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Application of Ground-Based LiDAR 
for Analysing oil palm canopy 
properties on the occurrence of 
Basal Stem Rot (BSR) Disease
nur A. Husin  1, Siti Khairunniza-Bejo1,2*, Ahmad f. Abdullah1,2, Muhamad S. M. Kassim1,2, 
Desa Ahmad1 & Aiman n. n. Azmi1

Ground-based LiDAR also known as terrestrial Laser Scanning (tLS) technology is an active remote 
sensing imaging method said to be one of the latest advances and innovations for plant phenotyping. 
Basal Stem Rot (BSR) is the most destructive disease of oil palm in Malaysia that is caused by white-
rot fungus Ganoderma boninense, the symptoms of which include flattening and hanging-down of the 
canopy, shorter leaves, wilting green fronds and smaller crown size. therefore, until now there is no 
critical investigation on the characterisation of canopy architecture related to this disease using tLS 
method was carried out. This study proposed a novel technique of BSR classification at the oil palm 
canopy analysis using the point clouds data taken from the TLS. A total of 40 samples of oil palm trees 
at the age of nine-years-old were selected and 10 trees for each health level were randomly taken from 
the same plot. The trees were categorised into four health levels - T0, T1, T2 and T3, which represents 
the healthy, mildly infected, moderately infected and severely infected, respectively. the tLS scanner 
was mounted at a height of 1 m and each palm was scanned at four scan positions around the tree to 
get a full 3D image. Five parameters were analysed: S200 (canopy strata at 200 cm from the top), S850 
(canopy strata at 850 cm from the top), crown pixel (number of pixels inside the crown), frond angle 
(degree of angle between fronds) and frond number. the results taken from statistical analysis revealed 
that frond number was the best single parameter to detect BSR disease as early as T1. In classification 
models, a linear model with a combination of parameters, ABD – A (frond number), B (frond angle) and 
D (S200), delivered the highest average accuracy for classification of healthy-unhealthy trees with an 
accuracy of 86.67 per cent. It also can classify the four severity levels of infection with an accuracy of 80 
per cent. This model performed better when compared to the severity classification using frond number. 
the novelty of this research is therefore on the development of new approach to detect and classify BSR 
using point clouds data of tLS.

LiDAR (Light detection and ranging) is an active remote sensing technology similar to Radar (Radio detection and 
ranging) but which uses laser light. LiDAR measures the distance or range to a target by illuminating the target with 
a pulsed laser light and measuring the reflected pulses with a sensor. It can directly represent external structures and 
carry out profiling for objects or trees. Laser Scanning (LS) profiling systems consist of a measuring instrument that 
can measure vertical angles, horizontal angles, and distances with a high standard of accuracy and speed by means 
of a mobile mirror or prism system allowing the mapping of morphological features of targets1.

Research and field site works used extensive biometric data in estimating tree properties while offering the pos-
sibility of reducing inventory costs. Previous studies have demonstrated that LiDAR could be used to derive canopy 
vegetation profiles and other structural trees’ properties from an understorey perspective. The point cloud resulted 
from LiDAR can yield information on a tree’s attributes such as height, canopy area, basal area, stem volume and 
fronds properties2–4. The systems can be deployed quickly in several locations and can gather information to meas-
ure unique attributes faster than those collected by field workers5. Balduzzi6 stated that research in remote sensing 
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suggested that the micro differences visible in the point clouds analysis could be used to detect physical and external 
changes of the tree including the possibility of disease. It can be concluded that TLS well adapted for intensive study 
of the tree geometries. Irrespective of the type of LiDAR platform - terrestrial, mobile or airborne - this enabled the 
quantification of the 3D structure of tree canopies in a cost-effective, rapid and accurate manner7,8.

The oil palm is a member of the monocotyledonous palm family (Arecaceae) (Fig. 1). It is a perennial tree crop, 
which better resembles a forest tree than other agricultural crops9 and, as an industrial crop, oil palms are planted 
in monoculture fashion. In most commercial plantations, the majority of planted oil palms are tissue culture clones, 
which makes the oil palms appear uniform except for abnormal palms10. The woody stem carries a single terminal 
growing point, from which leaves appear at regular intervals in a double spiral11. A multilayer canopy is made with 
old leaves that have progressively been covered by new leaves, subsequently forming the crown. Oil palm tree always 
develops one new leaf or frond at a time and on average one leaf is produced per month until the seedling is 6 months 
old. The leaf production increases to 30 to 40 leaves per year up to 6 years old and then declines to 18 to 25 leaves12.

BSR caused by Ganoderma boninense pathogens has caused serious damage in Malaysia for more than 50 years, 
whereas in the past few decades it is spreading rapidly. The disease progresses slowly but eventually all infected plants 
die. One of the main problems is the disease cannot be detected in its early stages, and when the disease symptoms 
do appear more than 50 per cent of internal tissues are already rotten13. Detecting BSR infection in its early stage 
allows palms to be treated, avoiding more extensive damage to the tree. Specific BSR disease symptoms include the 
canopy hanging downward (known as “skirting”), yellowing colour of the fronds, wilting green fronds and reducing 
frond production that causes the small size of the canopy, appearance of unopened young leaves (known as spears), 
fractured old fronds and fungal fruiting bodies on the oil palm trunk14–17. According to Balduzzi6 the damages 
caused by fungal diseases have a visual impact on the plants and the damaging factor changes a tree’s geometry.

Table 1 summarises available methods used for BSR detection. Generally, it can be grouped into three approaches: 
manual, non-remote (lab-based) and remote (non-invasive) techniques. The manual detection is considerably low in 
accuracy and labour intensive18. Conversely, non-remote or lab-based methods are costly, complex, labour intensive 
and are not designed for outdoor conditions19. Various remote sensing approaches have been introduced to detect 
BSR either from ground, aerial or satellite platforms. However, until now there is no critical investigation on the 
characteristics of canopy architecture related to this disease using TLS method was carried out.

Terrestrial Laser Scanner (TLS) uses laser energy to penetrate through canopy gaps and measure canopy 
structure20, while optical imagery cannot see the lower part of the tree’s canopy. The advantages of the TLS tech-
nique include easy and fast data acquisition (e.g. minutes), high accuracy, simple set up and high resolution21. TLS 

Figure 1. Generalized palm morphology.
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allows imaging from different perspectives and repeatable views, and offers only a one-time cost of equipment 
purchase. It is specially designed for outdoor application, is easily portable (relatively small size and low weight)22 
and suitable to be used in an oil palm plantation. TLS sensors are considered a cheaper and affordable method of 
remote sensing and are easy to use by both non-professional and professional users23.

It is hypothesised that healthy trees have larger crown sizes and well-developed canopies compared to infected 
trees24–26. BSR infection could cause changes to the physical appearance and growth of oil palm trees. The changes 
are due to the damage to the internal tissue of trees, which restrict the water and nutrient consumptions, conse-
quently disrupting tree growth and degenerates the physical condition of oil palm trees27. Infected trees also have 
less ability to perform normal photosynthesis compared to uninfected trees due to foliar symptoms and water 
deficiencies28. The disease at an advanced stage causes more dangled fronds and canopy hanging down than to a 
skirt structure29. Meanwhile, stunted leaf growth, delayed of new leaf development and reduced frond production 
leads to a smaller crown size30. The impact of the disease on the tree’s physical structure is more pronounced and 
detectable depending on the severity of the infection. Therefore, the differences in physical descriptions of oil 
palm trees such as level of canopy drooping, crown coverage area and frond features can be studied using TLS 
method. The study could be used to differentiate between healthy and infected trees, and to classify the trees in 
different stages of BSR infection towards an early detection approach.

The first study on the use of TLS for BSR detection was performed by Khairunniza-Bejo and Vong18. The 
results showed that there were correlations between the oil palm trunk’s perimeter, Diameter-Based Height 
(DBH) and canopy area with the BSR disease. This preliminary study supported the potential use of TLS for 
analysing the properties of oil palm trees to distinguish healthy and infected BSR at different levels of infection. 
Therefore, the objectives of this study are: 1) to analyse the canopy architectures based on the laser point density 
at different canopy levels, number of pixels inside the crown (crown pixel), degree of angles between tree fronds 
(frond angle) and number of fronds (frond number) of healthy and infected BSR, and 2) to develop classification 
models to detect severity levels of BSR using all physical properties extracted from TLS data. The novelty of this 
research is therefore on the development of a BSR detection model by using physical features extracted from TLS 
data which can classify BSR at 4 different levels of infection.

Methods Description Features References

Manual Visual inspection Canopy, trunk and root 50

Non-remote (Lab based)

Selective medium (GSM)
Polyclonal antibodies (PAbs)
Ethylenediaminetetraacetic acid (EDTA)
Enzyme-linked immunosorbent assay 
(ELISA)-PAbs
Polymerase chain reaction (PCR)

Trunk’s or root’s tissues

44

51,52

53

54

55

Remote (Non-invasive)

Electronic nose
Tomography
Microfocus x-ray
Electrical properties
Colour spectral
Satellite image
Thermal image
Radar
Hyperspectral
Terrestrial laser scanning (TLS)

Trunk’s odour
Trunk’s properties
Leaf
Leaf and trunk
Leaf spectral
Canopy
spectral Canopy
Canopy
Leaf spectral
Canopy spectral
Canopy and trunk

56,57

58–61

62

63,64

65

32

45

31

10,14,17,66–68

33,34

18

Table 1. Summary of methods used for BSR detection.

Levels Height (m)
Parameters 
Crown length (m)

Crown width 
(m)

T0 11.536 ± 1.084 10.097 ± 1.210 11.649 ± 2.055

T1 11.763 ± 0.869 10.684 ± 1.090 11.277 ± 1.426

T2 11.401 ± 0.880 10.660 ± 0.945 10.402 ± 1.598

T3 11.173 ± 1.235 10.243 ± 1.254 9.599 ± 0.850

Table 2. Mean and standard deviation of the data used to create the models.

Levels Height (m)
Parameters 
Crown length (m)

Crown width 
(m)

T0 11.893 ± 1.056 10.786 ± 1.290 11.899 ± 1.198

T1 11.456 ± 0.796 10.552 ± 1.119 11.326 ± 1.349

T2 11.320 ± 0.775 10.253 ± 1.045 9.899 ± 1.446

T3 11.023 ± 1.346 10.223 ± 1.136 9.463 ± 1.124

Table 3. Mean and standard deviation of the data used to validate the models.
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Results and Discussion
Basic information about the data. Table 2 shows the basic information for the scanned trees. In gen-
eral, all trees have almost similar height and crown length ranging from 11.173 to 11.763 m and from 10.097 
to 10.684 m, respectively. It is also shown that T0 has the lowest mean of crown length and the highest mean of 
crown width with 10.097 m (sd = 1.21 m) and 11.649 m (sd = 2.055 m), respectively, and T1 has the highest mean 
of height and lowest mean of crown width with 11.763 m (sd = 0.869 m) and 10.684 m (sd = 1.09 m), respectively. 
Furthermore, Table 3 shows the mean and variation of another 40 oil palm trees taken from Plot 4 that were 
used in validation of classification methods. Overall, all trees are of almost similar height and crown length, 
ranging from 11.893 m (sd = 1.056 m) to 11.023 m (sd = 1.346 m), and from 10.786 m (sd = 1.290 m) to 10.223 m 
(sd = 1.136 m), respectively.

canopy description. Canopy stratification analysis was performed to identify the canopy level, which gave 
a significant difference between healthy and infected trees. One of the most prominent and distinctive BSR symp-
toms on the canopy is the “skirting” effect. Thus, the difference of canopy density at specific levels could be used 
to study the drooping or flattening effects of the canopy caused by Ganoderma infection. 3D images of oil palm 
trees were constructed using the laser point data and the canopy was stratified horizontally. Data gathered from 
40 oil palm trees showed some variations of laser point density from the top of the canopy to the bottom. The 
top is defined by the highest visible point of a tree and the bottom is defined by the lowest visible point of a tree. 
Strata with very few leaves visible at the bottom part of the box provided very low voxel (volume element) values 
or extreme values, which biased the statistical analysis. In addition, any layers located below 9 m for its entirely 
was excluded because it likely represented ground level vegetation. Considering this factor, only strata from 0 cm 
to 850 cm from the top were analysed. Results taken from the Kruskal-Wallis test (Table 4) revealed that only 
strata at 200 cm from the top (known as S200) and strata at 850 cm from the top (known as S850) (Fig. 2) were 
significant for all levels of health (T0 to T3) at the 5 per cent significance level.

Statistical analysis. The one-way analysis of variance results using Kruskal-Wallis test found that all 
parameters varied significantly between each level with a p-value less than 0.05 (Table 4). Crown pixel, frond 
angle and frond number yielded a p-value, <0.0001, while S200 and S850 yielded a p-value of 0.017 and 0.047, 
respectively. The highest chi-square value was obtained by frond number (33.428) and the lowest was obtained 
by S850 (8.058).

Parameters Chi-square value p-value

S200 10.248 0.0166*

S850 8.058 0.0471*

Crown pixel 23.058 <0.0001*

Frond Angle 32.666 <0.0001*

Frond Number 33.428 <0.0001*

Table 4. Analysis of variance (Kruskal-Wallis) for every parameter. *significant at 5% level.

Figure 2. Coloured point clouds show the positions of S200 and S850.
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classification severity. The six types of classification models developed in this study were linear, 
two-factorial, quadratic, cubic, quartic and fifth models. Linear model used single parameters in the equation 
model. Two-factorial model used the interaction term of two parameters. Meanwhile, quadratic, cubic, quartic 
and fifth models pertains to the second, third, fourth and fifth order with an equation using polynomial function 
of degree 2, 3, 4 and 5, respectively. Twenty six combinations of parameters were developed for every linear, 
two-factorial and quadratic models, 20 models were developed for cubic and 10 combinations were developed 
for quartic and fifth models using the Design Expert software. Less number of combinations was developed for 
higher degree of polynomial function i.e. cubic, quartic and fifth models because the models were too complex. 
Coded for each parameters and coded combination of parameters are tabulated in Table 5. In total, 118 classifica-
tion models were developed using all the parameters.

The values obtained from each equation were used to find differences between each healthiness level by deduc-
tion of T1 with T0, T2 with T1 and T3 with T2. The best model is defined as the model that could provide the 
largest differences between the levels and with the smallest or none overlapping in the range values, especially 
between T0 and T1. The latter is important to separate between the healthy and unhealthy levels. Moreover, the 
larger the difference shows better separation between the levels. Table 6 shows an example of best combination 
selection using linear model. The best combination of parameters for linear model is ABD, which consists of 
frond number, frond angle and S200 parameters. This combination has the largest dfference between T1 and T0, 
which is equal to 1.865.

Furthermore, the best combinations of two-factorial was BDE (frond angle-S200-S850), for quadratic was 
ABCD (frond number-frond angle-crown pixel-S200), for cubic was ACD (frond number-frond angle-crown 
pixel), for quartic was AC (frond number-crown pixel) and for fifth model was CE (crown pixel-S850). The mean 
value, standard deviation and the maximum and minimum that were used to set the range for upper and lower 
limits for every polynomial model is shown in Table 7.

Table 8 shows lists of correctly classified trees, misclassified trees, accuracy and average accuracy for the best 
model in linear, two-factorial, quadratic, cubic, quartic and fifth models. Linear, quadratic and cubic models 
have the highest accuracies for the healthy tree classification (100% accuracy). Although quadratic and cubic 
models can classify healthy oil palm trees with an accuracy of 100%, the average accuracies for all severity levels 
are lower compared to the linear model (60% and 62.5% compared to 80%). The misclassifications only occurred 
among the unhealthy groups where T1 misclassified as T2 and T3, T2 was misclassiied as T1 and T3, and T3 was 
misclassified as T1 and T2. Linear model presented the highest accuracy for T1 classification and two-factorials 
presented the highest accuracy for T3 classification (100% accuracy). In fifth model, the classification was mixed 
up between the healthy and unhealthy levels. In addition, the average accuracy was the lowest with 30% for all 
levels and 36.67% for healthy-unhealthy classification. It was possible the model for fifth order was too complex 
and it could not accurately classify the oil palm trees. Classification of T2 level could not achieve 100% accuracy 
in all models; the highest classification was 70% in two-factorial model. It could be due to the rank of T2 at the 
middle of unhealthy class. Thus, the transition from mild infection to moderate infection and the transition from 
moderate infection to severe infection might be difficult to separate. It is also possible that the ranges between the 
levels were very close, which could cause the misclassification of oil palm trees. However, the classification model 
can still differentiate between the healthy and the infected trees. Frond number was used to create a simple sever-
ity classification using a single parameter because it was the best parameter among the five parameters analysed. 
The classification using frond number for healthy trees achieved 100% accuracy, while the average accuracy for 
unhealthy trees was 63.33%. The average accuracy for severity classification was 72.5% and the average accuracy 
for healthy-unhealthy classification was 81.67%.

Linear model was chosen as the best parameters because it could detect 100% of healthy trees in severity-level 
classification and in healthy-unhealthy classification, and it also delivered high average accuracies for both clas-
sifications, 80% and 86.67%, respectively. Although quadratic and cubic models also achieved 100% accuracy for 
the healthy tree classification, the average accuracies for both classifications were lower than the linear model. 
Similar to two-factorial model, even though the average accuracy for the severity level classification was higher 
than the linear model (82.5%), the model did not achieve 100% accuracy in healthy tree classification and had 
lower average accuracy in healthy-unhealthy classification compared to linear model. Thus, the results of linear 
model were more consistent. Compared to the best single parameter, even though frond number and linear model 
produced 100% accuracy in healthy tree classification, the average accuracy in four severity level classification for 
linear model was 80%, higher than frond number of 72.5%. Linear model also performed better than frond num-
ber in healthy-unhealthy classification with 86.67% accuracy compared to 81.67%. Compared to other polyno-
mial model, linear model has unbiased fit and the convergence rates of linear are the most efficient. For non-linear 
models, the fitted relationship is difficult and the regression is usually under or over predicted and sometimes the 
constraints in non-linear models can fail to converge. The results show that the linear model was the best model 
to be used for severity detection and classification encompasses of ABD i.e., by using frond number (A), frond 
angle (B) and S200 (D) parameters as shown in Eq. (1).

= . − . − . + . −∗ ∗ ∗Healthiness level 5 913 0 243 A 0 0204 B 4 424e 06 D (1)

where A = Frond number
B = Frond angle
D = S200
As shown in Table 9, the research work presented in this paper is the first approach of BSR detection using 

combination of canopy strata, crown area, frond number and frond angle extracted from TLS data. In canopy 
structure properties, the currently available methods used in the oil palm fields were focusing on canopy spectral 
taken from satellites images, airborne images and spectroradiometer. Some of the work also used leaf spectral 
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taken from spectroradiometer. Meanwhile, other tree structures that were also considered include trunk using 
odour and tomography sensors. In overall, the available method could give accuracy between 77% to 100% when 
using canopy structure. It is shown that the proposed method with the percentage accuracy of 80% in 4 levels of 
healthiness and percentage accuracy of 86.67% in 2 levels of healthiness is acceptable as compared to currently 
available methods. It gave higher percentage of accuracies compared to canopy spectral approach using satellite 
images in 4 levels of healthiness31 and 2 levels of healthiness32 and higher percentage of accuracy compared to 
airborne images in 2 levels of healthiness33,34. This might due to the difference types of platform used during data 
collection. Data collected from the ground have less effect from the environmental factors i.e. weather conditions, 
sun illumination and cloud coverage. This study also showed a similar pattern with previous methods, where 
higher accuracy was obtained in two levels of infections compared to four levels of infections. It shows that it is 
easier to differentiate between healthy and unhealthy oil palm trees and it was more challenging to classify the 
disease into more levels of infections.

future work - large area implementation. This study’s findings highlight the potential of TLS 
for high-resolution 3D measurements of oil palm trees. It provides a very high level of detail, accurate, 
non-destructive, and have potential to be automated. It is the first comprehensive study of canopy characteristics 
using TLS for BSR disease. In-situ observation is laborious, subjective and depends on individual workers who 
may be prone to fatigue. TLS is considered as a simple and user-friendly technology for gathering information. 
The evolution of TLS technology will continue to enhance data quality, allowing for wider spatial coverage and 

Coded for 
parameters

Coded combination of parameters

Two Three Four Five

A = Frond number AB, AC, ABC, ABD, ABCD, ABCDE

B = Frond angle AD, AE, ABE, ACD, BCDE,

C = Crown pixel BC, BD, ACE, ADE, ACDE,

D = S200 BE, CD, CE, BCD, BCE, ABDE,

E = S850 CD BDE, CDE ABCE

Table 5. Coded for each parameter and coded combination of parameters.

Combined 
properties

Values and difference between healthiness level

T0 (T1 - T0) T1 (T2 - T1) T2 (T3 - T2) T3

AB −0.787 1.826 1.039 1.397 2.436 0.266 2.703

AC −0.472 1.403 0.931 1.408 2.339 0.205 2.544

AD −0.667 1.657 0.989 1.442 2.431 0.279 2.710

AE −0.541 1.640 1.099 1.461 2.560 0.277 2.836

BC 0.382 0.388 0.771 1.245 2.016 0.136 2.152

BD 0.297 0.591 0.888 1.136 2.024 0.279 2.303

BE 0.547 0.705 1.252 1.493 2.745 0.297 3.041

CD 0.679 0.077 0.756 1.356 2.112 −0.119 1.993

CE 0.971 0.122 1.093 1.452 2.545 −0.099 2.446

DE 1.562 0.521 2.083 1.353 3.436 0.119 3.555

ABC −0.589 1.546 0.957 1.429 2.386 0.206 2.592

ABD −0.843 1.865 1.023 1.486 2.508 0.273 2.781

ABE −0.693 1.781 1.088 1.451 2.539 0.271 2.810

ACE −0.412 1.419 1.007 1.486 2.492 0.212 2.704

ACD −0.512 1.419 0.907 1.503 2.410 0.209 2.620

ADE −0.588 1.664 1.077 1.535 2.612 0.283 2.894

BCD 0.315 0.433 0.748 1.357 2.105 0.141 2.246

BCE 0.518 0.526 1.043 1.533 2.576 0.177 2.753

BDE 0.498 0.734 1.232 1.557 2.789 0.302 3.091

CDE 0.821 0.207 1.027 1.624 2.652 −0.079 2.573

ABCD −0.639 1.573 0.934 1.528 2.463 0.210 2.673

ABCE −0.501 1.504 1.004 1.479 2.483 0.210 2.694

ABDE −0.764 1.827 1.063 1.527 2.591 0.276 2.867

ACDE −0.458 1.433 0.976 1.571 2.547 0.215 2.762

BCDE 0.454 0.558 1.012 1.617 2.629 0.179 2.808

ABCDE −0.569 1.541 0.971 1.566 2.537 0.214 2.750

Table 6. Equation’s value and difference between healthiness level for linear model.
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faster scanning. On-site facilities could be established to provide an up-to-date database of the health of oil palm 
plantations.

The current approach was scanning a single tree at one time. Therefore, this method can be improved by scan-
ning a group of trees at one time, where the time for scanning and processing the data can be reduced. The use 
of mobile laser scanning (MLS) can be considered to accelerate the process of data acquisition and for the large 
area implementation. The scan could run concurrently by attaching the mobile scanner to a tractor or trailer that 
is used for operation such as collecting the Fresh Fruit Bunch (FFB), ferlitization and etc. in the plantation. It is 
therefore, the process of plant scouting can be done more rapid and effective since it does not depending on the 
specific task of the worker. The data collection also could be done by attaching the scanner to swan robot for the 
time dependence scouting. It was shown by Bienert et al.35 that the MLS is able to provide similar data compared 
to TLS with reducing point density due to the kinematic recording. If an MLS mounted on a terrain vehicle was 
considered, a clear path with clear height in the plantation should be planned to avoid the collision with the 
fronds. However, the differences in static and mobile laser scanning system such as viewing angles, spatial reso-
lutions, scanning area and distances with a high standard of accuracy and speed using an MLS system need to be 
taken into considerations.

For a large area implementation, the possible arrangement of laser scanner position in the oil palm plantation 
is shown in Supplementary Fig. S1 online. A full scan of tree requires 26 mins of scanning process including 
movement from tree to tree and the equipment setup. Thus, for a plantation that consists of 160 palms/ha, it takes 
about 3 days to complete the process. Meanwhile, the manual tree scouting requires 10 mins per tree, resulting 
around less than 2 days to complete a hectare. Instead of inspecting each of the tree in the whole plantation area, 
the current manual scouting was done by a random sampling in every 6 months depends on the potential risks 
in the area36. The plantation was divided into 10 plots for each hectare, which consists of 16 trees per plot for a 
plantation with average planting density of 160 palms/ha. Only one oil palm tree will be sampled for each plot. 
The sampling approach was done due to limited number of expert workers in this field. Furthermore, the workers 
need extensive time for training to become an expert. In-situ observations are subjective and depend on workers’ 
abilities. Some of the Ganoderma boninense symptoms are not visible causing a faulty detection especially when 
inexperienced workers did the inspection. Naked eyes observation involves continuous monitoring from one tree 
to the other that is both laborious and prone to fatigue. The issue on workers shortage in plantation sector, adding 
another problem. The new finding in this research not only can fill the research gap in laser scanning study but 
also can be the eye-opener to community in this area. Even though the current proposed approach is time con-
suming, however it has a bright future by considering evolution of laser scanning technology that continuously 
enhance its data quality, spatial coverage, scanning time and providing different type of platform.

Furthermore, the method can be extended by using different type of platform such as an Airborne Laser 
Scanning (ALS). Three parameters extracted from the top-view i.e. frond number, frond angle and crown pixel 

Model Level Mean
Standard 
deviation Mean + sd, Mean - sd Max, Min

Range 
(Max-
Min)

Range of 
classification

Linear

T0 −0.879 0.702 −0.176, 0.702 −0.138, −2.289 2.150 ≤−0.176

T1 1.272 0.284 1.556, 0.284 1.761, 0.939 0.821 0.177–1.556

T2 1.900 0.479 2.379, 0.479 2.572, 1.205 1.368 1.557–2.379

T3 2.515 0.390 2.904, 0.390 3.089, 2.144 0.945 ≥2.38

Two factorial

T0 0.466 0.371 0.836, 0.095 1.417, 0.032 1.386 ≤ 0.095

T1 1.088 0.319 1.408, 0.769 1.635, 0.567 1.068 0.096–1.408

T2 1.708 0.714 2.421, 0.994 3.269 1.027 2.241 1.409–3.141

T3 2.174 0.968 3.142, 1.207 4.315, 1.254 3.061 ≥3.142

Quadratic

T0 −7.590 3.944 −3.646, −11.533 −1.593, −12.412 10.819 ≤−3.646

T1 −1.056 2.882 1.826, −3.939 1.190, −7.024 8.214 −3.647–1.826

T2 0.416 1.712 2.129, −1.296 2.314, −4.055 6.369 1.827–2.418

T3 1.167 1.252 2.419, −0.085 2.891, −1.648 4.539 ≥2.419

Cubic

T0 −6.857 2.900 −3.956, −9.757 −1.040, −9.852 8.812 ≤−3.956

T1 0.619 3.536 4.156, −2.917 6.692, −7.450 14.142 −3.957–1.952

T2 2.174 2.682 4.856, −0.508 9.562, 0.054 9.508 1.951–2.897

T3 2.139 0.759 2.898, 1.380 3.457, 1.111 2.347 ≥2.898

Quartic

T0 4.274 3.020 7.294, 1.255 6.900, −2.858 9.758 ≥4.274

T1 2.643 1.857 4.500, 0.786 5.700, 0.856 4.844 4.275–2.100

T2 1.975 1.574 3.549, 0.401 5.700, 3.549 4.991 ≤2.727

T3 2.727 1.436 4.163, 1.291 6.200, 4.163 4.833 2.101–2.727

Fifth

T0 4.859 3.476 8.335, 1.383 9.782, 0.331 9.451 ≥4.859

T1 1.608 3.144 4.752, −1.536 8.032, −2.617 10.649 4.860–2.614

T2 0.421 2.580 3.000, −2.159 3.313, −5.461 8.774 ≤0.421

T3 2.615 5.711 8.326, −3.097 11.095, −4.374 15.469 2.615–0.420

Table 7. Descriptive statistics for all models.
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could be used as the basis for the application. The current semi-automatic counting of frond number and angle 
value has potential to be automatic using deep learning technique. The studies by Bazezew37 and Hopkinson 
et al.38 shown that both ALS and TLS data can characterise the tree canopy but ALS unable to characterise the 

Type of model Parameters Level

Healthiness Level

T0 T1 T2 T3

Linear ABD

Correctly classified tree (%) 100 100 60 60

Misclassified as — — 4 T1 4 T2

Average accuracy (%) 80

Healthiness level Healthy Unhealthy

Correctly classified tree (%) 100 73.33

Average accuracy (%) 86.67

Level T0 T1 T2 T3

Two factorial BDE

Correctly classified tree (%) 90 70 70 100

Misclassified as 1 T2 1 T0, 1 
T2, 1 T3

2 T1, 1 
T3 —

Average accuracy (%) 82.5

Healthiness level Healthy Unhealthy

Correctly classified tree (%) 90 80

Average accuracy (%) 85

Quadratic ABCD

Level T0 T1 T2 T3

Correctly classified tree (%) 100 40 30 70

Misclassified as — 3 T2, 3 
T3

4 T1, 
3 T3

1 T1, 2 
T2

Average accuracy (%) 60

Healthiness level Healthy Unhealthy

Correctly classified tree (%) 100 46.67

Average accuracy (%) 73.33

Cubic ACD

Level T0 T1 T2 T3

Correctly classified tree (%) 100 50 50 50

Misclassified as — 5 T2 3 T1, 
2 T3

2 T1, 
3 T2

Average accuracy (%) 62.50

Healthiness level Healthy Unhealthy

Correctly classified tree (%) 100 50

Average accuracy (%) 75

Quartic AC

Level T0 T1 T2 T3

Correctly classified tree (%) 90 50 40 70

Misclassified as 1 T3 4 T2, 1 
T3

4 T1, 2 
T3 3 T2

Average accuracy (%) 62.50

Healthiness level Healthy Unhealthy

Correctly classified tree (%) 90 53.33

Average accuracy (%) 71.67

Fifth CE

Level T0 T1 T2 T3

Correctly classified tree (%) 50 0 10 60

Misclassified as 5 T3 9 T0, 1 
T3

8 T0, 
1 T3 4 T0

Average accuracy (%) 30

Healthiness level Healthy Unhealthy

Correctly classified tree (%) 50 23.33

Average accuracy (%) 36.67

Single A

Level T0 T1 T2 T3

Correctly classified tree (%) 100 90 50 50

Misclassified as — 1 T0 5 T1 5 T2

Average accuracy (%) 72.5

Healthiness level Healthy Unhealthy

Correctly classified tree (%) 100 63.33

Average accuracy (%) 81.67

Table 8. Accuracy of the classification models.
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understorey vegetation structure in detail. Thus, it could be beneficial to integrate both methods to produce more 
accurate data. Point clouds fusion and assimilation by ALS and TLS could be done by using same point refer-
ences39,40 or assigning multiple TLS point clouds to ALS point clouds41. Detail study need to be done since the 
ALS and TLS are varied in terms of scanning mechanism, data capture mode, typical project size and obtainable 
accuracy and resolution.

Materials and Methods
Data collection. The field measurements were performed at an oil palm plantation in Seberang Perak, 
Malaysia. A total of 40 oil palm trees were selected with 10 trees for each health level randomly chosen from 
different locations from the same plot. The age of the oil palm trees was 9 years old while the height of the trees 
was between 10 to 11 meters, where the production was at its peak. The oil palm cultivar in this plantation is from 
Dura and Psifera (D x P), and the soil type is coastal. Measurements were taken in a small block in order to avoid 
variations of the environment and when the sky was clear and there was no rain and no wind. The method was 
later verified at another different oil palm plantation block.

The average rainfall rate in the area was 200.5 ± 121.7 mm/month with an average of 15.9 ± 3.5 rain-days/
month in the year of 2017. Major rainfalls occurred in January and November, while July and August are the 
driest months. The monthly mean relative humidity was approximately 84.1 ± 2.6% and average temperature was 
28.0 ± 0.56 °C with minimum value of 27.0 °C in November and maximum values of 28.7 °C in June and July. The 
maintenance of the oil palm planting, including fertilisation regime, fruit harvesting, pruning, and weed manage-
ment are following the commercial oil palm estates practices. Adequate pruning of mature palms is to remove the 
dead or senescing leaves and to facilitate in accessing the fresh fruit bunch (FFB) due to a correct harvesting time. 
In commercial plantation, the pruning was done twice per year, where more pruning was done for older trees42,43. 
The planting density for the plot was 160 palms/ha and the palm are planted in an equilateral triangle pattern 
with a distance of 9 m x 9 m x 9 m. The effect of drought on the canopy drooping and the effect of etiolation on 
the frond angle were not discovered in this study. Other randomized factors such as other varieties of oil palm 
trees, yields for individual tree, different rates of fertilizers and others were also not considered in this study. Since 
there’s no variations on the samples, therefore the unhealthy condition of the oil palm trees were assumed due to 
the Ganoderma boninense infection and confirmed by Ganoderma Selective Medium (GSM)44 analysis.

Data collection was conducted in early July 2017. The oil palm trees were categorised into four levels of health: 
T0 (healthy palm, no foliage symptom (0%), no fruiting body)), T1 (mild infection, no foliage symptom (0–25%), 
produce fruiting body), T2 (moderate infection, produce foliage symptom (25–50%), fruiting body) and T3 
(severe infection, produce foliage symptoms (50–75%) and fruiting body)45,46. The subsequent results and dis-
cussions were based on these levels. The severity level was identified based on visual symptoms by experts from 
MPOB and were confirmed by GSM analysis. Figure 3 shows the aerial map of the trees’ location taken by 3DR 
Iris + drone with MAPIR Survey 2 camera (MAPIR, Peau Prodiuctions, Inc. CA, USA), where the trees were 
labelled based on their health levels.

Measurements of the tree were performed using a FARO Focus terrestrial laser scanner (Faro Technologies 
Inc., Florida, USA). The device used a laser beam and the “phase shift measurement technology” to detect dis-
tances. The distance of an object to the scanner was measured by analysing the shift in the phase of the returning 
beam. The laser rangefinder was mounted in the horizontal plane and aligned with the vertical axis of the instru-
ment. The rotation of a mirror placed at 45° to the laser beam aperture (horizontal rotation) and the rotation of 
its trunnion (vertical rotation) provided a panoramic view of the scene - 305° × 360° - that surrounded the TLS as 
point cloud on a Cartesian or spherical basis. Therefore, by using ground scanning, the scanner had the capability 
to get a top-view of a tree. The TLS scanner was mounted on a surveying tripod at an estimated height of 1 m and 
a distance of 1.5 meters from a tree. The tripod was placed on firm ground and levelled using a bubble balancer. 
Each palm was scanned at four different positions around the tree (Fig. 4). The laser scan was recorded on a 

Oil palm 
part Features Level Highest accuracy

Canopy

Canopy spectral (satellite)
4 77%31

2 84%32

Canopy spectral (airborne)
2 84%33

2 86%34

Canopy spectral 
(spectroradiometer)

4 94%14

2 98%14

Leaf spectral (spectroradiometer)
2 100%66

4 97%17

Canopy strata, crown area, frond 
number and frond angle (TLS data)

4 80% (Proposed method)

2 86.67% (Proposed method)

Trunk

Odour
2 100%56

2 100%57

Tomography
2 100%59

5 82%60

Table 9. Summary of the approach methods to detect BSR disease.
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removable SD memory card and then transferred to the SCENE software (version 6.2, FARO Technologies, Inc.) 
for processing. SCENE is FARO’s point clouds manipulation software specifically designed to process and manage 
the scan data. Details on the features of the TLS FARO Focus are shown in Table 10.

point cloud registration. All collected scans were imported into the SCENE software for processing and 
part of the analysis. ‘Registration’ tab was used for registration and automatic registration was chosen from the 
three options available, including manual and visual. Automatic registration offers more convenient and better 
accuracy when used together with ‘top view and cloud-to-cloud’ methods. Based on the recorded scan posi-
tion and its location, confirmation of the clustered point clouds could then be verified. Multiple TLS scans were 
matched and the laser point data were synced to create a cluster of point clouds and a complete 3D view of the 
tree. After that, the cluster of scan points could be viewed in ‘3D view’ tab (Fig. 5).

Figure 3. Location of study area and aerial map of tree’s location (map created by ENVI 5.1).

Figure 4. Setup of data collection.
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Single tree extraction. Figure 6 shows the flowchart of the step-by-step method used in the study for the 
crown, frond and canopy. A clipping box was created to isolate the tree from the background. In order to get a top 
view of the whole image of an oil palm tree, the cursor of the clipping box was moved upwards to the uppermost 
part of the canopy tree and was then moved down to the bottom limit (before the ground). Thus, the whole tree 
sample could be seen from different views - left, right, front, back and isometric using the box.

crown section. The length and width of the box from top view were set to 10 m for size standardisation. The 
clipping box was viewed in ‘top view’ before being saved in JPEG format. Then, the image was cropped using 
Paint software (Microsoft, Washington, USA) to remove unwanted features such as fronds from other trees and 
was later processed in Matlab (Mathworks Inc., Massachusetts, USA) software. Region-based segmentation using 
the Otsu’s algorithm was used to separate the crown from the background. The process involved portioning the 
crown area by subdividing the image into similar areas of connected pixels. Otsu is a type of global thresholding 
which relies on the grey value of the image to separate objects of interest in an image from the background based 
on their grey-level distribution. The algorithm assumes that the image contains two classes of pixels following a 
bi-modal histogram (foreground pixels and background pixels). It then calculates the optimum threshold separat-
ing the two classes so their combined spread (intra-class variance) is minimal. The method is widely used because 
it is simple and effective47.

The morphological operation (opening) was used to remove imperfections in the structure of the crown image. 
The opening operation smooths the outline of an object, clears the narrow bridges and also eliminates minor exten-
sions present in the crown image by performing erosion followed by dilation. Dilation is a morphological operation 
that adds pixels to the boundary pixels. The dilation operation made the crown grow by size, while the erosion 
operation caused the crown to lose its size. Both operations use a small matrix structure based on the arrangement 
of ones and zeros in a pattern within the matrix known as a structuring element. A disk-shaped structuring element 
was used because the shape of the crown was arbitrary, smooth and not a polygon shape. After the area of crown was 
obtained, the number of pixels in the image was calculated. Figure 7 shows the process involved.

frond section. The method was similar to the crown pixel where a clipping box was created by placing a blue 
circle at the centre of the crown. The size of the clipping box was set differently according to the size of the frond. 
Then, the image of the frond from the top view was saved and exported to AutoCAD (Autodesk, Inc., California, 
USA). The ‘Draw’ and ‘Polyline’ tools were used to draw the line following the shape of the frond. After that, the 
‘Dimension’ tool was selected to measure the angle between the fronds (in degrees). Lastly, the angle between the 
fronds and the number of fronds for every tree were recorded. Figure 8 illustrates the process of creating shapes 
of fronds in numbering orders.

Measurement principle Specifications

Field of View (vertical × horizontal) 305° × 360°

Wavelength 905 nm (Infrared light spectrum)

Diameter beam aperture 3 mm, circular

Beam divergence 0.015°

Sensor FOV 0.27 mrad

Range 0.6 m–120 m

Ranging error (Accuracy) ±2 mm

Table 10. The features provided by the TLS FARO Focus.

Figure 5. (a) Cluster of point clouds before registration, (b) 3D view of point clouds after registration.
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Canopy stratification. The initial point clouds from each tree consisted of a large number of laser points 
and created difficulties with data processing. Thus, to reduce the number of points in the cloud the data was seg-
mented using the stratification method. The method was applied by implementing a series of horizontal planes 
with equal intervals and equal sized boxes (also known as voxels) along the vertical direction, resulting in many 

Extract single tree in point 
cloud using SCENE

Image cropping 

Automated 
crown pixel 
calcula�on

Scanning data collec�on - 4 
scans for each tree

Polyline drawing

Frond 
calcula�on

Image export to 
AutoCAD

Degree of angle 
measurements

Crown 
stra�fica�on

Laser points 
calcula�on

Dimensions 
standardiza�on

Frond 
sec�on

Start

End

Point cloud registra�on
Data 
pre-processing

Crown 
sec�on

Figure 6. Flowchart of the methods.

Figure 7. Steps of processing crown pixel (a–c).
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strata perpendicular to the vertical direction. A clipping box was created by placing a blue circle at the centre of 
the canopy or trunk, which looked hollow from the top-view. The dimensions, length and width of the clipping 
box were set to 6 m. The 6 m dimensions were set for the purpose of minimising the overlapping fronds from the 
trees located next to it. Then, the cursor of the clipping box was moved to the uppermost visible part (also known 
as top) of the tree canopy and moved down to the bottom limit where no fronds were visible in the clipping box. 
The ‘Create Clipping Boxes along an axis’ operation created multiple boxes along the vertical axis below the top 
part of the canopy section. The z-axis was chosen for the vertical direction and a negative sign was chosen for the 
downward direction of the clipping. The number of clipping boxes was set to 17. Based on the literature48,49 the 
thickness of the clipping box was set to 0.1 m and the space between the boxes was set to 0.5 m. The 0.5 m space 
between the boxes was selected arbitrarily but intended to minimise the point associated with the conversion 
from 3D real space into 2D model space. Then, the data (point value) was exported to a ‘PTS’ file and was opened 
using Notepad software (Microsoft, Washington, USA). The point value is the number of laser points that indi-
cates the density of the canopy strata. Figure 9 shows the steps involved in crown stratification.

Statistical Analysis and classification model. JMP software (SAS Institute, North Carolina, USA) was 
used to analyse the parameters using one-way analysis of variance (Kruskal-Wallis test) to check the significant 
different between the levels. Classification models were developed and used to detect the severity levels of BSR 
using all the biometrics extracted from TLS data. The regression coefficients using single and combinations of 
physical properties were calculated with the help of statistical software: Design Expert (version 10, Stat-Ease 
Inc., Minneapolis, USA), and the adequacy of the model was tested by using the analysis of variance (ANOVA). 
“User-Defined” design of experiments and “Numeric Factor” were chosen because they have the flexibility in 
modifying the model and all properties are in numeric values.

Data of this study were divided into three datasets: training, testing and validation. Twenty eight, twelve and 
forty oil palm trees taken from all healthiness levels were used for training, testing and validation datasets, respec-
tively. Training datasets were used as an input to build a classification model acquired from Design Expert soft-
ware. Each statistical model has a unique equation to represent the model. The equations were then transferred to 
Microsoft Excel (Microsoft, Washington, USA) and the models were generated using the testing datasets to obtain 

Figure 8. Steps of processing frond feature (a,b).

Figure 9. Steps of processing crown strata (a–c).
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the mean and standard deviation for the models. The range for each class was considered by trial and error using 
the mean, standard deviation, maximum and minimum values. The classification models were then validated 
with different set of oil palm trees to determine the ability of the model to classify the oil palm trees, according to 
its healthiness level.

conclusion
This paper presented a new method used to classify four healthiness level conditions of oil palm trees due to 
Ganoderma boninense infection using physical properties of oil palm trees based on the differences in the canopy 
biometrics extracted from TLS scanner. Five parameters were used for the analysis: S200, S850, crown pixel, frond 
angle and frond number. One-way analysis of variance using Kruskal-Wallis test for all parameters showed all 
levels to be significantly different with p-value less than 0.05. Consequently, it can be concluded that combination 
parameters of linear model consisting of frond number, frond angle and canopy strata at 200 cm from the top was 
the best model compared to other combined parameter models. It gave an average accuracy of 80% for severity 
level classification and 86.67% accuracy for healthy-unhealthy classification. Furthermore, it performed better 
compared to the classification severity using single parameter, i.e. frond number. The method comprising of the 
classification model of canopy properties extracted from TLS data could be established for early detection of the 
BSR disease as early as T1 and could also be used to classify the level of BSR disease severity with high accuracy.

Based on this study, it can be concluded that the TLS remote sensing data offer accurate physical features of 
oil palm trees. The study has solved the research gap on the use of TLS in oil palm study for disease detection. 
The growing availability and quality of LiDAR data, combined with the method of characterising individual oil 
palm trees, offers potential for such data to play important roles in research and precision agriculture applica-
tions. Continuing technological advances are likely to result in the increased availability and resolution of TLS. 
In future, scanners with an advanced and higher capability that are able to scan a whole plantation area using a 
single scan with comparably lower cost, coupled with in-situ data processing facilities, could be developed. The 
system could be utilised to establish an accurate and rapid oil palm health map for real-time disease detection.
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