavior in the insulating and metallic regions.

Figure 7.  Output with two frequencies at the output. The input is sum of two frequencies 1 and 5 kHz with 
equal 10 mV amplitude. (A) Shows the output at those frequencies for different noises. (B) Shows the output 
spectra with noise fixed at 0.25.
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Conclusion
In this article, we explore stochastic resonance (SR) in a simple electronic circuit and demonstrate particular 
applications of SR. For vowel sound enhancement, we have seen how adding noise to the system helps preserve 
the primary formant power and the relative structure of the sound after it passes through the non-linearity inher-
ent to the system. The circuit imitates a neuron carrying a signal and we need not increases the signal power at all 
but add a little amount of noise to pass through the synaptic/thresholding nature of the system and still preserve 
the nature of the sound.

It is evident from the output amplitudes vs frequency plots that SR exhibits a form of low pass filtering, and the 
cut-off frequency for the low-pass filter is determined by not only the circuit parameters (namely the capacitance 
and resistance) but also by the amount of noise added to the system. By changing the noise power, we can change 
the cut-off frequency and use this to our advantage to reject different ranges of frequency without requiring any 
hardware changes.

In summary, we present a simple electronic implementation of SR and demonstrate experimentally and theo-
retically how system noise can be harnessed to provide exciting opportunities for analog signal processing.
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