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interference with SRf expression in 
skeletal muscles reduces peripheral 
nerve regeneration in mice
Renate Wanner & Bernd Knöll*

traumatic injury of peripheral nerves typically also damages nerve surrounding tissue including 
muscles. Hence, molecular and cellular interactions of neighboring damaged tissues might be 
decisive for successful axonal regeneration of injured nerves. So far, the contribution of muscles and 
muscle-derived molecules to peripheral nerve regeneration has only poorly been studied. Herein, 
we conditionally ablated SRF (serum response factor), an important myofiber transcription factor, 
in skeletal muscles of mice. Subsequently, the impact of this myofiber-restricted SRF deletion on 
peripheral nerve regeneration, i.e. facial nerve injury was analyzed. Quantification of facial nerve 
regeneration by retrograde tracer transport, inspection of neuromuscular junctions (nMJs) and 
recovery of whisker movement revealed reduced axonal regeneration upon muscle specific Srf deletion. 
in contrast, responses in brainstem facial motor neuron cell bodies such as regeneration-associated 
gene (RAG) induction of Atf3, synaptic stripping and neuroinflammation were not overly affected by 
SRF deficiency. Mechanistically, SRF in myofibers appears to stimulate nerve regeneration through 
regulation of muscular satellite cell (Sc) proliferation. in summary, our data suggest a role of muscle 
cells and SRf expression within muscles for regeneration of injured peripheral nerves.

Traumatic accidents often injure several organs at the same time. In peripheral nerve injuries of e.g. body extrem-
ities, nerves are typically not damaged in isolation but neighboring tissues such as muscles providing the surface 
for nerve trajectories are likewise injured. Thus, after injury of different tissues and cell types, for instance neurons 
and myofibers, these cell types might interact reciprocally to drive nerve and muscle regeneration. So far, molecu-
lar and cellular nature of such regenerative mechanisms are poorly understood. In consequence, only few reports 
have identified muscle derived molecules or cell types stimulating peripheral nerve regeneration. For instance, 
muscle restricted overexpression of a neurotrophic factor mixture (VEGF, BDNF, GDNF, IGF-1) improves recov-
ery after nerve injury1,2. Furthermore, muscle stem cells may differentiate into myelinating Schwan cells and 
thereby enhance nerve regeneration3. Muscle restricted gene mutagenesis in mice identified single muscle specific 
molecules such as YAP (Yes-associated protein) of the hippo pathway and ciliary neurotrophic factor (CNTF) 
receptor α as potential promoters of nerve regeneration4,5. Notably, deletion of the muscle spindle resident tran-
scription factor Egr3 impairs both regeneration of axons in the peripheral6 and central nervous system7. Hence, 
muscle spindles emerge as important muscular structure in axon regeneration.

A further key transcription factor regulating several aspects of skeletal muscle physiology and pathology is the 
serum response factor (SRF)8–11. As shown by conditional murine Srf inactivation restricted to skeletal muscles, 
SRF deficient myofibers show premature aging, enhanced muscle fibrosis and myofiber specific atrophy resulting 
in reduced muscle function12,14–17. After increased load, SRF function is required for overload induced myofiber 
hypertrophy16. Following such myofiber hypertrophy, SRF ablation in myofibers impinges also on proliferation of 
Pax7 positive satellite cells (SCs), the muscle resident stem cell population13,16. This involved a paracrine mecha-
nism by which SRF in myofibers controls transcriptional regulation and thereby protein secretion of interleukin-6 
(Il-6) and cyclooxygenase-2 (Cox2)/interleukin-4 (Il-4) controlling SC proliferation16,17. Further SRF target 
genes relevant to muscle function are genes encoding actin isoforms (skeletal actin, Acta1; α-cardiac actin, Actc1; 
β-actin, Actb; γ-actin, Actg and smooth muscle actin, Acta2) or actin binding proteins such as calponin and 
filamins9,18. So far it has not been analyzed whether SRF in muscles stimulates peripheral nerve regeneration. 
However, muscle restricted SRF ablation augments muscle atrophy after sciatic nerve denervation19.

Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany. *email: bernd.
knoell@uni-ulm.de

open

https://doi.org/10.1038/s41598-020-62231-4
mailto:bernd.knoell@uni-ulm.de
mailto:bernd.knoell@uni-ulm.de


2Scientific RepoRtS |         (2020) 10:5281  | https://doi.org/10.1038/s41598-020-62231-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

In this study we analyzed whether interference with muscle function by SRF depletion modulates the outcome 
of peripheral nerve regeneration. For this we employed myofiber restricted SRF ablation where Cre recombinase 
expression is driven by the myofiber specific human skeletal actin (HSA) promotor (Srfloxp/loxp: HSA-CreERT2 
mice). Peripheral nerve injury was induced at the facial nerve (FN) of adult mice whose trajectory follows sev-
eral muscles of the face (see Fig. 1). The FN connects facial motorneurons (FMNs) localized in the brainstem 
with several target muscles including those of the whisker pad and the orbicularis oris muscle involved in lip 
movements20.

In previous studies, a stimulatory function of neuronal SRF in facial nerve regeneration and prevention of 
FMN degeneration was demonstrated21,22. Now, in this study, we show a stimulatory role of myofiber localized 
SRF in FN regeneration on the histological and functional level. Mechanistically, muscle restricted SRF depletion 
interfered with injury induced SC proliferation.

Results
In this study SRF ablation was induced in post-mitotic myocytes due to tamoxifen mediated Cre recombinase 
activation in adult mice (Fig. 1A). Three weeks after first tamoxifen injection, traumatic injury to FN branches 
and the associated masseter muscle was performed. Subsequently, axon regeneration was analyzed at two time-
points histologically (7 and 21 days post injury, dpi) and functionally by measuring recovery of whisker move-
ment at several timepoints post injury (Fig. 1A).

The drop tower mediated injury model employed was previously described by us (Fig. 1C,E and23). In the 
model used, the buccal and marginal FN branches were axotomized but also a cut into the underlying mas-
seter muscle was induced. This simultaneous injury to the nerve-muscle unit resulted in induction of the 
regeneration-associated gene (RAG) ATF3 in the deafferented nerve (arrow in Fig. 1C) as well as the muscle 
(arrowhead in Fig. 1C). Furthermore, infiltration of the injury side by CD45 positive peripheral macrophages 
was observed (Fig. 1C). In contrast, on the contralateral un-injured side of the animal those responses were not 
visible (Fig. 1B). Labeling axons with βIII tubulin revealed the position of the nerve injury (Fig. 1E) not visible in 
the nerve at in the intact control side (Fig. 1D).

Next, we analyzed the efficacy of SRF ablation in the masseter muscle (Fig. 1F–H). SRF was localized in 
myofiber nuclei in wt mice (Fig. 1F) whereas strong SRF downregulation was observed in Srf mutant mice (Srf 
loxp/loxp: HSA-CreERT2 mice, “ko”; Fig. 1G; quantified in H). We did not observe any body weight reduction upon 
adult myofiber restricted SRF deletion without injury (Fig. 1I), in line with a previous report15. Furthermore, also 
no differential weight loss between genotypes was observed over a period of three weeks after injury (Fig. 1J).

Motoneuron injury responses were unaltered upon SRF loss in myofibers. The FN motoneurons 
reside in two brainstem nuclei, one in either brain hemisphere. We applied unilateral FN injury, therefore FN cell 
body reactions of the injured and intact FN nucleus could be analyzed on the same section of one animal.

First of all, we analyzed a potential difference in FMN degeneration 7 dpi by labeling all motoneurons with 
Nissl (Fig. 2A–D,Q). However, no differences were discernable, indicating no obvious impact on myofiber SRF 
loss on neuronal survival post injury. ATF3 induction in neurons is a hallmark of a RAG response observed in 
many neuronal cell types after injury24,25. ATF3 induction was observed to a comparable extent in injured wt and 
SRF deficient animals (Fig. 2E–H,R). A further cellular response after FN injury is removal of VAChT (vesicular 
acetylcholine transporter) positive presynaptic terminals at motoneurons, a process termed “synaptic stripping”26. 
Indeed, 7 dpi the number of VAChT positive signals was reduced in both wt and ko animals to a similar extent 
(Fig. 2I–L,S). Finally, FN injury triggers a neuroinflammatory response in the deafferented FN nucleus resulting 
in activation of GFAP positive astrocytes and Iba1 positive microglia (Fig. 2M–P,T). Once again, no impact of 
myofiber restricted SRF ablation was observed and neuroinflammation was indistinguishable between genotypes.

In summary, SRF ablation in muscles has no overt impact on injury responses occurring in the FN motoneu-
ron localized several millimeters apart from the muscle-nerve injury side.

facial nerve regeneration was reduced upon muscle restricted SRf depletion. Next, we analyzed 
the reactions of the axotomized nerves at 21 dpi. This was done by quantifying the transport efficacy of fluores-
cently labelled retrograde tracer molecules along the injured axons (Fig. 323,24). Since the various FN branches 
target different muscle groups in the face, FN motoneurons in the brainstem nuclei are organized in a topographic 
map. Therefore, FMNs innervating the same muscle targets, e.g. whisker pad, eye or lip are grouped in subdo-
mains in the FMN nucleus (see Fig. 3N). In order to visualize those subpopulations, three fluorescent tracers con-
jugated with different fluorophores (DiI, FG, Ctx488) were injected into three target areas innervated by the FN 
branches (see Fig. 3A). In the intact FN, those fluorescently labeled tracer molecules were efficiently retrogradely 
transported from the nerve terminals along the FN axons back to the motoneuron cell bodies, where numbers 
were quantified (Fig. 3N,O). Immediately after injury, this transport is impaired since the axonal transport route 
is compromised by the lesion23,24. However, at 21 dpi some axons have already regenerated and navigated towards 
new target areas which reconstitutes the transport way for tracer molecules and gives a quantitative read-out for 
axon regeneration (Fig. 3P–S).

In uninjured control animals of either genotype, the FMNs in the brainstem nuclei were localized according to 
their topographic fate (Fig. 3B,C,F,G,J,K,N,O). Thus, Ctx488 and DiI positive motoneurons innervating the lower 
jaw and eyelid, respectively were grouped in lateral FN nucleus positions (arrows, Fig. 3B,C,F,G). FG positive 
FMNs, representing the majority of motoneurons connecting to the whisker pad, occupied approximately half of 
the FN nucleus area in wt (Fig. 3J,N) or Srf mutant (Fig. 3K,O) animals.

After injury, the total number of tracer positive FMNs has declined and it was noted that in SRF deficient ani-
mals (Fig. 3Q) the numbers were even lower compared to wt animals (Fig. 3P). Quantification revealed that at 21 
dpi approximately 60% of all FN axons in wt animals were tracer positive, whereas only around 40% of FMNs in 
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Figure 1. Muscle specific SRF deletion in a mouse nerve-muscle injury model (A) Experimental outline of 
tamoxifen mediated Srf recombination and post injury time-points for histology (“histol.”), qPCR, whisker 
recording and tracer injection. (B–E) Depiction of the nerve-muscle injury model in wt mice. After four days 
of injury to the nerve and masseter muscle, ATF3 was upregulated in both the severed nerve (arrow in C) and 
masseter muscle (arrowhead in C). Furthermore, peripheral CD45 positive macrophages were infiltrating the 
lesion side (C), in contrast to the uninjured control side of the animal (B). After injury, a lesion site was visible 
in the injured nerve (arrow in E; stained for βIII tubulin) not present on the uninjured control side (D). (F–H) 
In wt mice (F), SRF (red) was present in nuclei (labeled with DAPI in blue) of masseter myofibers (labeled with 
sarcomeric actinin, green) whereas SRF levels were strongly decreased in (G; quantified in H). Smaller pictures 
show individual SRF and DAPI channels. (I,J) SRF loss in myofibers in adult mice did not change overall 
body-weight neither before (I) nor over 20 days post injury (dpi). Each black circle in a bar reflects one animal 
analyzed. Data were provided as mean ± SD. *P < 0.05. Scale-bar (B–E) = 100 μm; (F,G) = 30 μm.
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SRF deficient animals incorporated one of the tracer molecules (Fig. 3R). When separately quantifying the three 
tracer positive FMN subpopulations, we observed that the main difference was due to altered regeneration of 
the FG positive FMNs, accounting for the vast majority (i.e. 65%) of all FMNs (Fig. 3S). Please note that axons of 
regenerating FMNs initially target topographically incorrect muscle targets due to aberrant axonal sprouting (20; 
Fig. 3P). Therefore, the topographic map in the FMN nucleus is initially distorted since these aberrant axons take 
up tracer molecules from topographically incorrect muscles and transport them back to the cell bodies (Fig. 3P).

In summary, muscle restricted deletion of SRF negatively affected the regeneration outcome of the facial nerve 
using the masseter muscle as growth surface.

neuromuscular junction morphology was altered by SRf depletion in muscles after injury. FN 
axons terminate at several facial muscles where they form neuromuscular junctions (NMJ20). In order to visualize 

Figure 2. Muscle specific SRF deletion did not alter the injury response in the FN nucleus. (A–D) All FMNs 
in the brainstem FMN nucleus on uninjured (“control”; A,B) and injured (C,D) side were stained with Nissl. 
In the absence of injury, FMN numbers were identical between wt (A) and Srf mutant (B) animals (see 
quantification in Q). At 7dpi, FMNs showed typical morphological alterations (arrows in C,D). However, no 
differences between wt and ko, also in FMN number, were observed. (E–H) ATF3 was comparably induced in 
the FMN nuclei of wt (G) and SRF deficient (H) animals after injury. Without injury, ATF3 levels were strongly 
reduced (E,F). (I–L) Without injury, FMN cell bodies were decorated with VAChT positive axon terminals 
(I,J; see higher magnification in I). After injury, the VAChT signal decreased and fewer VAChT terminals were 
found at cell bodies (K,L; see higher magnification in K). No differences between wt and ko were discernible 
(see quantification in S). (M–P) FN injury activated the number of Iba1 positive microglial cells and GFAP 
positive astrocytes comparably in the FMN nucleus of wt (O) and myofiber SRF depleted (P) animals. (Q–T) 
Quantification of histological results from Nissl (Q), ATF3 (R), VAChT (S) and Iba1/GFAP (T) staining at 7 dpi. 
Each black circle in a bar reflects one animal analyzed. Data were provided as mean ± SD. ***P < 0.001. Scale-
bar (A–P) = 200 μm.
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Figure 3. FN regeneration was reduced after SRF depletion from myofibers (A–A”) The FN branches connect 
FMN cell bodies located in the brainstem with several facial muscles, e.g. of the eyelid, lip and whisker pad 
(A). After injury of two FN branches (red bar in A’), distal FN branches degenerate. Upon successful FN 
regeneration, tracer molecules (FG, DiI, Ctx488) injected into different target muscles can be retrogradely 
transported to the FMN cell bodies. (B–Q) In the absence of injury, FMNs innervating the lip (labeled with 
Ctx488) were localized to a lateral domain of the FMN nucleus (arrows in B,C). DiI positive FMNs connected 
to the eyelid were also occupying a lateral position in the FMN nucleus (arrows in F,G). FG positive FMNs, 
representing the major FMN subpopulation, connected to the whisker pad were localized in one half of the 
FMN nucleus (J,K; see also merged picture in N,O). 21 dpi, the total number of labeled FMNs was reduced 
in wt (D,H,L,P) but more pronounced in myofiber restricted SRF deficient (E,I,M,Q) animals. Note the 
random localization of FMNs after injury in wt (P) and ko (Q) animals which was due to aberrant axonal 
sprouting. (R,S) Without injury, the number of all FMNs (irrespective of color) was identical between wt and 
Srf mutant animals (R). At 21 dpi, approximately 60% of wt FMNs have regenerated whereas only 40% of 
FMNs regenerated in SRF ablated animals (R). In (S) data were depicted for the three FMN subpopulations. 
For SRF deficient animals, labeled FMN neurons were reduced for all three tracers compared to wt especially 
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alterations in NMJ morphology, we stained NMJs in the lip muscles (m. orbicularis oris) at 21 dpi (Fig. 4). 
Presynaptic axon terminals were stained with neuron-specific βIII tubulin and muscular acetylcholine receptor 
(AChR) clusters were labeled with α-Bungarotoxin-tetramethylrhodamine (Btx).

In the absence of axonal injury, FN axons terminated in NMJs with typical synaptic architecture showing 
elaborated endplates with several junctional folds (Fig. 4A,B,G). No obvious impact of myofiber SRF ablation was 
observed on NMJ morphology before injury (Fig. 4A,B; quantified in E-H). After injury we noted a reduction in 
the βIII tubulin positive axonal area and Btx positive area in the NMJs (Fig. 4C–F). This reduction was more pro-
nounced, although statistically not significant, in SRF deficient animals (Fig. 4E,F). Furthermore, we categorized 
NMJs according to morphology in normal shaped and fragmented NMJs (see example pictures in Fig. 4G,H). 
After injury, approx. 23% of all NMJs were normally shaped in wt mice whereas in SRF deficient mice only 14% 
has such regular shape (Fig. 4G). When inspecting fragmented NMJs, 14% of all NMJs were fragmented after 
FN injury whereas this was significantly increased to almost 23% after SRF removal from muscle cells (Fig. 4H).

This finding suggests that SRF ablation in myofibers alters synaptic morphology by enhanced NMJ fragmen-
tation after peripheral nerve injury.

Recovery of whisker movement after injury was reduced after SRf ablation in muscles. Mice 
receive sensory input via whiskers whose movement is triggered by underlying muscles innervated by the FN20. 
Unilateral FN injury silences such whisker movement immediately after axotomy. In subsequent days and weeks, 
recovery of whisker movement can be monitored by high speed camera recording and is used as a read-out for 
successful functional axon regeneration23.

In order to compare the outcome of whisker movement after FN injury between wt and SRF deficient mice, 
animals were videotaped one day before and at five timepoints over three weeks after injury (see Fig. 1A and 
5). Before nerve injury, whisker pro- and retraction is typically highly synchronous between the two whisker 
pads. Indeed, as seen before23, 100 Hz sequences of whisker movement was almost identical between both sides 
(Fig. 5A,B). We also observed no obvious differences between genotypes in whisker movement before injury 
(Fig. 5A,B,E,F).

After approximately three weeks of injury, some recovery of whisker movement was observed at the injured 
side of wt mice (arrows at grey line in Fig. 5C). The uninjured whisker pad was not affected and showed the typi-
cal rhythmic pattern (black line, Fig. 5C). In Srf loxp/loxp: HSA-CreERT2 mice such first small amplitudes of whisker 
movement at the injured side were diminished (Fig. 5D). For quantification, we measured the parameters accel-
eration (Fig. 5E) and the angular sum of all amplitudes above a certain threshold (Fig. 5F). For normalization, a 
ratio between the injured an uninjured side was calculated. In the first week after injury, no obvious differences 
in whisker recovery between genotypes were observed and regeneration levels were generally quite low (approx. 
30% of pre-injury performance; Fig. 5E). At 14 and statistically significant at 20 dpi, whisker movement was 
improved in wt but not in Srf mutant animals (Fig. 5E). Similarly, when summing up all whisker movements over 
a certain threshold angle (e.g. >10 or >20 degree) at 20 dpi, it was obvious that wt mice were able to protract and 
retract whiskers more strongly compared to SRF lacking animals (Fig. 5F). Obviously, the higher the threshold of 
the angular degree was set, the lower the number of movements was. However, at all degree subgroups wt animal 
always had more movements compared to SRF deficient animals (Fig. 5F).

Taken together, myofiber SRF contributes to functional recovery of severed peripheral nerves.

Myofiber restricted SRF ablation enhanced SC number but not growth factor mRNA abundance 
after fn injury. Myofiber restricted SRF ablation was previously reported to modulate SC proliferation12–17. 
Hence, we analyzed whether this process was altered upon nerve injury in Srf loxp/loxp: HSA-CreERT2 mice (Fig. 6).

First of all, Pax7 positive SC numbers were quantified and expectedly only few Pax7 positive cells were 
observed per area in the intact muscle (wt: 0.85 ± 0.9 cells; Srf ko: 1.2 ± 1.1 cells). At 21 dpi, about ten-fold more 
Pax7 positive SCs were observed in the masseter muscle of wt mice (9.1 ± 1.3 cells/area; Fig. 6A) compared to 
approximately 27-fold more in SRF deficient muscle tissue (27.3 ± 3.5 cells/area; Fig. 6B; quantified in C). Thus, 
SRF ablation enhanced SC numbers after a combined nerve-muscle injury.

Finally, mRNA abundance of several growth factors (Bdnf, Igf2, Ngf, Gdnf and Vegfb) along with Ptgs2 
(Prostaglandin-endoperoxide synthase 2; Cox2) was quantified with quantitative real-time PCR (qPCR) in the 
uninjured and injured masseter muscle of wt and Srf mutant animals at 7 dpi (Fig. 6D–I). Ptgs2, Igf2 and to a 
weaker extent Gdnf and Ngf were induced by nerve-muscle injury (Fig. 6D–G). In opposite to this, Vegfb and 
Bdnf were downregulated after injury (Fig. 6H,I). Comparing wt and Srf mutant animals, we did not observe any 
obvious differences between genotypes (Fig. 6D–I) suggesting no impact of myofiber restricted SRF ablation on 
injury-dependent modulation of growth factor abundance at this timepoint.

Discussion
Herein we uncovered that interference with myofiber function by abrogation of the myofiber transcription fac-
tor SRF reduced peripheral nerve regeneration. Since the facial nerve analyzed in this study directly navigates 
along several facial muscles this suggests a paracrine effect of myofibers on injured and re-growing axons. We 
observed that responses in the FMN cell bodies localized in the distant brainstem nucleus and not in direct con-
tact with myocytes were not obviously altered (Fig. 2). In contrast, regeneration processes occurring with direct 

for FG positive FMNs (S). Each black circle in a bar reflects one animal analyzed. Data were provided as mean 
± SD. *P < 0.05, ***P < 0.001. White dashed lines in (N–Q) depict the borders of the FMN nucleus. Scale-bar 
(B–Q) = 200 μm.
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nerve-muscle contact such as i) retrograde axonal tracer transport, an indirect read-out for enhanced re-growth 
of severed axons (Fig. 3), ii) injury dependent NMJ fragmentation (Fig. 4) and iii) whisker movement recovery 
(Fig. 5) relied on intact myofiber function and SRF presence. Muscles can have a beneficial function on nerve 
regeneration as previously noticed. For instance, early work suggested that skeletal muscle sections are well-suited 
substrates to bridge peripheral nerve defects27,28. Furthermore, coating of nerve conduits with myocytes may help 
to repair sciatic nerve injuries29,30. Thus, muscle cells may play an important role in nerve regeneration. However, 
a molecular basis for muscle cells’ positive influence on nerve regeneration has not been described in great detail. 
In this study we show that SRF, regulating a wealth of processes in myofibers and SCs might be such a novel 
muscle resident molecule facilitating nerve regeneration. We observed that SRF deletion in muscles affected both 
regeneration processes directly in the injured masseter muscle (e.g. SC proliferation; Fig. 6) but also in distant 

Figure 4. Myofiber SRF deletion induced altered NMJ morphology after injury (A–D) NMJs in the lip 
orbicularis oris muscle were stained for axon terminals with neuron specific βIII tubulin (green) and for 
muscular AChR with Btx (red) at 21 dpi and recorded by confocal microscopy. Without injury, many axons 
terminated in well elaborated NMJ structures irrespective of genotype (A,B). After injury, NMJs disintegrated 
and fewer axons were found in Btx positive clusters that revealed a fragmented shape (C,D). This phenotype was 
more prominent in SRF deficient (D) compared to wt (C) animals (see quantification in E–H). (E–H) The βIII 
tubulin (E) and Btx (F) area of NMJs was reduced after FN injury in wt and more pronounced in SRF deficient 
animals. NMJ morphologies were categorized into normally shaped (G) or fragmented (H; see example 
pictures). The number of normally shaped NMJs decreased after injury in wt and more so in SRF deficient 
animals (G). Conversely, fragmented NMJ abundance increased after injury in wt and more strongly in SRF 
ablated animals (H). Each black circle in a bar reflects one animal analyzed. Data were provided as mean ± SD. 
*P < 0.05, **P < 0.005, ***P < 0.001. Scale-bar (A–D; G,H) = 30 μm.
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muscles such as lip muscles not directly injured (NMJ morphology; Fig. 4). This suggests that SRF in muscle 
exerts functions in nerve regeneration also in the denervated muscle independent of a direct muscle injury.

For neuronal SRF, such a pro-stimulatory function in axon regeneration was already demonstrated22. What 
paracrine signaling molecules might be regulated by muscular SRF affecting the growth activity of severed 
axons? In previous studies mRNA levels of secreted factor such as insulin-like growth factor 1 (IGF-1), IL-4 and 
IL-6 were altered in Srf mutant myofibers16,17. Additional growth factors, e.g. brain-derived neurotrophic factor 
(BDNF) and nerve growth factor (NGF) that are secreted also by the denervated muscle also stimulate neuronal 
regeneration1,2. Of note, BDNF and NGF target SRF mediated gene regulation and in turn are under SRF tran-
scriptional control31–33. We analyzed mRNA levels of Bdnf and Ngf along with several other growth factors at 7 
dpi but did not observe differences between wt and Srf mutant animals (Fig. 6). This argues against an obvious 
transcriptional regulation of these growth factors by SRF at least at this timepoint after injury.

Besides myofibers, SRF regulates SC function. For instance, previous literature has shown on the one hand 
decreased SC proliferation seven days after overload induced muscle hypertrophy in myofibers lacking SRF16. 
On the other hand, mouse mutants of MRTFs (myocardin related transcription factors), essential SRF cofactors, 
have shown the opposite, i.e. excessive SC proliferation34. However, both studies are difficult to compare since 

Figure 5. Functional recovery of whisker movement after FN injury was reduced after SRF loss in muscles. 
(A–D) Representative whisker traces of wt (A,C) and Srf mutant (B,D) animals before (A,B) and 20 dpi 
(C,D). The black lines depict whisker movement of the contralateral face, which was uninjured. The grey line 
depicts the ipsilateral whisker movement either before (A,B) or after injury (C,D). Before injury, both whiskers 
oscillated in a synchronized pattern along the 100 Hz sequence with no difference between genotypes (A,B). 
At 20 dpi, the whisker movement was still strongly compromised (grey lines). Nevertheless, small whisker 
movements with angular deflections above 10 degrees were visible in wt (arrows in C) but not in SRF deficient 
(D) animals (see quantification in E,F). (E,F) The angular acceleration of whisker movement was calculated as 
ratio between injured/uninjured side before and at five timepoints after injury. One week after injury, the ratio 
was decreased in wt and ko animals. At 14 dpi and statistically significant at 20 dpi, wt animals had an elevated 
whisker acceleration compared to ko animals (E). In (F), the angular sum of all whisker movements in a 100 Hz 
sequence over a certain threshold angle (10, 15, 20, 25 degrees) was depicted as ratio between injured and 
uninjured side. At all thresholds, wt animals had more whisker oscillations compared to SRF deficient animals 
(F). Each black circle in a bar reflects one animal analyzed. Data were provided as mean ± SD. *P < 0.05.
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Figure 6. Enhanced SC numbers but no changes in growth factor mRNA levels after FN injury in SRF deficient 
animals. (A–C) Masseter muscles at 21 dpi were stained for the SC marker Pax7 (green), and DAPI (blue). Pax7 
abundance was elevated in SRF depleted muscles (B) compared to wt myofibers. (A’,B’) show the Pax7 channel 
of wt (A) and Srf mutant (B) only. Quantification of Pax7 positive cells/area (C). (D–I) cDNA of uninjured 
and injured masseter muscles of wt and Srfloxp/loxp: HSA-CreERT2 mutant animals (ko) was subjected to qPCR 
analysis for genes indicated at 7 dpi. Ptgs2 (D), Igf2 (E) were strongly and Gdnf (F) and Ngf (G) were mildly 
upregulated by injury with no differences between genotypes. Vegfb (H) and Bdnf (I) were downregulated 
by injury in a comparable manner between wt and ko animals. Each black circle in a bar reflects one animal 
analyzed. Data were provided as mean ± SD. *P < 0.05, **P < 0.001, ***P < 0.001. Scale-bar (A,B) = 30 μm.
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in the latter study constitutive MRTF-A deficient mice were used thereby also affecting SRF function in SCs. In 
any case, we likewise observed enhanced SC numbers in myofiber restricted Srf mutants in our muscle-nerve 
injury model at a later timepoint, i.e. 21 dpi (Fig. 6). Taken together, current data suggest that SC regulation by 
SRF can both decrease and enhance their proliferation. This might depend on muscle tissue investigated, injury 
type applied and also differences on the timepoint analyzed after injury. In any case previous data together with 
our new results (Fig. 6) point at a crucial role for SRF in SC function. So far, a role of SCs in nerve regeneration 
has not been reported to the best of our knowledge. However, given their important role in replacing injured 
myofibers, it is highly likely that SCs also contribute to the impaired nerve regeneration phenotype described in 
this study. Transferred to our results, high SC numbers (Fig. 6) correlated with decreased regenerative success 
in Srf mutants (Figs. 3–5) suggesting an inhibitory SC function in nerve regeneration. Interestingly, SCs secrete 
semaphorin family members such as Sema3A, a well-established regulator of axonal growth and regeneration35. 
Thus, future studies will have to address whether SCs influence nerve regeneration through semaphorin secretion. 
Furthermore, it might be interesting to specifically delete SRF from SCs (e.g. using Pax7CreERT2 mice13) to directly 
analyze the impact of SCs and SRF within SCs on nerve-muscle regeneration after injury.

In summary, in this study we show a role of myofibers for nerve regeneration and identified SRF as a novel 
muscle expressed molecule modulating this process.

Methods
Mice. To induce a deletion of SRF in the skeletal muscle, a mouse strain was used where tamoxifen induci-
ble Cre recombinase expression was driven by the human α-skeletal actin (HSA) promoter (16; HSA-CreERT2 
line kindly provided by Dr. Athanassia Sotiropoulos, Université Paris Descartes, France). No recombination was 
observed outside skeletal muscle17. The Srf loxp/loxp strain was previously described36,37. At 21 days before trauma, 
2 mg tamoxifen in peanut oil was daily intra-peritoneally injected for five consecutive days. In addition, tamox-
ifen food was fed 14 days prior trauma induction. After the trauma, animals were fed alternately with regular and 
tamoxifen food at one to four days post injury (dpi) and eight to 11 dpi. Srf mutant animals were referred to as 
“ko” or Srf loxp/loxp: HSA-CreERT2, whereas wildtype (wt) animals had the genotype Srf loxp/loxp and were negative 
for the Cre recombinase expressing allele. All animals (wt and ko) were treated with the same tamoxifen protocol.

All experiments were in compliance with international regulations for the care and use of laboratory animals 
(ARRIVE guide-lines and EU Directive 2010/63/EU for animal experiments). Mouse experiments in this study 
were approved by the local governmental authority for animal experimentation (Regierungspräsidium Tübingen, 
Germany). All methods were carried out in accordance with relevant guidelines and regulations.

traumatic nerve injury. Traumatic facial nerve injury was performed with a drop-tower device as previ-
ously described23. Adult mice (14–18 weeks old) were anesthetized with sevofluorane inhalation, a skin incision 
was made in the area of the masseter muscle and the buccal and marginal branches of the FN were exposed. 
For analgesia, 0.03 mg/kg Temgesic was injected before injury. The mice were placed under the drop tower and 
the head was stabilized with modeling clay. Subsequently, the mice were positioned in such way that the wedge 
resided on top of the two FN nerve branches. To adjust penetration depth, the 3 mm spacer of the drop tower was 
removed. Afterwards, the weight was allowed to fall down to perform injury. Hereby, the wedge penetrates the 
tissue through indirect transmission of power by the falling weight. After a falling height of 104 cm, the weight 
hits the metal spacer. The spacer has 3 mm space to move downwards until it gets stopped through the crossbar 
of the tower, thereby also limiting the penetration depth of the wedge to a maximum of 3 mm. The two nerve 
branches were additionally cut with microscissors in case nerve stumps were not completely separated. After this, 
the wound was examined under a binocular and the skin was sutured. Successful traumatic facial nerve injury was 
documented by the absence of whisker movement. After surgery, mice were injected with 5 mg/kg of the analgesic 
carprofen (Rimadyl; 50 mg/mL) within the next 24 h. Since the injury was performed unilaterally, the nerve of the 
contralateral side remained uninjured and served as internal control.

fluorescent tracer injection. The application of the retrograde axonal tracers fluorogold (FG; 
Fluorochrome), 1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindocarbocyanine Perchlorate (DiI; Molecular Probes) 
and choleratoxin subunit B (Ctx488) conjugated with Alexa 488 (Ctx488; Molecular Probes) to quantify the 
regeneration of the facial nerve was previously described23. Mice were anesthetized as described above and 4 × 1 
μl FG (4% in H2O), 2 × 1 μl of DiI (2 μg/ml in DMSO) and 2 × 1 μl of Ctx488 (1 μg/μl in PBS) were injected with 
a Hamilton syringe in each whisker pad, in the eyelid or lower jaw, respectively at 20 dpi. The animals were sac-
rificed one day after tracer injection (i.e. 21 dpi). The brains were fixed in 4% paraformaldehyde (PFA) overnight 
and 80 µm vibratome sections were prepared. For each animal, all tracer positive FMNs on four sections of both 
facial nuclei were analyzed.

immunostaining. Brain tissue was fixed in 4% paraformaldehyde (PFA) for one day and 5 μm paraffin 
sections were prepared. Masseter muscles were prepared, washed in 30% sucrose/PBS over-night at 4 degrees, 
embedded in OCT compound and directly frozen in liquid nitrogen-cooled isopentane. Afterwards, 10 µm cry-
ostat sections were prepared. Prior to immunohistochemistry, sections were fixed in 4% PFA for 10 min. For 
immunohistochemistry, primary antibodies included anti-ATF3 (rabbit, 1:2000, # HPA001562; Atlas Antibodies), 
anti-Iba1 (rabbit, 1:1000, 019–19741; WAKO) anti-GFAP (mouse, 1:1000, sc-33673; Santa Cruz Biotechnology), 
anti-SRF (rat, 1:200; a kind gift of Prof. Dr. A. Nordheim, Tübingen University, Germany), anti-VAChT (goat, 
1:1000, Merck Millipore), anti-βIII tubulin (mouse, 1:2000, Covance), anti-Pax7 (rabbit, 1:200, Thermo scien-
tific, PA1–117), anti-sarcomeric actinin (mouse, 1:200, Abcam) and anti-CD45 (rat, 1:100, BD Pharmingen, 
550539). The primary antibodies were detected by biotin conjugated secondary antibodies (1:500; Vector 
Laboratories) and peroxidase-based detection systems using the ABC complex (Vector Laboratories) and DAB 
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as substrate. Alternatively, Alexa Fluor488 or 546 conjugated secondary antibodies (1:500; Molecular Probes, Life 
Technologies, Darmstadt, Germany) were used. α-Bungarotoxin-tetramethylrhodamine (Btx; Sigma) was diluted 
1:2000 with the blocking solution and incubated on 20 μm cryostat sections with the secondary antibody for 1 h 
at RT. Nissl staining was performed according to standard protocol.

Whisker movement. Whisker analysis was performed as reported before23. Before injury, mice were han-
dled daily for three-five days to accustom them for videotaping. For whisker movement analysis, all whiskers 
except those in the C row were clipped in anesthetized mice by microscissors. Hand restraint mice were video-
taped for 51 sec by a high-speed camera (Basler acA1300-60gc) at 100 Hz. Video sequences were reviewed and 
1 sec fragments were further processed in Templo Software (CONTEMPLAS GmbH, Germany). The selected 
video sequences were analyzed by Vicon Motus 2D software (CONTEMPLAS GmbH, Germany).

The parameters acceleration of the whiskers were reported by the Vicon Motus 2D software. The parame-
ter angular sum were calculated by a self-written MATLAB programme (developed by Hans-Georg Glöckler, 
Institute of Physiological Chemistry, Ulm University). Hereby, deflections of the whisker greater or equal 10°, 15°, 
20° and 25° were incorporated into the calculations.

Quantitative real-time pcR (qpcR). Total RNA from masseter muscles was isolated with the RNeasy 
fibrous tissue mini kit (Qiagen, Germany) at 7 dpi. cDNA synthesis was performed with 0.75 µg RNA, random 
hexamers (Biomers, Ulm, Germany) and the M-MLV reverse transcriptase (Promega). RT-qPCR was performed 
with 2 µl of cDNA, specific primer pairs (see below) and SYBR Premix Ex Taq (Tli RNase H Plus) PCR Master 
Mix (TaKaRa Bio Europe, Saint-Germain-en-Laye, France) in a 10 µl reaction volume/well of a 96-well plate in 
a Roche Light Cycler 480 (Roche). The Ct value of a target gene was detected with the LC480 II software and the 
relative mRNA level of the target gene was calculated relative to the measured Ct value of the house-keeping gene 
Hprt (Hypoxanthin-Phosphoribosyl-Transferase 1). The following primer sequences were used:

Bdnf
Fwd: ACC ATA AGG ACG CGG ACT TG
Rev: GAG TAG AGG AGG CTC CAA AGG C
Igf2
Fwd: GGG AGC TTG TTG ACA CGC TT
Rev: ACG GCT TGA AGG CCT GCT
Ptgs2
Fwd: TGC CTC CCA CTC CAG ACT AGA
Rev: CAG CTC AGT TGA ACG CCT TTT
Ngf
Fwd: GGG AGC GCA TCG AGT TTT G
Rev: TAC GCT ATG CAC CTC ACT GC
Gdnf
Fwd: GAG AGG AAT CGG CAG GCT GCA GCT G
Rev: CAG ATA CAT CCA CAC CGT TTA GCG G
Vegfb
Fwd: TAG AGC TCA ACC CAG ACA CCT
Rev: GTG AAG CAG GGC CAT AAA AGC

Microscopy, image quantification and statistical analysis. Confocal images (Fig. 4) were acquired 
using an LSM-700 (Carl Zeiss AG) inverted microscope, fitted with a 20x objective. Low-magnification, wide-field 
images were acquired with a Keyence microscope fitted with a 10x objective.

The morphological analysis of synapses was solely based on the labelling of the AChR by Btx. Hereby, the 
morphological appearance was defined according to the following classes: Post-synapses with a regular, so called 
“pretzel-like” phenotype, exhibiting several perforations, were classified as “normal”. Contrary, Btx-positive struc-
tures consisting of small, individual fragments without any perforations, were categorized as fragmented. For 
each animal, on average 70, but at least 40 synapses were counted. Values are indicated as percentage of synapse 
class (normal or fragmented) in relation to the total synapse number.

Numbers (n) of animals were indicated in figure bars or text. Statistical significance was calculated by Prism6 
software with 1way ANOVA multiple comparison tests (i.e. Sidak multiple comparisons test). None of the quan-
tification was done blind to the genotype. *, **, *** indicate p ≤ 0.05, 0.01 and 0.001, respectively. SD is provided 
if not mentioned otherwise.
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