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High-level fusion coupled with 
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near infrared spectra (niR) technology is a widespread detection method with high signal to noise 
ratio (SnR) while has poor modeling interpretation due to the overlapped features. Alternatively, mid-
infrared spectra (MiR) technology demonstrates more chemical features and gives a better explanation 
of the model. Yet, it has the defects of low SnR. With the purpose of developing a model with plenty 
of characteristics as well as with higher SnR, niR and MiR technologies are combined to perform high-
level fusion strategy for quantitative analysis. A novel chemometrical method named as Mahalanobis 
distance weighted (MDW) is proposed to integrate niR and MiR techniques comprehensively. 
Mahalanobis distance (MD) based on the principle of spectral similarity is obtained to calculate the 
weight of each sample. Specifically, the weight is assigned to the inverse ratio of the corresponding 
MD. Besides, the proposed MDW method is applied to niR and MiR spectra of active ingredients in 
deltamethrin and emamectin benzoate formulations for quantitative analysis. As a consequence, the 
overall results show that the MDW method is promising with noticeable improvement of predictive 
performance than individual methods when executing high-level fusion for quantitative analysis.

Gas chromatography1, high-performance liquid chromatography2, thin-layer chromatography3, gas 
chromatography-mass spectrometry, liquid chromatography-mass spectrometry4,5 are frequently-used tech-
niques to detect the concentration of active ingredients in pesticides. While they may come across some incon-
veniences such as time-consuming, expensive lab-cost and complex pre-treatment. Admittedly, vibrational 
spectroscopic techniques respond fast and require no pre-treatment which are especially suitable for real-time 
measurement and rapid analysis6,7. NIR and MIR techniques have been widely used to determine the active ingre-
dients and illegal added component in pesticide formulations8–12. The two commonly used techniques of NIR 
and MIR are generated by the transition of vibrational energy levels. The transition occurs only when it absorbs 
a certain wavelength. To be concrete, as for MIR, it mainly absorb the fundamental vibrations of C-H, N-H and 
O-H, whereas, NIR contains a wealthy information of the combinations and overtones of the fundamental vibra-
tions of C-H, N-H and O-H.

Data fusion is a tool to combine the data originated from different sources comprehensively. To a certain 
degree, a single technique can only perceive limited partial information, therefore multiple techniques are 
expected to provide sufficient information from different viewpoints. Data fusion techniques13–15 have been 
extensively employed with the purpose of getting a more well-rounded result. Generally, data fusion strategies 
can be basically classified into three levels, i.e., low-level, mid-level and high-level data fusion16. When executing 
high-level fusion, individual models for each data source are developed first, and afterwards the final results are 
obtained by combining each individual model. The advantage of high-level fusion is that each matrix is treated 
independently and the result from inefficient technique is assigned to lower weight which will not affect the over-
all performance17,18. Accordingly, the technique with high predict performance is assigned to a large weight for 
fusion. In consequence, high-level fusion is mainly focusing on the particularities of each individual technique 
with the challenge of obtaining a better performed model. Multiple approaches have been applied to high-level 
data fusion such as majority vote19, Bayesian networks (BNs)20, and Dempstere-Shafer’s21 method. However, these 
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methods are mainly focused on classification issues22–27 and have been less explored to quantitative analysis. In 
this study, we propose the Mahalanobis distance weighted (MDW) method to employ high-level fusion to quan-
titative analysis.

Mahalanobis distance (MD) was first proposed by P. C. Mahalanobis in 193828. Employing MD on mathemat-
ical algorithm for chemical identity classification was described by Mark and Tunnell29,30. Based on the principle 
of spectral similarity, MD manifests its distance from the initial calibration set. Theoretically speaking, MD is 
considered as a measure of standard deviation, and the samples are expected to lie within three times the MD of 
their respective group means29. Therefore, a sample with large MD value might decrease the robustness and pre-
dictability of the model. Similarly, incorporating a sample with small MD value for modeling might increase the 
predictive ability. To be specific, a sample with large MD value indicates that it is farther from the calibration set in 
multidimensional space, and it is identified as the dissimilar one with the initial calibration set, and correspond-
ingly it will give a relative poor prediction result when modeling. Comparably, a sample with a small MD value 
manifests that it is close to the calibration set in multidimensional space, and therefore it could be concluded that 
this sample is similar to the calibration set and will give a promising predictability.

The MDW method is proposed according to the MD value. It is worth noting that three times of the group 
means of MD is treated as a criterion. Moreover, if a sample (for a specific method) lies within the limits of 
criterion, the weight is given corresponding to the reciprocal of the MD value; otherwise, when the MD is over 
criterion value, the weight is assigned to zero. Since one sample owns a particular MD value from one technique, 
several MD values are acquired for one sample when executing fusion strategy. A sample is assigned to several 
weights by means of different methods. What is worth mentioning, the total weight is set as 1.

Integrating the individual results to get a final output by assigning each sensor a rational weight is the principle 
of high-level fusion. In views of the above, a weighted method upon MD is put forward to fuse each technique by 
taking all the individual results into account. In this study, the MDW method is applied to individual NIR and 
MIR spectroscopic analysis for active ingredient determination in deltamethrin and emamectin benzoate formu-
lations. The performance of the three methods (individual NIR, individual MIR, MDW fusion) from deltame-
thrin and emamectin benzoate formulations are evaluated by the predict ability of the models.

theory and algorithms
High-level fusion. In high-level fusion, the NIR and MIR matrices are performed to develop two individual 
models according to five-fold cross-validation of partial least square (PLS), respectively. In addition, the fusion 
results are calculated by combing the outputs of the two individual results. The main advantage of high-level 
fusion is to obtain a comprehensive utilization of all individual methods rather than take advantage of only one 
method. As a result, more accurate and credible results are gained with reasonable weights assigned to different 
samples on the basis of different methods.

In the high-level fusion, separate models are calculated by the corresponding data source, and the results are 
combined to acquire the final declaration16. In the fusion approach, the final result is obtained by associating the 
results of each method via their weights. The outputs of each sample can be represented by Eq. 1
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where yp is the fusion result, L is the number of sensors, wi and yi are the weight and the predicted result for the ith 
sensor, respectively. The output yp is acquired by integrating all the individual results with their weights.

Mahalanobis distance (MD). The MD value is calculated on the basis of the distribution of the original 
samples29. The largest MD value sample is the most different one from the initial set. The MD of an observation 
x from a set of observations Xi (the calibration set corresponding to sensor i) is defined as Eq. 2 in squared units.

= − ′ −D x x X M x X( ) ( ) )( ) (2)i i i
2

where Xi and Mi are the mean and covariance matrix of Xi, respectively.
In order to reduce the dimensionality and eliminate the overlapping information in coexistence, the score 

matrix (S) is used to calculate MD to avoid collinear problems in M matrix. It is worth noting that, the corre-
sponding score matrix Si (related to the calibration set of Xi not for all the samples) is utilized to compute the MD 
values. Prior to obtain MD, the optimal dimension of PLS scores matrix is performed to acquire Si.

Mahalanobis distance weighted (MDW). The weights are assigned to each sample according to MDW 
method. For each individual method, the score matrices are employed to calculate the MD. It is noteworthy that 
a sample is assigned to several weights by means of different detection methods.

The flowchart of high-level fusion combined with MDW method is illustrated in Fig. 1. In the first place, fit the 
PLS models for each data set and obtain the score matrices. The next step, calculate the distance for the samples 
in calibration set. And finally, compute the weight and the threshold. As shown in the schematization framework, 
each sample is assembled by different weights via MDW method. It can be summarized in the following steps:

 (1) A data matrix contains n samples in rows and p variables in columns.
 (2) Carry out PLS, the data are mean-centered before establishing regression model.
 (3) Obtain the root mean square error of cross-validation (RMSECV) and get the score matrices (Si) of the 

calibration set with the optimal latent variables (LVs) of each method.
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 (4) The MD values are calculated and the weight matrix W (nv × L) contains nv samples (samples for valida-
tion) in rows and L (number of sensors) variables in columns.

 (5) Execute the individual results for high-level fusion by MDW method.
 (6) Get the final results generated by fusion method.

In the following sections, the characteristics and behaviors of the MDW method are discussed in detail.

Model evaluation. Results from two individual methods are optimized at the stage of calibration set and 
then evaluated by RMSEP. In calibration set, the optimal LVs is determined by five-fold cross-validation method. 
As a matter of fact, an optimal model is formed with low root mean square error of prediction (RMSEP) and low 
bias. For the two parameters of RMSEP and bias, a better model is obtained following the principle: small RMSEP 
with small bias> small RMSEP with large bias > large RMSEP with small bias > large RMSEP with large bias.

Software. The algorithms involved in this study are programmed by Matlab (Version 2016a, the MathWorks, 
Inc.). The coding scripts used in this study are available upon request.

Data description
Deltamethrin samples. Seventy-eight deltamethrin samples were prepared by technical deltamethrin 
(98.1%, obtained from Jiangsu Huangma Agrochemicals, China), dimethylbenzene (99.0%, Beijing Chemical 
Works, China) and commercial deltamethrin formulation emulsion (25 g/L, Bayer Crop Science, China). The 
exact concentration of deltamethrin in the commercial formulation was determined by high performance liquid 
chromatography (HPLC). The concentration of the samples were ranged from 0.1% to 4.98% (w/w). Details of the 
samples were shown in Table 1.

Figure 1. Scheme for explanation MDW approach for quantitative analysis.

Data sets

All samples Calibration set Validation set

Mean (%) SD (%) Mean (%) SD (%) Mean (%) SD (%)

Deltamethrin 2.5519 1.4418 2.5370 1.4446 2.6114 1.4761

Emamectin benzoate 1.4340 0.8188 1.4616 0.8244 1.352 0.8239

Table 1. The calibration and validation sets for deltamethrin and emamectin benzoate samples. Mean 
represents the mean value of the calibration or validation set, SD represents the standard deviation.
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emamectin benzoate samples. Sixty emamectin benzoate samples were prepared by technical 
deltamethrin (73.1%, obtained from Jiangsu Huangma Agrochemicals, China), dimethylbenzene (99.0%, 
Beijing Chemical Works, China) and commercial deltamethrin formulation (1%, Beijing Yagoon Biological 
Pharmaceuticals, China). The exact concentration of emamectin benzoate in the commercial formulation was 
determined by HPLC. The concentration of the samples were ranged from 0.06% to 3.01% (w/w). Details of the 
samples were shown in Table 1.

near infrared (niR) spectroscopy. The NIR spectra were acquired by the FT-NIR spectrometer (Spectrum 
One NTS, Perkin Elmer, USA) from 4000 cm−1 to 12500 cm−1 at a resolution of 4 cm−1, and the spectra were the 
mean value of 64 accumulations.

Mid-infrared (MiR) spectroscopy. The MIR spectra were collected by the FT-IR spectrometer (Cary 630, 
Agilent, USA) with ATR accessory. The spectral range was between 650 cm−1 and 4000 cm−1 at a resolution of 
4 cm−1 with 64 accumulations co-added.

Result and discussion
Influence of mahalanobis distance (MD) for high-level fusion. The physical meaning of MD is the 
normalized Euclidean distance (ED) in principal components space, and MD denotes the distance between a 
sample and the calibration set in multidimensional space. Three times of the training distribution centroid was 
treated as the threshold. As acknowledged, a sample with small MD value was thought as being consistent with 
the training distribution, and would give an acceptable result in return. Similarly, it was firmly convinced that a 
sample with large MD value would result in a worse predictive result theoretically. To investigate the weight of 
each sample, the following two cases were taken into consideration: within or out of criterion. On the one hand, 
if the MD value was out of the threshold, the weight was assigned to 0%, since an abnormal sample would reduce 
the overall predictability dramatically. On the other hand, if the corresponding MD value was in the limits scope, 
the weight was given from 100% to 0% according to the reciprocal of MD. Specifically, to some extent, the MD 
value was negatively correlated with its weight, that is, it was related to the reciprocal of the weight when the MD 
value was confined in the criteria range.

Spectra of deltamethrin and emamectin benzoate formulations. The NIR and MIR spectra of 
deltamethrin and emamectin benzoate formulations were presented in Fig. 2. According to the NIR spectra 
of deltamethrin formulation (Fig. 2a), the spectral features of deltamethrin 4300 cm−1 and 4600 cm−1 were the 

Figure 2. NIR and MIR spectra of deltamethrin and emamectin benzoate formulations. (a) NIR spectra of 
deltamethrin; (b) MIR spectra of deltamethrin; (c) NIR spectra of emamectin benzoate; (d) MIR spectra of 
emamectin benzoate.
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combination of the stretching and bending vibrations of C-H and N-H, respectively. Moreover, 5900 cm−1 was 
ascribed to the first overtone of the stretching vibrations of C-H. In the MIR spectra of deltamethrin (Fig. 2b), the 
characteristic peaks of 700 cm−1 was associated with the bending vibration of C-H in the three-membered ring. 
The peaks at 750 cm−1 was corresponding to the deformation vibrations of C-H in benzene ring. As is acknowl-
edged, the peak at 1123 cm−1 was ascribed to the stretching vibration of C-O. What is more, the characteristic 
peak of 1500 cm−1 was associated with the stretching vibration of C-H in the three-membered ring. In addition, 
the peak located at 1610 cm−1 in the region of 1600–1650 cm−1 was assigned to the stretching vibration of C=C. 
As far as is known, the peaks at 1720 cm−1 and 1740 cm−1 were ascribed to the bending vibration of C=O. The 
peaks at 3000 cm−1 was corresponding to the stretching vibrations of C-H in benzene ring.

On Fig. 2c (the NIR spectra of emamectin benzoate), the spectra located around 4400 cm−1 and 5200 cm−1 
were the combination of the stretching and bending vibrations of C-H and O-H, respectively. And 6800 cm−1 was 
ascribed to the first overtone of the stretching vibration of N-H. In the MIR spectra of emamectin benzoate (Fig. 2d), 
the peak around 1020 cm−1 was ascribed to the stretching vibration of C-O. Moreover, the peak at 1640 cm−1  
was ascribed to the bending vibration of C=C. Besides, the wide peak near 3300 cm−1 was associated with the 
stretching vibration of O-H.

Deltamethrin formulation data. Monte-Carlo (MC) outlier approach was carried out upon running 1000 
times for outlier detection. It turned out that no sample was kicked out after MC outlier detection approach. 
Afterwards, the samples were separated into calibration set (63 samples) and validation set (15 samples) accord-
ing to the concentration from high to low. In this study, the spectra were corrected by autoscaling pre-treatment 
method to make sure each column had a mean of 0 and a variance of 1. Autoscaling was a mathematical transfor-
mation method to calculate the ratio of the mean centering spectra and the standard deviation spectra. As one of 
the data standard processing in factor analysis, it gave all variables a chance to be treated fairly regardless of the 
absolute concentration. As a result, all the wavelength variables were assigned to the same weight after autoscaling 
preprocessing.

Five-fold cross validation technique was used to explore the predictive performance of each approach. It is 
generally known that the number of LVs was a critical parameter in calibration stage. As a result, ten and seven 
LVs were respectively chosen for NIR and MIR data set when executing PLS algorithm. After carrying out PLS 
algorithm, the plot of estimated and specified values in validation set were shown in Fig. 3a,b. The predicted 
results for each technique were summarized in Table 2. Since RMSEP and the bias were acknowledged as the 
model evaluation indicator, a better predictive ability was accompanied with small RMSEP and small bias. On 
the whole, the NIR method performed superior results than MIR method with smaller RMSEP and smaller bias.

The deltamethrin data matrix was implemented to investigate the effectiveness of MDW method for high-level 
fusion in the following steps. In the first place, the NIR and MIR approaches were performed PLS algorithm. Then 
the score matrix from each method was employed to calculate the MD and the threshold. Finally, the weight was 
obtained via the principals confined in Section 4.1. Based on the above procedure, MDW method was carried 

Figure 3. The plot of predicted and actual value in test set of deltamethrin samples. (a) individual NIR; (b) 
individual MIR; (c) MDW for fusion.
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out to employ high-level fusion for quantitative analysis. The thresholds for the two methods were displayed in 
Table 3, which was the standard for assigning weight. As displayed in Table 3, there were no sample beyond their 
own threshold. Since all the samples were in the scope of threshold, the weights were assigned to the inverse rela-
tionship of the corresponding MD values.

Figure 4a evidently displayed the MD values of 15 deltamethrin samples according to NIR and MIR methods. 
The left y axis indicated the estimated value of validation set, and the right y axis represented the color bar of MD. 
As demonstrated in Fig. 4a and Table 3, the MD values were represented by different colors, the color bar was 
varied from dark blue to yellow indicating MD values ranged from 1.25 to 3.76 (the minimum and maximum MD 
values from NIR and MIR methods). Given an example, if a sample was symbolized in yellow, which indicated it 
owned a large MD value and meanwhile manifested that it had a farther distance from the calibration set. Thus, 
the corresponding method took up a smaller proportion.

Figure 4b showed the weights of deltamethrin samples, it represented the proportions occupied by NIR and 
MIR methods. The sum proportion of the weight equaled to 1 for one sample according to different methods, 
which was normalized by MD values. As shown in Fig. 4b, the sampling weights for different methods were filled 
with different colors, concretely speaking, the blue and yellow portions revealed the weights of NIR and MIR, 
respectively.

The fusion plot of estimated and specified values in validation set was displayed in Fig. 3c with the weights 
shown in Fig. 4b. As seen in Fig. 4b, one sample was alloted to two weights according to the performance of NIR 
and MIR methods. In some cases, one method might give a promising predictive performance, while the other 
method might not predicted well. In the circumstances, the predictability would be improved by means of the 
fusion strategy.

It was concluded from Table 2 that the MDW method provided an outperformed results with RMSEP of 
0.1016%, bias of 0.0195% compared with the individual methods of NIR (RMSEP of 0.1164%, bias of −0.0120%) 
and MIR (RMSEP of 0.1294%, bias of 0.0403%). The MDW method yielded more satisfactory results than the 
individual technologies, which mainly declared that the MDW method was capable to generate a more accurate 
result than individual technologies for deltamethrin pesticide. Therefore, it was essential for deltamethrin data 
set to carry out MDW fusion strategy to proceed quantitative analysis. As a case to case approach to evaluate the 
weight according to different methods, the MDW method was feasible to employ high-level fusion for quantita-
tive analysis.

Pesticides Methods RMSEP (%) Slop Bias (%)

Deltamethrin

NIR 0.1164 1.0123 −0.0120

MIR 0.1294 0.9772 0.0403

MDW fusion 0.1016 0.9925 0.0195

Emamectin benzoate

NIR 0.1047 0.9527 0.0601

MIR 0.0765 0.9886 0.0114

MDW fusion 0.0596 0.9786 0.0205

Table 2. Results of MDW and individual methods on deltamethrin and emamectin benzoate data sets.

Sample NO.

Deltamethrin Emamectin benzoate

NIR MIR NIR MIR

1 2.731 2.454 5.463 4.092

2 2.157 1.904 3.267 2.244

3 2.213 2.112 7.631 1.206

4 3.441 3.017 3.468 1.633

5 2.886 3.489 8.283 1.692

6 2.183 2.661 2.229 2.155

7 3.758 2.961 3.055 1.953

8 1.523 2.310 1.899 1.892

9 2.92 1.700 4.962 1.723

10 3.7 3.808 1.914 1.829

11 2.624 2.925 3.183 0.883

12 1.9 1.254 2.947 1.531

13 2.135 1.843 3.459 1.785

14 2.477 1.797 3.086 1.411

15 2.423 1.870 2.613 1.922

Threshold 8.239 7.517 9.154 5.705

Table 3. The MD of the validation set of deltamethrin and emamectin benzoate data sets from NIR and MIR 
methods. Threshold represents three times of the group mean value.
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Figure 4. (a) MD values of fifteen deltamethrin samples of NIR and MIR methods; (b) the weights of deltamethrin 
samples from NIR and MIR methods for fusion; (c) MD values of fifteen emamectin benzoate samples of NIR and 
MIR methods; (d) the weights of emamectin benzoate samples from NIR and MIR methods for fusion.

Figure 5. The plot of predicted and actual value in test set of emamectin benzoate samples. (a) Individual NIR; 
(b) individual MIR; (c) MDW for fusion.
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emamectin benzoate formulation data set. MC outlier approach was carried out on the emamectin 
benzoate data set, and no sample was identified as the outlier. Subsequently, sixty samples were divided into cali-
bration set (45 samples) and validation set (15 samples) according to the concentration. The emamectin benzoate 
data set was pre-processed by autoscaling before developing the model. After carrying out five-fold PLS algorithm, 
ten and four LVs were respectively chosen for individual NIR and MIR spectra method. The plot of estimated and 
specified values in validation set were shown in Fig. 5a,b. The predicted results for individual techniques were 
summarized in Table 2. As outlined in Table 2, the predictive performance of MIR (RMSEP = 0.0765%, bias = 
0.0114%) gave a favorable result than that of NIR (RMSEP = 0.1047%, bias = 0.0601%).

Based on the fusion procedure, MDW method was carried out to apply high-level fusion for quantitative 
analysis for emamectin benzoate data set. The criteria for each method were displayed in Table 3. It was obviously 
obtained from Table 3 that all the samples were within the range of threshold, so the weights were assigned to the 
inverse ratio of the corresponding MD values. Figure 4c was the MD values of 15 samples according to different 
methods. As could be seen in Fig. 4c and Table 3, the MD values (0.883 to 8.283) were represented by different 
colors with the color bar varied from dark blue to yellow. Take a dark blue sample for instance, this sample was 
assigned with a comparative small MD, which in return manifesting the associated method played an important 
role for fusion. Figure 4d was the sampling weights, wherein the blue and yellow portions were the weights of NIR 
and MIR, respectively. Evidently, one sample was allocated to two weights according to MD values.

The plot of estimated and specified values in validation set were shown in Fig. 5c. The results of MDW method 
(RMSEP of 0.0596%, bias of 0.0205%) gained an advantage over the individual methods of NIR (RMSEP of 
0.1047%, bias of 0.0601%) and MIR (RMSEP of 0.0765%, bias of 0.0114%). In summary, MDW method indeed 
improved the predictive ability of emamectin benzoate data set, which revealed that the MDW method was effec-
tively to employ the individual method for fusion.

conclusion
In this study, the proposed MDW method was successfully applied to NIR and MIR spectroscopic analysis for 
rapid determination of pesticide active ingredient in deltamethrin and emamectin benzoate formulations. As a 
matter of fact, the MDW method performed superior results than individual NIR and MIR method mainly attrib-
uted to the fusion method took advantage of the merits of each method comprehensively. Overall, the method is 
promising with increased predictive ability compared with individual methods. Admittedly, the results generated 
by the MDW method were better than the two individual methods, indicating that the MDW method could 
improve the predictive ability of the model and could be successfully used for fusion.
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