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Shear induced interactions cause 
polymer compression
Dave e. Dunstan* & Dalton J. e. Harvie

Shear induced particle pressure occurs in concentrated suspensions of particles. importantly, the 
significance of the shear induced particle pressure has not been recognized in polymer rheology. The 
shear induced particle pressure results in an inward pressure on the polymer chains resulting in a shear 
dependent compressive force. The analytical form of the force balance equations that incorporate the 
effect of shear induced particle pressure predict a reduced polymer blob size and reducing viscosity with 
increasing shear rate as has been observed experimentally. Power law behavior is found for the viscosity 
in accord with the general observations for concentrated polymer rheology.

Polymer dynamics is of wide practical importance and fundamental interest1. The models developed to describe 
polymer chains and their dynamics in flow derive from statistical mechanics and have the capacity to describe 
polymeric material mechanical properties2–6. An elegant connection between molecular properties and the mac-
roscopic behavior has resulted1.

A generally accepted assumption of the field is that the polymer chains extend in flow due to the hydrody-
namic forces on the chains4. Kuhn was the first to propose the dumbbell model that is used in most of the current 
modelling of polymers in flow in order to directly relate the macroscopic properties of the polymers in flow to the 
single chain physics7. The dumbbell model, in which the polymers are modelled as two beads on an elastic (gen-
erally Hookean) FENE spring, is still used in modified forms as it is thought to encapsulate the key physics of the 
macromolecules in flow8. Physically, a dumbbell experiences two Stokes drags during shear that cause extension 
and compression as the dumbbells precess in Jeffrey orbits9, however the constitutive dumbbell models do not 
incorporate these orbits, instead they predict polymer extension8. Kuhn also developed a statistical mechanical 
model to predict the Hookean force law for the ideal chains that acts as a restoring force to counter the hydro-
dynamic forces10. Kuhn initially assumed that the dumbbell could either extend or compress in flow as it rotates 
around the vorticity axis.

Kuhn and Grun (1942) published the first paper to assume that the chains only extend in simple flow11. 
Essentially, they assumed that only extension occurs and ignored Kuhn’s original insight that the chains would 
undergo both compression and extension in simple flow. By assuming that only extension occurs, the relationship 
between the reduced shear rate and the end-to-end vector of the chains was calculated. The reduced extension 
versus shear rate shows a limiting extension at high shear rates11.

Cottrell, Merrill and Smith reported the first measurement of light scattering from polymer solutions in shear 
in 196912. More recently Link and Springer13 and then Lee, Solomon and Muller14 measured light scattering on 
polymer solutions in Couette flow15. Generally, the interpreted deformation is significantly less than the Rouse 
and Zimm models predict16,17. The observed behaviour may also be interpreted as being due to the orienta-
tion of the random ensemble of prolate chains in the flow field without the need to invoke any extension of the 
chains14,18,19. The overall shear induced orientation of the prolate chains, in Jeffrey orbits, increases the scattering 
cross section in the direction perpendicular to the vorticity axis and along the flow direction. This results in an 
apparent extension parallel to the flow and compression perpendicular to the flow direction. In the quiescent state 
the solution appears isotropic due to the random orientation of the prolate chains, then becomes anisotropic in 
flow via the orientation of the chains. Rheo-optic measurements on dilute solutions of polydiacetylenes in Couette 
flow show increased projection of the chains in the flow direction, with no deformation of the backbone14.

Fluorescently labelled DNA in flow has also been experimentally examined by a number of researchers. The 
first papers in the field were by Smith, Babcock and Chu19 and in the same year Le Duc, Haber, Bao and Wirtz 
who used confocal fluorescence microscopy to directly image labelled DNA in Couette flow20. In both works the 
DNA was visualised using fluorescence microscopy with sliding plates to generate Couette flow and maintain 
the DNA molecules in the field of view. The DNA is claimed to be representative of random chain polymers in 
solution. The images show a macroscopic “blob” of several segment lengths that does not appear completely rep-
resentative of a random chain polymer. Simply, the DNA images are not of a random chain whose conformation 
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is determined by entropy19,20. Furthermore, the resolution of the microscopy method determines that compres-
sion is difficult to observe19. Larson has written a comprehensive review of the rheology of dilute solutions of 
flexible polymers focusing on the progress and problems21. A considerable component of the review is focused 
on simulations and modelling the data obtained from DNA. A key conclusion is that the measured deformation 
is less than expected. It should be noted that DNA does not show the same rheological behaviour as that observed 
for typical random coil polymers. Typical random coil polymers have conformation that is determined by their 
entropy and show decreasing viscosity with increasing shear rate and increasing temperature22,23. Calf thymus 
DNA shows decreasing viscosity with shear rate and increasing viscosity with temperature23. A recent study by 
Bravo-Anaya et al. interprets the observed rheological behaviour as resulting from interacting aggregates of the 
DNA molecules in flow22. The interaction between the DNA molecules is suggested to be driven by H-bonding. In 
summary, the evidence for polymer chain extension in simple flow at high concentrations above critical overlap 
is less than compelling.

Since Kuhn’s original paper, the possibility of compression in Couette flow has not been considered and only 
extension has been assumed in the field4,6,8,24–26. However, recent experimental evidence has shown chain com-
pression in Couette flow at semi-dilute concentrations27–29.

Rheo-optical measurements on synthetic polymers have shown chain orientation in dilute solution and com-
pression at concentrations above critical overlap in the semi-dilute region14,28,30. These experimental results have 
prompted a revision of the idea of extension being a universal assumption for polymers in simple planar flow. An 
alternative approach that assumes compression, allows the measured radius-shear rate behaviour to be predicted, 
and the power law behaviour observed for polymers in flow to be modelled29. Furthermore, using a force balance 
argument that predicts the shear thinning rheological behaviour, also enables the viscosity-radius relationship to 
be predicted. The predicted power law behaviour of the viscosity-radius is in close agreement with the experi-
mentally observed behaviour29,31. Interestingly, this shows that the viscosity decreases as the radius decreases in a 
manner that is physically consistent with the observed behaviour for concentrated random chain polymers29. The 
generally observed decrease in viscosity with increasing temperature for polymer solutions and melts has been 
attributed to coil compression. The decreasing viscosity with increasing shear rate has been assumed to result 
from coil extension. This apparent physical inconsistency is resolved if the coils are assumed to compress with 
increasing shear rate31.

It is also worth noting that Frith et al.32,33 showed that for sterically stabilized particles with a “soft” stabilizing 
layer that the stabilizing chains are observed to compress with increasing concentration and shear rate. This is 
strong evidence that the compressive shear induced particle pressure results in a shear dependent compressive 
force on the chains.

Models of shear induced particle pressure have been developed by a number of researchers. Notably, Nott and 
Brady and a number of key papers by Morris and co-workers have added new insight into the rheology of concen-
trated suspensions34–39. The 2009 review by Morris gives an elegant overview of the development of the field39. The 
first experimental determination of the shear induced particle pressure was by Bagnold in 1954 who suggested 
the idea of a particle pressure under shear in order to explain his observations40. The experimental understanding 
was further developed by Deboeuf et al. in an elegant work where the suspension was placed in a Couette cell and 
the change in pressure directly measured as a function of the shear rate and volume fraction36. The shear induced 
particle pressure was found to be a linear function of the shear rate and the square of the volume fraction of the 
suspension.

Particles in solution experience at least two additional compressive normal stresses, or pressures, in addition 
to the hydrodynamic pressure existing in the solute. The random Brownian motion of the particles causes colli-
sions (or interactions) between particles (in addition to solute interactions which are captured by the hydrody-
namic pressure), and on average these interactions create a compressive normal stress on the particle: the osmotic 
pressure. Particle pressure is the second additional pressure, and is similar to osmotic pressure but instead is a 
result of the shear induced motion of the particles. The particle pressure increases as the collisional frequency 
increases when the suspension is exposed to a shear stress34,35,41. The increased collisional frequency results in an 
increased inward pressure on the particle: the particle pressure. The rheology of dense suspensions is reviewed by 
Guazzelli and Pouliquen42. Further modelling has been undertaken by Rampall et al. and later Wilson et al. for 
spheres with surface roughness43–45.

theory
Herein we develop a model that incorporates the shear induced particle pressure for polymer blobs in flow to 
predict how the polymer radius, and hence shear viscosity of the suspension, scales as a function of shear rate. 
The polymers are treated as spherical, porous, elastic particles at concentrations above critical overlap where the 
excluded volume terms may be neglected2–4. It is also assumed that the chains are not entangled. These assump-
tions are in accord with the Rouse model that ignores both entanglements and hydrodynamic interactions16,46,47.

The application of an anisotropic shear stress (Couette flow) causes collisions between the particles that results 
in a compressional stress being applied to the polymers at a local level. The normal stresses realized in the three 
directions are given as the diagonal components of the particle stress tensor40. In general these components are 
different in magnitude, however, they all have the same sign, meaning that they all act to compress the particles in 
suspension35. The particle pressure is defined as the average diagonal (isotropic) component of the particle stress 
tensor. In our analysis we assume that particle compression is a function of this average isotropic stress, or particle 
pressure36,39. Here the form of the particle interaction pressure developed by Brady and Morris35 and others38,48 for 
concentrated suspensions means that the particle interaction stress scales as:

σ η γ (1)H n~ �
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here the viscosity, nη , is representative of the normal stresses developed in the suspension (proportional to φ2 to 
leading order), and �γ is the shear rate.

The shear induced interaction stress on the polymers that compresses the blobs is balanced by the elastic 
restoring force in each chain. Given that the concentration is assumed to be above critical overlap, the excluded 
volume and osmotic stresses in the system will be uniform, isotropic and constant (independent of shear stress). 
The elastic stress resulting from the chain deformation may then be written;
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where Fel is the elastic free energy of the chain, kB Boltzmann’s constant, T the absolute temperature, R0 the unper-
turbed chain radius, R the radius of the chain in flow and V the volume of the chains.

Equating the elastic and interaction stresses at steady state yields:
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where the ns and nn are viscosity volume fraction exponents corresponding to shear and normal directions. 
Substitution of the form of Equations [4] in equation [3], and noting that φ ~ R3, yields:
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In the simplest case of a semi-dilute solution of polymers, to leading order n
2~η φ , the radius scales with shear 

as �γ−R 1/7~  and the volume fraction by ~ 3/7�φ γ− . Adopting a general power law for the shear viscosity of the 
solution, as per Equations [4], the shear viscosity then scales as �η γ−~s

ns3
7 .

Alternatively, the viscosities appearing in Equations [4] may be assumed to be that of a suspension of particles, 
with relationships taken from the suspension literation. For example, Morris et al.38 give:
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Boyer et al.49 has given the same expressions with different Kn and Ks values. There are other relationships in the 
literature, but they all have a similar form that captures the experimentally observed trends. The viscosity exponents 
are plotted in Fig. 1. Importantly as φ approaches the maximum packing limit, both viscosities scale in the same 
manner49. Physically this is reasonable given that both are determined by the collisional frequency between the 
blobs. The inset in Fig. 1 shows the behavior of the ni values over the full range of volume fractions and that the val-
ues converge in the limit. We can express the relationships of Equation [7] in the form of Equations [4] by calculating 
effective exponents that vary with volume fraction, using ni

dln

dln

( )

( )
i=

η

φ
 for i = n,s. These exponents, as well as the 

resulting radius and shear viscosity scalings (defined by �mγ η and γmR� ) are plotted in Fig. 2 for the Kn and Ks values 
employed by Miller et al.50.

The form of the power law behavior then becomes a function of the concentration as the values of ns and nn 
both vary as shown in this figure and summarized in Table 1 below49.

The current work proposes that polymer compression in flow is a result of the shear induced particle pressure 
that acts to decrease the chain size with increasing shear rate. Rheo-optical measurements on several random 
chain polymers at concentrations in the semi-dilute regime have shown compression in flow31,51,52. Furthermore, 
power law behavior was observed with the decrease in chain radius with increasing shear rate. The predicted 
power law exponent with shear rate of −0.11 obtained for PMMA52 at a volume fraction of 0.24 is presented 
in Fig. 2, and shows very good agreement with the theoretical prediction of −1/7. Given that this theory has 
no adjustable parameters and that the experimental data has been previously published, this is significant. 
Furthermore, this suggests that the model captures the key physics of the problem. There have been several stud-
ies on polymer solutions in shear that indicate the presence of concentration fluctuations due to the imposition of 
shear46,53. The chain compression predicted in the current study is consistent with the models and experimental 
evidence collected for polymers in flow using light scattering54. In the limit of high concentration, the blobs are 
highly compressed in the quiescent state and therefore show no further reduction in size with imposed shear.
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The model developed here also predicts a power law for the shear thinning (viscosity-shear rate) behavior 
that is within the range (typically −0.5 to −1.0) observed for typical polymer systems55,56. Using the expression 
determined by Morris and Boulay38 (for hard spheres) for the different concentration ranges (see Table 1) enables 
differing power law behaviours to be determined.

It should be noted that hard sphere systems have been shown to be effectively Newtonian for volume fractions 
of less than approximately 0.357. Thus, the values of the power law exponent found for the model indicate that the 
shear thinning in polymers is a result of chain compression at low volume fraction. The absence of shear thinning 

Figure 1. The volume fraction exponents plotted versus the volume fraction using Equation [7] based on 
values taken from Miller et al.50. Note that at high volume fraction the values of the normal and shear exponents 
converge as seen in the inset.

Figure 2. Plot of the shear rate exponents versus volume fraction for the viscosity and radius. Note that the 
viscosity exponent increases with volume fraction while the radius exponent decreases with volume fraction 
toward the limiting values of both at the limiting volume fraction. The experimental point is taken from ref. 51.
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for hard spheres at low volume fractions also indicates that there is no structural rearrangement occurring in 
the suspensions. A detailed comparison of the polymer systems and hard sphere suspensions would allow the 
contributions of spatial rearrangement and ordering to be compared with the effect of chain compression. The 
model predicts the correct limiting behavior of the shear viscosity as being independent of the shear rate in dilute 
solution through to an inverse relationship in concentrated solutions. The model correctly covers the range of 
power laws observed for polymer solutions. In a future work, the power law behavior observed for polymers will 
be reviewed and compared with the model. However, the variation in the exponents of the shear and normal vis-
cosities with volume fraction appears to predict the general behavior of polymers in flow.

conclusions
The shear induced particle pressure results in an overall compressive force on polymer chains in simple Couette 
flow. By assuming that the chains are permeable blobs and the shear induced pressure is isotropic, the chain 
size and solution viscosity power law behavour may be predicted. Using the shear induced pressure and elastic 
restoring force enables the radius-shear rate power law of −1/7 to a constant radius at high concentrations to be 
predicted while also yielding a power law exponent for the viscosity of −0.4 that is within the range of exponents 
measured for polymer systems.
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