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Quantum speed limit based on the 
bound of Bures angle
Shao-xiong Wu1 & chang-shui Yu2

In this paper, we investigate the unified bound of quantum speed limit time in open systems based 
on the modified Bures angle. This bound is applied to the damped Jaynes-Cummings model and the 
dephasing model, and the analytical quantum speed limit time is obtained for both models. As an 
example, the maximum coherent qubit state with white noise is chosen as the initial states for the 
damped Jaynes-Cummings model. It is found that the quantum speed limit time in both the non-
Markovian and the Markovian regimes can be decreased by the white noise compared with the pure 
state. In addition, for the dephasing model, we find that the quantum speed limit time is not only 
related to the coherence of initial state and non-Markovianity, but also dependent on the population of 
initial excited state.

In the quantum information processing, the evolution of quantum systems are significant for both the closed and 
open systems. The quantum speed limit (QSL) time of the closed system is defined as the minimal evolution time 
(corresponding to the maximal evolution velocity) from the initial state to its orthogonal state. A unified quantum 
speed limit time is given by the Mandelstan-Tamm (MT) bound and the Margolus-Levitin (ML) bound, i.e., 

E Emax{ /(2 ), /(2 )}qsl  τ π π= ∆ ⟨ ⟩ 1–11. The quantum speed limit is also related to other quantum information 
processing, such as the role of entanglement in QSL12, the elementary derivation for passage time13, the geometric 
QSL based on statistical distance14,15, the quantum evolution control16, the relationship among with coherence 
and asymmetry17, and so on.

In the practical scenarios, due to the interaction with surroundings, the evolution of quantum system should 
be treated with open system theory18. Recently, the concepts of quantum speed limit were extended to the open 
quantum systems. For example, Taddei et al. investigated the QSL employing the quantum Fisher informa-
tion19 through the method developed in the ref. 20. Using the relative purity, del Campo et al. derived a MT type 
time-energy uncertainty relation21. Utilizing the Bures angle, Deffner and Lutz arrived a unified QSL bound for 
initial pure state, and showed that non-Markovian effects could speed up the quantum evolution22. Other forms 
of QSL in open system were also reported, such as the QSL in different environments23–29, the initial-state depend-
ence30, the geometric form for Wigner phase space31, the experimentally realizable metric32. In addition, many 
other aspects of QSL were also widely studied such as using the fidelity33,34 and function of relative purity35,36, the 
mechanism for quantum speedup37, the connection with generation of quantumness38, generalization of geomet-
ric QSL form39, via gauge invariant distance40, even the QSL for almost all states41, and so on.

As a measure of distance, the Bures angle based on the Uhlmann fidelity has good properties, such as con-
tractivity and triangle inequality. And, it is applied to the field of quantum speed limit in recently22. However, 
the Bures angle is hard to measure the quantum speed limit for initial mixed state because it needs to calculate 
the square roots of matrices15. In the ref. 43,44, the authors derived an upper bound of Uhlmann fidelity (modified 
fidelity) between the mixed states, and obtained the upper bound of Bures angle. In this paper, we obtained the 
bound of quantum speed limit time for the initial mixed state according to the upper bound of Bures angle. The 
results showed that this bound is always tighter than the bound based on the Bures angle. For two-level system, 
the modified fidelity is consistent with the Uhlmann fidelity. So, the bound of the quantum speed limit based on 
the modified Bures angle is tight. As an application, this bound is employed to the damped Jaynes-Cummings 
model and dephasing model, respectively. The quantum speed limit time for both models are obtained analyti-
cally. As an example with generality, the maximum coherent qubit state with white noise is chosen as the initial 
state for the damped Jaynes-Cummings model. The evolution of the quantum system can be accelerated not only 
in the non-Markovian regime but also in the Markovian regime, and the quantum speed limit time will become 
short with the increasing of white noise. While, for the dephasing model, the quantum speed limit time is not 
only related to the coherence of initial state and non-Markovianity, but also dependent on the population of initial 
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excited state. Generally speaking, the quantum speed limit is affected by many factors (such as the structure of 
environment, the form of the initial state), and the comprehensive competition of them determine the properties 
of quantum speed limit time.

Results
In the quantum information processing, the Bures angle F( , ) arccos[ ( , ) ]ρ σ ρ σ=  is commonly used to meas-
ure the distance between the states ρ and σ with the Uhlmann fidelity ρ σ ρ σ ρ= 



( )F( , ) tr

2
. In the field of 

quantum speed limit, Bures angle is employed to the initial pure state22, where the Bures angle can be simplified 
as ⟨ ∣ ∣ ⟩ρ ρ ψ ρ ψ= 



( , ) arccost t0 0 0 . However, due to calculation of the square roots of matrices, it is hard to 

obtain the quantum speed limit time in open system for the initial mixed state. Utilizing the function of relative 
purity36, the quantum speed limit can be extend to the initial mixed state, however it is not an optimal distance 
metric even for two-level system in some cases (similar numerical simulation42). In the refs. 43,44, an upper bound 
of Uhlmann fidelity between mixed states and the modified Bures angle are proposed. Employing this modified 
Bures angle, we give a unified bound of quantum speed limit time, which is tight for initial two-level state or pure 
state.

The upper bound of Uhlmann fidelity  ρ σ( , ) and the Uhlman fidelity F(ρ, σ) satisfy the inequality 
F( , ) ( , )ρ σ ρ σ≤ 43,44, where ( , ) ρ σ  is defined as 

ρ σ ρσ ρ σ= + − − .( , ) tr [ ] 1 tr [ ] 1 tr [ ] (1)
2 2

The modified Bures angle is defined as 

( , ) arccos[ ( , ) ], (2)ρ σ ρ σΘ =

and it meets the following inequality with the Bures angle 

ρ ρ ρ ρΘ ≤ .( , ) ( , ) (3)t t0 0

Using the derivation in the Method section, we can have a unified bound of the quantum speed limit time 
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According to the relationship among the norm of matrix ∥A∥tr ≥ ∥A∥hs ≥ ∥A∥op
45, the “velocity” of quantum 

evolution satisfies the inequality op hs trΛ Λ Λ≤ ≤τ τ τ . Obviously, the ML bound based on operator norm pro-
vides the sharpest bound of quantum speed limit time in the open quantum system. As an application, it is applied 
to two paradigm models, i.e., the damped Jaynes-Cummings model and dephasing model.

The damped Jaynes-Cummings model. The total Hamiltonian of system and reservoir is 
ω σ ω σ= + ∑ + ∑ + .+H b b g b( h c)z k k k k k k k

1
2 0

† , and the evolution of reduced system is described by the master 
equation 

L ( )
2

(2 ) ,
(7)t t

t
t t tρ

γ
σ ρ σ σ σ ρ ρ σ σ= − −− + + − + −

where γt is the time-dependent decay rate. The quantum system at time τ is analytically given by 

ρ τ
ρ ρ

ρ ρ
=





 −







τ τ

τ τ
∗

q q

q q
( )

(0) (0)

(0) 1 (0) (8)

11
2
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01 11
2

with parameter =τ
−Γτq e /2, dt t0∫ γΓ =τ

τ . Without loss of generality, assuming the structure of non-Markovian 
reservoir is Lorentzian form 
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ω
γ
π

λ
ω ω λ

=
− +

J( )
2 ( )

,
(9)

0
2

0
2 2

where λ is the spectral width of reservoir and γ0 is the coupling strength between the system and reservoir. The 
ratio γ0/λ determines the non-Markovianity of quantum dynamics. When γ0/λ > 1/2, non-Markovian effect can 
influence the evolution of system distinctly18. Time-dependent decay rate γt and parameter qτ can be given with 
the explicit form as18

γ
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τ λ τ
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+
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with parameter λ γ λ= −h 22
0 .

Turning into the Bloch representation, the mixed initial state can be expressed as 
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where, rx, ry, rz are the Bloch vectors. The quantum speed limit time for the mixed initial state (11) is 

( )
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where the parameters κ = − − −r r r1 x y z1
2 2 2  and κ = + − − − +( )q r r r q r2 2 (1 )t

t z x y t z2
2 2 2 2 2 . For the 

two-level quantum state (11), one can follow the ref. 36, and investigate the effect of coherence of the initial state 
and the population of initial excited state on the quantum speed limit time.

As an example with generality, we will assume the initial state to be a two-level maximally coherent state 
( 0 1 )ψ = +∣ ⟩ ∣ ⟩ ∣ ⟩ / 2  with white noise 

 ∣ ⟩ ⟨ ∣ρ ψ ψ=
−

+
p p(0) 1

2
,

(13)

where  (identity matrix) means the white noise, and p ∈ [0, 1] is the component of ψ∣ ⟩ . The tightest ML bound 
of quantum speed limit time can be given analytically as 

( )
p q
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with p11w
2κ = −  and κ = − −q p q(2 )t

t t2 w
2 2 2 . One can find that the quantum speed limit time (14) is 

determined by the white noise and the interaction with the environment. In Fig. 1, we show the ratio between the 
quantum speed limit time and actual driven time τqsl/τ for the initial state (13) as functions of the coupling 
strength γ0 and the component of white noise, which is expressed as 1 − p. The actual driven time is τ = 1 and the 
non-Markovian parameter is chosen as λ = 15 (in unit of ω0). As the previous results in the ref. 30,36, the evolution 
of the system will be accelerated not only in the non-Markovian regime but also in the Markovian regime when 
the initial state is not the excited state. And, we can observe that the quantum speed limit time reaches the maxi-
mum when γ0 is in the vicinity of λ/2, and becomes shorter as the increasing of white noise. From the perspective 
that the quantum state will evolve to a full mixed state when the time is enough long, a reasonable explanation is 
that the quantum state with large purity will change more significantly when the initial state is pure and the evo-
lution time is finite, and the discrimination between the initial and final state can be measured using fidelity or 
Bures angle. So, the quantum speed limit time will be shorter when the component of the white noise is larger.

When the initial state is maximum coherence state ψ = +∣ ⟩ ∣ ⟩ ∣ ⟩( 1 0 )/ 2 , i.e., without white noise, the quan-
tum speed limit time (14) can be simplified as 



q

dt q q

1

1 4
,

(15)t t

qsl 1
0

2∫
τ =

−

+

τ

τ

τ

which agrees with the result reported in the ref. 30 based on the Bures angle ρ σ( , ) .

The dephasing model. It can be described as spin-boson form interaction between qubit system and a 
bosonic reservoir, the total Hamiltonian is H b b g b g b( * )z k k k k k z k k k k

1
2 0

† †ω σ ω σ= + ∑ + ∑ + . The dynamics of 
reduced quantum system ρt is 
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For the initial state in Bloch representation (11), the reduced state in time τ has the following form 
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According to the basic operating rules of quantum optics and quantum open systems, and taking the continuum 
limit of reservoir mode and assuming the spectrum of reservoir J(ω), the dephasing factor Γτ can be given explic-
itly as18

∫ ω ω ω ωτ
ω

Γ =










−
τ

∞
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k T
d ( )coth

2
1 cos ,

(18)B0 2

where kB is the Boltzmann’s constant and T is temperature.
For the zero temperature condition, choosing Ohmic-like spectrum with soft cutoff J(ω) = ηωs/ exp( / )c

s
c

1ω ω ω−− , 
and assuming the cutoff frequency ωc is unit, the dephasing factor Γτ can be solved analytically as46
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where Γ(⋅) is the Euler gamma function and η is dimensionless constant. The property of environment is deter-
mined by parameter s, and the reservoir can be divided into the sub-Ohmic reservoir (s < 1), Ohmic reservoir 
(s = 1) and super-Ohmic reservoir (s > 1). The dephasing rate γt, i.e., the derivative of dephasing factor Γt, has 
analytical form t s s t(1 ) ( ) sin[ arctan ]t

s2 /2
γ η= + Γ

−
.

The ML bound of quantum speed limit time based on the operator norm can be given as 
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where the parameters  ⟨ ⟩χ σ= − −1 z1
2 2  and ⟨ ⟩χ σ= − −− Γe1t

z1
2 2 2t . In the Eq. (20), we use the fact 

that the coherence of initial state (11) satisfied  = +r rx y
2 2 2 and the Bloch vector rz means the population of ini-

tial excited state ⟨ ⟩σz .
In Fig. 2(a), we demonstrate the ratio between the quantum speed limit time (20) and the actual driven time 

τqsl/τ as functions of the Ohmic parameter s and coherence of initial state . The actual driven time is constant 
τ = 3 and ⟨ ⟩σz  is chosen as zero. One can observe that the bound of quantum speed limit time will be tighter when 
the coherence of initial state   become greater. Compared with the quantum coherence, the effect of 
non-Markoviantity (corresponded to γt and related to s) on the quantum speed limit time is weaker. In the 
non-Markovian regime, the quantum speed limit time will decrease slightly. The physical analysis of similar 

Figure 1. The ratio between the quantum speed limit time and actual driven time τqsl/τ of qubit state (11) for 
damped Jaynes-Cumming model. The spectral width parameter is chosen as λ = 15 (in unit of ω0), and the 
actual driving time is τ = 1.
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phenomenon for pure initial state based on the Bures angle is given in the previous ref. 30. In Fig. 2(b), we show 
the ratio between the quantum speed limit time (20) and the actual driven time τqsl/τ as functions of the Ohmic 
parameter s and the population of initial excited state z⟨ ⟩σ . The actual driven time is chosen as constant τ = 3 and 
the coherence of initial state is  0 6= . . It is easy to find that the quantum speed limit time is influenced strongly 
by the population z⟨ ⟩σ  and increases rapidly as the population σ⟨ ⟩z  become larger. When we choose the τ = 3, one 
should notice that we can observe more obvious quantum speed-up phenomenon than the condition τ = 1.

One can observe that the quantum speed limit time (20) is not only related to the coherence of initial state and 
the non-Markovianity of dynamics, but also dependent on the population of initial excited state. It is different 
from the results using the function of relative purity35,36, where the quantum speed limit time is independent of 
⟨ ⟩zσ . For a mixed initial state, the dephasing processing means that losing of information without losing of energy, 
so the energy of the system (related to zσ⟨ ⟩) influences the system evolution is reasonable and physical consistent. 
So, the quantum speed limit time (20) recovers more information about the dephasing processing.

Discussion
The quantum speed limit play important roles in both the closed and open systems, and the experiment 
implementation had been reported based on cavity QED platform47. Utilizing the upper bound of Uhlmann 
fidelity, we investigated the unified bound of quantum speed limit time in open systems based on the modi-
fied Bures angle, and this bound is tight for pure state and qubit state. We applied this bound to the damped 
Jaynes-Cummings model and dephasing model, and obtained the analytical results for both models. For the 
damped Jaynes-Cummings model, the maximum coherent qubit state with white noise is chosen as the initial 
state, and its quantum speed limit time can be decreased not only in the non-Markovian regime but also in the 
Markovian regime, and can be influenced significantly by even small noises. While, for the dephasing model, 
the quantum speed limit time is not only related to the coherence of initial state and non-Markovianity, but also 
dependent on the population of initial excited state. It should be noted the bound of quantum speed limit time (4) 
maybe fail to measure the evolution of high dimensional mixed system, and the general quantum speed limit of 
mixed quantum system deserves further investigation.

Figure 2. The ratio between quantum speed limit time and actual driven time τqsl/τ for the dephasing model. 
(a) The ratio τqsl/τ is the functions of the Ohmic parameter s and the coherence of initial state . The σz⟨ ⟩  is 
chosen as zero. (b) The ratio τqsl/τ varies as with the Ohmic parameter s and ⟨ ⟩σz . The coherence of initial state is 

0 6 = . . In both the panels (a,b), the actual driven time are chosen as constant τ = 3.

https://doi.org/10.1038/s41598-020-62409-w


6Scientific RepoRtS |         (2020) 10:5500  | https://doi.org/10.1038/s41598-020-62409-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Method
In this section, we will derive the quantum speed limit of open quantum systems. Consider the time derivative of 
modified Bures angle Θ, 

d
dt
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When the dynamics of quantum systems is non-unitary, the evolution of quantum state is expressed by ρ ρ=


L ( )t t t . 
Substituting the definition of Θ(ρ0, ρt) into Eq. (21), the derivative of modified Bures angle Θ can be rewritten as 
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For any n × n complex matrices A1 and A2, there is von Neumann inequality 
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with the descending singular values σ1,1 ≥ ⋯ ≥ σ1,n and σ2,1 ≥ ⋯ ≥ σ2,n. For the first item of right side in Eq. (23), 
one can have 

∣ ∣ ∑ρ ρ λ≤L ptr [ ( )] ,
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where pi are the singular values of state ρ0, and λi are the singular values of operator Lt(ρt). For the second item in 
Eq. (23), we can obtain that 

∑ρ ρ λ≤∣ ∣Ltr [ ( )] ,
(26)

t t t
i

i i

where ϵi are the singular values of state ρt.
Since pi ≤ 1 and ϵi ≤ 1, one can obtain that ∑ipiλi ≤ λ1 ≤ ∑iλi and ∑iϵiλi ≤ λ1 ≤ ∑iλi. For operator Lt(ρt), 

the largest singular value λ1 can be expressed as operator norm ∥Lt(ρt)∥op and the sum of λi can be expressed as 
trace norm ∥Lt(ρt)∥tr.

Similar to the ref. 22, the Margolus-Levitin bound of quantum speed limit time of open system can be given by 
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Applying the Cauchy-Schwarz inequality for operators, i.e., ≤A A A A A Atr [ ] tr [ ] tr [ ]1 2
2

1 1 2 2
† † † , the Eq. (23) 

can be rewritten as 
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The fact that the purity of density matrix satisfies tr[ρ2] ≤ 1 for both states ρ0 and ρt is used in the last inequality. 
And, † ρ ρL Ltr [ ( ) ( )]t t t t  is the Hilbert-Schmidt norm of operator Lt(ρt), which is defined as L ( )t t i ihs

2ρ λ= ∑ . 
So, the Eq. (23) can be simplified as 
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So, the Mandelstam-Tamm bound quantum speed limit time of non-unitary dynamics Lt(ρt) is 
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Combining the Eqs. (27) and (31), the unified expression of quantum speed limit time based on the modified 
Bures angle for initial mixed state is given by 
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