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Using HJ-CCD image and PLS 
algorithm to estimate the yield of 
field-grown winter wheat
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Remote sensing has been used as an important means of estimating crop production, especially for 
the estimation of crop yield in the middle and late growth period. In order to further improve the 
accuracy of estimating winter wheat yield through remote sensing, this study analyzed the quantitative 
relationship between satellite remote sensing variables obtained from HJ-CCD images and the 
winter wheat yield, and used the partial least square (PLS) algorithm to construct and validate the 
multivariate remote sensing models of estimating the yield. The research showed a close relationship 
between yield and most remote sensing variables. Significant multiple correlations were also recorded 
between most remote sensing variables. The optimal principal components numbers of PLS models 
used to estimate yield were 4. Green normalized difference vegetation index (GNDVI), optimized 
soil-adjusted vegetation index (OSAVI), normalized difference vegetation index (NDVI) and plant 
senescence reflectance index (PSRI) were sensitive variables for yield remote sensing estimation. 
Through model development and model validation evaluation, the yield estimation model’s coefficients 
of determination (R2) were 0.81 and 0.74 respectively. The root mean square error (RMSE) were 
693.9 kg ha−1 and 786.5 kg ha−1. It showed that the PLS algorithm model estimates the yield better 
than the linear regression (LR) and principal components analysis (PCA) algorithms. The estimation 
accuracy was improved by more than 20% than the LR algorithm, and was 13% higher than the PCA 
algorithm. The results could provide an effective way to improve the estimation accuracy of winter 
wheat yield by remote sensing, and was conducive to large-area application and promotion.

Scientifically and accurately estimating crop yield is of significant importance for formulating plans for social 
and economic development, determining agricultural products import and export plans, ensuring national food 
security, guiding and regulating macroscopic planting structure, as well as improving the management skills of 
relevant agriculture-related enterprises and farmers1–6. With the improvement of spatial, temporal and spectral 
resolutions of remote sensing data and the significant reduction of cost, currently remote sensing has been widely 
used in the estimation of production of all kinds of food crops, and it has become a research focus in the interdis-
ciplinary field combining remote sensing and agriculture7.

At present, there were many methods and means for estimating crop yield, such as crop yield meteorological 
forecast, artificial sampling survey, statistical simulation model, remote sensing estimation and so on8,9. Using a 
Criteria/Wofost simulation model that included the new numerical scheme for soil water balance, some research-
ers compared field data collected at the university of bologna’s experimental farm in 1977–1987 with the median 
wheat yield, and the predicted value was consistent with the observed value10. Other researches have suggested 
that the mars-crop yield forecasting system (M-CYFS) model was more consistent as a predictor of crop yield 
than meteorological predictors since these predictors summarize the succession of agrometeorological conditions 
for the yield of the entire growing season11. By using the environmental policy integrated climate (EPIC) crop 
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growth model and daily standardized precipitation evapotranspiration index (SPEI), a comprehensive method 
to quantitatively evaluate the effects of drought on crop yield was proposed12. Among them, the crop yield mete-
orological forecast was suitable for small-area crops production prediction, but for large-area crops, due to large 
variations in field meteorological conditions in different wheat areas, the estimation accuracy was low. Manual 
sampling surveys had higher precision, but were time-consuming and labor intensive, and the cost was too high 
for large scale application. The statistical simulation model was a non-subjective method for constructing a math-
ematical relationship model based on historical data and estimating the future trend, but may result in errors 
due to climate change13. Remote sensing has been a high-tech method of obtaining large-area, fast, dynamic and 
multi-scale information on farmland. It has great application potential in large-scale crop growth monitoring, 
crop yield estimation, agricultural monitoring and forecasting, and agricultural resources survey14–16. In China 
and abroad, considerable work has been done on remote sensing estimation of crops, and great progress has been 
made17,18. Based on moderate-resolution imaging spectroradiometer (MODIS) derived normalized difference 
vegetation index (NDVI) data, a global agricultural monitoring system for crop monitoring and yield forecasting 
was built19. Based on advance very high resolution radiometer (AVHRR) data, the yield prediction model estab-
lished by principal component analysis (PCA) had an estimated yield error of less than 8%20. The satellite-based 
vegetation index could be used to predict wheat yield six weeks before the time of harvest in Punjab province of 
Pakistan21. Through the data were obtained on time series remote sensing images fused with high temporal and 
spatial resolutions, along with grain yield and protein contents at maturity, preliminary harvest was showed that 
filling and anthesis stages were the best time to estimate wheat yield22. Some research showed that both agrocli-
mate + MODIS-NDVI and agroclimate + MODIS-environmental vegetation index (EVI) performed equally well 
predicting spring wheat yield at the ecodistrict scale23. Through using NDVI derived from the data of the MODIS, 
the method for estimating and forecasting wheat yield in Hungary in the period of 2003–2015 was improved and 
obtained better prediction results24. In evaluating the influencing factors of wheat yield of the four populations, 
partial least square (PLS) algorithm could reveal the control factors on wheat yield in the study area and provided 
a reference tool for analyses in other crops or areas25. However, the satellite remote sensing data used in these 
researches was relatively short-lived, and the stability of the model simulation effect needed further testing. Some 
researchers argued that they lacked the spatial detail necessary for studying vegetation phenology in heteroge-
neous landscapes while MODIS and AVHRR have been the sensors most often used in remote sensing based 
phenological analysis26. Relevant research summarized yield estimation methods in each region through remote 
sensing and illustrated the importance of distinguishing between accuracy for spatial and temporal variation27. 
The data sources of the earth observation satellites were chiefly low spatial resolution MODIS, national oceanic 
and atmospheric administration (NOAA)/AVHRR images23,28, medium spatial resolution India remote-sensing 
satellite (IRS-P6), enhanced thematic mapper (ETM), thematic mapper (TM) images, and high spatial resolution 
Quickbird, SPOT, IKONOS, ALOS foreign images29–31. However, these data sources were expensive, which lim-
ited their use in small and medium research units and production management departments32,33.Therefore, it was 
of great significance to promote the application of image data obtained by satellites developed by China in remote 
sensing of agricultural conditions. On September 6, 2008, China successfully launched satellites A and B (abbre-
viated as HJ-CCD) of the “Environment and Disaster Monitoring and Forecasting Small Satellite Constellation 
System” with independent intellectual property rights. The satellites were equipped with wide-band CCD sensors 
with spatial resolution of the sensor being 30 m. The resolution was 2 d when satellites A and B were making 
observations simultaneously, making them an ideal data source for agricultural remote sensing operation.

The objectives of the present study were to investigate the quantitative relationship between the yield and sat-
ellite remote sensing variables during flowering period, and developed an effective way to improve the estimation 
accuracy of winter wheat yield by remote sensing.

Results and analysis
Yield distribution.  The amplitude of variation, mean, standard deviation and standard error of the model 
development and validation were similar (Table 1). At the same time, the model development and model valida-
tion samples had desirable consistency.

Quantitative analysis between remote sensing variables and yield.  The quantitative analysis of the 
yield and remote sensing variables of 159 samples in the model development showed that there were significant 
or extremely significant relationships between the yield and most remote sensing variables (Table 2). The yield 
was most closely related to structure intensive pigment index (PSRI), followed by green normalized difference 
vegetation index (GNDVI), the correlation coefficients being −0.69 and −0.65, respectively. A large proportion 
of correlations between the yield and vegetation indices were obviously better than single bands. Most remote 
sensing variables had considerable multiple pairwise correlations, where the correlation coefficients were almost 
between 0.80 and 1.00. In particular, single-band B1–B4 pairwise correlation coefficients were between 0.95 and 
0.99, and the pairwise correlation coefficient of most vegetation indices was above 0.90. It indicated that the 

Sample set Number of samples Amplitude of variation Mean Standard deviation Standard error

Model development 159 3053.98 ~ 9566.56 5292.51 1314.53 104.25

Model validation 106 4444.82 ~ 9852.93 7115.77 1191.43 115.72

Table 1.  Distribution of the yield in the model development and model validation (yield unit: kg ha-1).
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model established by PLS algorithm was more reasonable than the traditional statistical algorithms and the ordi-
nary least squares method, and might lead to better results.

PLS model.  According to the predictive residual error sum of square (PRESS) minimum value, the number 
of optimal principal components could be determined. Figure 1 showed the variation of PRESS with the num-
ber of principal components obtained from the yield’s model development. At the beginning, as the number of 
principal components increased, the yield’s PRESS value decreased to a large extent. It has indicated that due to 
the small number of principal components, the model fitting was extremely inadequate. It meant that the missing 
fitting phenomenon occurred. When the principal components numbers of the yield’s model was 4, the PRESS 
value (25.96) was the smallest. After that, as the number of principal components increased, the yield’s PRESS 
value increased sharply, until it tended to be saturated. Via this, it was indicated that the over-fitting phenomenon 
occurred due to too many principal components. Therefore, it was reasonable to select the number of principal 
components corresponding to the minimum PRESS value. Therefore, the optimal principal components numbers 
of the yield models based on PLS algorithm was 4.

Based on the PLS algorithm, the yield model had the four vegetation indices with the principal components 
number of 4, namely, GNDVI, optimized soil-adjusted vegetation index (OSAVI), NDVI and PSRI as independ-
ent variables, and the yield was the dependent variable. The yield estimation model was constructed by the yield 
model development and the HJ-CCD images during the three periods 2016-05-02, 2017-04-24, and 2018-04-26 
was:

= . × + . × + . × − . × + .Yield 2011 7 GNDVI 1673 7 OSAVI 1821 4 NDVI 2103 8 PSRI 2810 2 (1)

The optimal linear regression equation and its coefficient of determination (R2) and root mean square error 
(RMSE) were obtained. Figure 2 showed the evaluation of the yield model’s estimation ability. It could be seen 
from Fig. 2 that the model development samples number was larger than the model validation samples num-
ber. The R2 of the linear equation established by the model development was significantly larger than R2 of the 
model validation. The model development RMSE was significantly smaller than the model validation RMSE. 
It indicated that the prediction model effect of the model development samples was significantly better than 

Yield B1 B2 B3 B4 NDVI SAVI OSAVI NRI GNDVI SIPI PSRI DVI RVI

Yield 1.00

B1 −0.51 1.00

B2 −0.47 0.99 1.00

B3 −0.33 0.99 0.99 1.00

B4 −0.29 0.96 0.98 0.95 1.00

NDVI −0.61 0.86 0.85 0.85 0.97 1.00

SAVI −0.49 0.86 0.88 0.85 0.95 0.99 1.00

OSAVI −0.48 0.87 0.90 0.84 0.97 0.99 1.00 1.00

NRI 0.11 0.96 0.93 0.96 0.83 0.80 0.78 0.73 1.00

GNDVI −0.65 0.94 0.95 0.93 0.97 0.98 0.95 0.98 0.91 1.00

SIPI −0.54 0.94 0.94 0.92 0.97 0.98 0.95 0.95 0.84 0.99 1.00

PSRI −0.69 0.95 0.96 0.91 0.93 0.86 0.86 0.87 0.93 0.93 0.97 1.00

DVI −0.22 0.81 0.93 0.88 0.97 0.99 0.98 0.97 0.81 0.98 0.98 0.91 1.00

RVI −0.23 0.82 0.81 0.80 0.80 0.96 0.98 0.96 0.65 0.91 0.91 0.69 0.97 1.00

Table 2.  Correlation between remote sensing variables and winter wheat yield (n = 159). B1, B2, B3 and B4 
denoted spectrum reflectance at blue, green, red and near infrared bands, respectively.

Figure 1.  PRESS changes with the principal components.
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the model validation. Thereby, it has theoretically conformed to the model’s estimation law. In addition, The R2 
values between the predicted and measured yield were greater than 0.7 and the RMSE were 693.9 kg ha−1 and 
786.5 kg ha−1, respectively. These results indicated that the PLS model could be used effectively to estimate the 
winter wheat yield.

In order to compare with the traditional algorithms, the linear regression (LR) and PCA algorithms were used 
to establish the yield’s estimation model through the model development and model validation samples, respec-
tively. The model of the predicted and measured values of the yield were evaluated by R2 and RMSE. The specific 
process was not described here. Table 3 showed the comparison of estimation results with PLS, LR and PCA 
based on the model development and model validation. It showed that the sample number was the same. The PLS 
algorithm models’ R2 of the yield were greater than LR and PCA algorithms models, and RMSE were smaller than 
the LR and PCA algorithms models. This indicated that the PLS algorithm model was better than the LR and PCA 
algorithms in estimating the yield. The estimation accuracies based on the yield model development and model 
validation were 19.68% and 25.73% higher than LR algorithm models, respectively, and were 13.49% and 12.86% 
higher than PCA algorithm models, respectively. The estimation accuracies were above 90%.

According to the above analyses, GNDVI, NDVI, PSRI and OSAVI maps were generated using 2018-04-26 
HJ-CCD images. On those the winter wheat planting data was superimposed to remove the non-winter wheat 
area by one-to-one solution and binarization mask. Based on the administrative boundary vector data, as well 
as the above PLS model, the spatial distribution map of estimating winter wheat yield in central Jiangsu was 
produced (Fig. 3). The distribution of the yield was mainly higher than 5250 kg ha−1, of which Yancheng and its 
surrounding wheat areas was mainly 4500–6000 kg ha−1 and the northern wheat area of Jiangyan was more than 
6000 kg ha−1. The number in the south wheat area rarely appeared above 6000 kg ha−1, and the Yangtze River area 
was mainly 3750–5250 kg ha−1, especially the south of the Yangtze River, which was mainly 3750–4500 kg ha−1. 
By predicting the results, relevant departments and farmers can formulate corresponding management and trade 
policies in advance, so as to achieve the effects of graded harvest and quantitative purchasing and storage. Remote 
sensing technology can be used to monitor crops in a wide range of areas so that agricultural management and 
farmers can obtain timely crop yield information. This technology saves the cost of manpower and material 
resources to the greatest extent and has great scientific and production significance.

Discussions
At present, the remote sensing images used in the crop estimation were mainly originated via MODIS, NOAA/
AVHRR, etc.23,28. These images had low spatial resolution and were difficult to apply to high-precision winter wheat 
remote sensing estimation in small areas. On the other hand, the high-resolution images such as Quickbird, SPOT, 
IKONOS were costly30,31. The medium-resolution TM images had revisiting periods of 16 days, making it difficult 
to obtain high-quality data in time. This limited continuous crop monitoring and made it inappropriate to predict 
crop yield34. The HJ-CCD satellites developed by China have been put into use one after another. The quality of the 
data obtained was continuously improved and was provided free of charge to users. This has created a convenient 
data platform for remote sensing and estimation of regional crop’s quality and productivity35. The experimental area 
of the present research has been located in the coastal area along the Yangtze River in Jiangsu Province. The whole 
wheat field has been fragmented and as a result the planting structure was complex. The time resolution of the 
selected HJ-CCD image was 2d, and the scanning width of the single scene image was 750 km. These characteristics 
could meet the estimation demands for the actual regional winter wheat. Considering time resolution, spatial reso-
lution and cost, the HJ-CCD image was more appropriate than the data of MODIS, TM, Quickbird, etc.

There was a close relationship between yield and most remote sensing variables. In addition, there were con-
siderable multiple correlations between most remote sensing variables. This made it difficult to establish a higher 
precision remote sensing estimation model of the yield using traditional algorithms6,36–38. In this study, the PLS 
algorithm was used to construct the remote sensing estimation model of the yield with GNDVI, OSAVI, NDVI 
and PSRI as the independent variables. The correlation between the yield and these remote sensing variables was 
extremely significant. They could be easily extracted and calculated from the HJ-CCD image. The RMSE values of 

Figure 2.  Evaluation of the yield model.
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the yield’s estimation model based on these remote sensing variables as the independent variables were lower than 
the traditional LR and PCA models. The results showed that the PLS model, as a new multivariate analysis method, 
had a very high adaptability in yield estimation, especially when there were many variables and multiple correlations 
in the analysis. The PLS algorithm could effectively optimize the dependent variables, and its model was significantly 
better than LR and PCA algorithms in the yield’s estimation of winter wheat. The effects of crop spectral parameters 
and remote sensing vegetation index on crops are not often single. It is often multiple remote sensing variables acting 
on a single agronomic index. Therefore, based on the traditional univariate model and linear regression algorithm, 
it is difficult to make a more accurate prediction. PLS algorithm is highly adaptive to the condition of multivariate 
and high correlation. The results were consistent with Hanen et al.39 and Zhao et al.40. Based on the traditional linear 
regression algorithm, it is easy to build a model for monitoring and predicting crop quality, growth and yield, but 
the prediction accuracy is often not up to the requirements. For the prediction of agricultural indicators under the 
control of multiple variables, the PLS algorithm is superior to the general linear regression model. The results of 
this research better than Liu et al.41 and Xue et al.42. In order to reflect it in a better way, the actual situation of field 
planting and different varieties were selected in the experiment. Using the data derived from different varieties as test 
samples, the results were of more general in significance. It was helpful to the promotion and application in actual 
production. It indicated that it was feasible to use the PLS model to estimate winter wheat yield with high precision. 
It has, therefore, provided an effective method and technical support for the high-precision estimation of aerospace 
remote sensing images, and was also conducive to large-area application and promotion.

According to the spatial distribution map for predicting winter wheat yield in Jiangsu province (Fig. 3). Northern 
Jiangsu, especially in the northwest of Gaoyou and Sheyang county, the yield is higher than other areas. The yield of 
the middle region of Jiangsu is relatively lower than that of the northern region, which basically maintains around 
5000–6000 kg ha−1. But along the river and the region south of the Yangtze river, the yield is generally low. There 
was large scale wheat cultivation in northern Jiangsu. Local agricultural facilities were well developed, and agricul-
tural production was mainly in the form of farms for planting and management. Therefore, winter wheat planting 
could be managed uniformly, with good cultivation measures and maximum implementation. Overall agricultural 

Algorithm

Number of 
principal 
components

Number of samples R2 RMSE/kg ha−1 Accuracy/%

Model 
development

Model 
validation

Model 
development

Model 
validation

Model 
development

Model 
validation

Model 
development

Model 
validation

PLS 4 159 106 0.81 0.74 693.9 786.5 92.43 90.38

PCA 5 159 106 0.63 0.56 1054.7 1067.3 78.94 77.52

LR 0 159 106 0.57 0.47 1123.6 1342.7 72.75 64.65

Table 3.  Comparison of predicted results with PLS, LR and PCA.

Figure 3.  Spatial distribution of winter wheat yield in central Jiangsu region, China.
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development and management in the middle area of Jiangsu was slightly worse than that in north of Jiangsu. But 
the whole structure of agricultural facilities and agricultural management could meet the planting of winter wheat. 
Therefore, wheat yield presented a general level range. The southern Jiangsu area was mostly metropolis and urban 
area with less farmland, and there were few areas for wheat cultivation. At the same time, the local farmland was 
chaotic and scattered, mainly operated by small farmer households. It might result in good cultivation measures and 
management could not be used effectively. Therefore, the winter wheat yield in southern Jiangsu was relatively low. 
The predicted results of the spatial distribution map for predicting winter wheat yield in Jiangsu province were basi-
cally consistent with the actual situation of winter wheat production. It indicated that it was feasible to use the PLS 
model to predict winter wheat yield with high precision. It has, therefore, provided an effective method and technical 
support for the high precision remote sensing prediction of winter wheat yield.

The samples used in the research were relatively concentrated, basically ranging from 4000 kg ha−1 to 
9000 kg ha−1. Samples with higher or lower content were relatively few, showing above 9000 kg ha−1 and less than 
4000 kg ha−1. There was a lack of samples more than 10063 kg ha−1 and less than 2152 kg ha−1. If the variation of 
the yield samples was increased, the PLS model would be further optimized and its application range would be 
further expanded. The remote sensing estimation models of the yield would become more reliable. The results 
obtained were based only on the HJ-CCD data of the Jiangsu experimental area. Therefore, whether the model 
would be applicable to other remote sensing sensor data and/or estimate the winter wheat yield in other areas 
needed further study.

The present study did not compare the PLS algorithm with artificial neural network (ANN)43,44, support vector 
machines (SVM)45, geostatistics46, etc. Simultaneously, it also did not take into account the factors affecting winter 
wheat cultivation. These algorithms and factors actually had a wide range of influence on the estimation results of 
winter wheat yield and needed further study.

Conclusions
In the present research, a close relationship between yield and most remote sensing variables were found. 
Significant multiple correlations were also obtained between most remote sensing variables. GNDVI, OSAVI, 
NDVI and PSRI were sensitive for remotely estimating the yield. Through the model development and model 
validation evaluation, the estimation model of the yield had R2 of 0.81 and 0.74, and the RMSE were 693.9 kg ha−1 
and 786.5 kg ha−1. It showed that the PLS algorithm estimated the yield better than the LR and PCA algorithms. 
The improvements were by more than 20% than the LR algorithm and more than 13% higher than the PCA 
algorithm. The PLS model provided an effective way to improve the accuracy of estimating winter wheat yield 
through remote sensing.

Materials and methods
Test design and data acquisition.  For the present investigation, data collection was carried out in 5 coun-
ties, namely, Taixing, Jiangyan, Yizheng, Xinghua and Dafeng in Jiangsu Province in 2016, the People’s Republic 
of China. There were 15–20 sampling points in each county, totaling 92. The location of each sampling site was 
determined by using a Juno ST hand-held GPS meter (Trimble Co. USA). The survey mainly included informa-
tion collection on winter wheat varieties, growth period, population growth and disasters status (mainly pests 
and diseases). Winter wheat varieties were of medium and weak gluten type, mainly Yangmai 13, Yangmai 15, 
Yangmai 16 and Yangfumai 2. These varieties were available in the experimental counties. GPS was used to locate 
the positions during the mature stage. Samples were taken back to measure the yields in the laboratory.

A total of 3 tests were launched in the experimental counties from 2016–2018 to collect data. The satellite data 
was HJ-CCD images taken at flowering stage of winter wheat. Data collection for Test 1, 2 and 3 were conducted 
on May 2, 2016; April 24, 2017 and April 26, 2018, respectively. The sampling points considered for the Test 1–3 
were 92, 96 and 67, respectively. Figure 4 showed the distribution of sampling points in 2016, 2017 and 2018.

The yield data measured in Tests 1–3 were arranged in the order of the yield values in the winter wheat grain 
sample. In order to enhance the stability of the estimation model, the numerical samples of 265 yields were ran-
domly divided into model development and model validation according to a ratio of 3:2, on the premise that the 
maximum and minimum yields were placed in the modeling sample set.

Image preprocessing.  Environment for Visualizing Images (ENVI 5.4) software was used to preprocess 
satellite images. Firstly, georeferencing process was performed. The specific operation was that the 1:100,000 top-
ographic maps of Jiangsu area were used to roughly correct the satellite image. Thereafter, the GPS control points 
for ground measuring were used to precisely correct the satellite image. This helped to ensure that the precision of 
geometric correction was better than one pixel. Atmospheric correction and reflectance conversion were carried 
out by empirical linear method14,47. According to the analysis of the results, the corresponding single-band value 
graph was obtained by using a workflow called band math in ENVI. Data of wheat growing areas were obtained 
by supervised classification. The winter wheat planting data were superimposed and the non-winter wheat area 
was eliminated by one-to-one solution and binarization mask. By using the administrative boundary vector data 
and the above PLS model, the spatial distribution map of winter wheat yield in Jiangsu province was produced.

Yield measurement.  During the maturity period, 5 plots were selected by five-point sampling method 
(Fig. 5) in the middle part in the field. The four plots on the periphery formed a rectangle, and they were 10m 
apart. Each plot was 5m2, and each plot grew evenly, which could represent the overall situation of the field. And 
the field area sampled should be more than 2 hectares. The grains of the five plots were brought back to the lab-
oratory. All the samples from five plots were shelled and weighed separately. After averaging the yields of these 
5 plots, the average value was the value of the sampling site and was converted to the value of one hectare, which 
was the yield.
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Satellite remote sensing variables.  In combination with the physical significance of spectral indices, selec-
tion of model parameters was based on the spectral characteristics of crops and the available literatures in home and 
abroad. In this study, four HJ-CCD bands and nine common spectral vegetation indices were selected (Table 4) as 
independent variables for PLS analysis in order to construct remote sensing estimation model of the yield.

Figure 4.  Sampling point information for three consecutive years.

Figure 5.  Five-point sampling method.
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To extract spectral band brightness values of corresponding GPS positioning sampling points, ENVI 5.4 and 
geographic information system software (ArcGIS 10.2) were used. actual these satellite remote sensing variables 
were calculated using Excel 2016.

PLS regression.  PLS regression was first applied to the field of chemometrics. PLS regression has been con-
sidered as a new multivariate analysis method with wide applicability. The PLS regression was concentrated on 
the characteristics of principal component, linear regression and typical multiple regression analysis. It could 
effectively solve many problems. Such as, problems that could not be solved by ordinary multiple regression, espe-
cially when there were many variables and multiple correlations. In these cases, PLS could effectively decompose 
and screen the comprehensive variables that were most explanatory to the dependent variables. Therefore, the 
established model was more reliable than the ordinary regression analysis. The PLS method first extracted a new 
variable called component as an independent variable, and established a linear combination relationship between 
the dependent variable and the independent variable. The coefficient was determined by PLS calculation, and 
then the regression equation of the dependent variable was constructed. The regression model established by the 
PLS method could be expressed by Eq. (2):

= + + … + = …( )y a a x a x m p1, 2, (2)m m m Pm p0 1 1

where x1, ···, xp were linear combinations of remote sensing variables, a0m, a1m, ···, apm were parameters of the 
regression model and could be computed by PLS.

When the model was established by PLS algorithm, the increase of the number of principal components would 
improve the accuracy of the model. But too many principal components would cause over-fitting and the error 
would increase. Therefore, it was very important to determine the optimal principal components number of the 
PLS model. In this study, the sum of squared residuals was calculated by the cross-validation method. The smaller 
the PRESS value, the stronger the estimation ability of the model. Therefore, the optimal principal components 
number could be determined according to the minimum value of PRESS. PRESS could be expressed by Eq. (3):

PRESS y y( )
(3)i

k

i i i
1

,
2∑= −

=
−

where yi, yi,-i were the measured value corresponding to the ith sample and the estimated value when the ith sam-
ple was excluded, and k was the number of validating iterations.

For the basic principles and specific practices of the PLS algorithm and PRESS, please refer to references25,48, 
which were not described here. Both the PLS and PRESS processes were performed by a self-written MATLAB 
program. In this study, the yields were estimated based on the PLS algorithm. Then it was compared with the 
yields’ estimation model based on LR and PCA algorithms. For the explanation of LR and PCA algorithms, please 
refer to the references49,50, which were not described here.

Evaluation of the model.  Using the samples of the model development and model validation, the model 
was evaluated by plotting the 1:1 relationship graph between the predicted and measured values of the yield. The 
evaluation indices were the R2 and the RMSE51. On one hand, the larger the R2, the better the model is. On the 
other hand, the smaller the RMSE, the stronger the estimation ability of the model is. RMSE and estimation accu-
racy were calculated using Eqs. (4) and (5), respectively:

∑= −
=

ˆRMSE
n

y y1
( )

(4)i

n

i i
1

2

ˆAccuray
n

y y1
(5)i

k

i i
1

∑= −
=

where yi and ŷi represented measured values and predicted values of wheat yields, respectively, and n was the 
number of samples.

Vegetation index Abbreviation Algorithm Source

Normalized difference vegetation index NDVI (B4−B3)/(B4+B3) 52

Soil-adjusted vegetation index SAVI (B4−B3) / (B4+B3+0.5)*1.5 53

Optimized soil-adjusted vegetation index OSAVI (B4−B3) /(B4+B3+0.16)*1.16 54

Nitrogen reflectance index NRI (B2−B3)/(B2+B3) 55

Green normalized difference vegetation index GNDVI (B4−B2)/(B4+B2) 56

Structure intensive pigment index SIPI (B4−B1)/(B4+B1) 57

Plant senescence reflectance index PSRI (B3−B1)/B4
55

Difference vegetation index DVI B4 − B3
58

Ratio vegetation index RVI B4 / B3
59

Table 4.  Formulas of remote sensing vegetation indices.
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