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transmission of Superoscillations
S. Zarkovsky1*, Y. Ben-ezra1 & M. Schwartz1,2

it is widely accepted that a signal bandlimited by σ cannot oscillate at higher frequencies. the 
phenomenon of superoscillation provides a refutation of that quite general belief. temporal 
superoscillations have been rarely demonstrated and are mostly treated as a mathematical curiosity. 
In the present article we demonstrate experimentally for the first time to our best knowledge, the 
transmission of superoscillating signals through commercial low pass filters. The experimental system 
used for the demonstration is described, providing the insight into the transmission of superoscillations, 
or super-narrow pulses. thus, while the phenomenon may seem rather esoteric, a very simple system is 
used for our demonstration.

We start our discussion, rather unconventionally, by presenting some simple yet intriguing experimental results, 
even before any formal introduction. In Fig. 1 we present a schematic description of our experimental setup. It 
consists of an arbitrary shape waveform generator (Agilent 33500B), a low pass filter (LTC1569-6) and an oscillo-
scope (DSO-X 3024 A). All are off the shelf commercial not oversophisticated components. In Fig. 2 we show the 
transmission characteristics of our low pass filter.

In Fig. 3 we show two almost identical pulses. The pulses are fractions of two different signals, generated by 
the arbitrary waveform generator. The two signals are then transmitted through the low pass filter described in 
Fig. 2. A very natural expectation is that both pulses will not be transmitted as is but will be considerably broad-
ened to respect the limitations imposed by the low pass filter. The shape and duration of both pulses seem to 
indicate that both input signals contain frequencies above the effective band limit of the filter. Indeed we see in 
Fig. 4a the expected generic transmission. The transmitted pulse (in red) is broadened considerably relative to the 
input pulse (in blue) due to the loss of the high frequency components. In Fig. 4b we see that the second, almost 
identical pulse, after being transmitted through the same filter (in red) is almost not broadened at all relative 
to the input signal (in blue).The input pulses are relatively not noisy. The output pulses, on the other hand, are 
rather noisy. The output pulses depicted in Fig. 4 are actually polynomial fits to the noisy data recorded by the 
oscilloscope.

The difference between the two cases cannot be but in the way in which the two pulses are complemented to 
generate the two longer signals. Thus, not only the rise and fall time of the pulse are relevant to its transmission 
but also features of the signal outside the pulse itself !!. The transmission shown in Fig. 4a is the generic case, 
which is typical of the overwhelming majority of ways in which the pulse is complemented to the longer signal. 
The transmission shown in Fig. 4b is an extremely rare case, where the duration of the transmitted pulse is almost 
unaffected by the low pass filter. The blue and red curves in Fig. 4 correspond to the output and input pulses 
respectively.

The input pulses in Fig. 3 are almost identical but the way in which the signal is complemented is quite differ-
ent. The input signal, corresponding to the output pulse in Fig. 4a, is a periodic pulse with period 2π∕σ defined by: 
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with nσ the highest frequency component. The input signal, corresponding to the output pulse in Fig. 4b is given 
by: 
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where mσ grazes the effective band limit of the low pass filter. The functions σh l t( , )n
m  are required to obey the 

following: (a)Each of those function are band limited by the filter bandwidth. (b)Within the width of fn(t), 
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σh l t( , )n
m  approximates eilσt to a required accuracy. By construction, g t( )n

m  is limited within the transmission band 
of the low pass filter and is made to adhere to fn(t) at small values of σt. The functions σh l t( , )n

m , are band limited 
yet oscillate locally at a frequency higher than the band limit. Such signals are called superoscillations. 
Consequently, the highest frequency component present in g t( )n

m  is only mσ.

theory, experimental Results and Discussion
To understand the concept of superoscillation, consider a band limited signal-it could be optical, electrical or 
acoustic, it does not really matter. Although the signal will have a power spectrum that spans a certain frequency 
range, an analysis of the signal over particular time intervals might show, however, local oscillations with a fre-
quency outside the frequency range of the signal. These are called superoscillations. A number of examples have 
been given for such signals1–4 with suggested applications in various fields such as signal processing5–8 and quan-
tum mechanics1,3,9,10. The concept of superoscillations is also most useful in optics, where it is intimately related 
to super resolution11–16. In contrast to what is going on in the other fields mentioned, where the application of 
superoscillations is more a theoretical study of the possibilities, the application to optics is in a much more 
advanced phase of practical experimental study17–22. The present more practical application of superoscillations 
in optics is based, however, (with the exception of ref. 18) on spatial structures on scales smaller than the wave 

Figure 1. experimental setup.

Figure 2. Frequency response, gain(blue) and group delay (red) of the analog circuit (10th order low pass filter 
LTC1569-6).

Figure 3. The two input pulses.
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length of the light interacting with those structures. This results in beams narrower than allowed by the 
Rayleigh-Abbe diffraction limit . The phenomenon of superoscillation is very exciting and seems to suggest many 
possible and beautiful applications. Yet the applications are still quite limited. The reason is that in a sense, the 
widely accepted lore, that frequencies higher than the band limit cannot be observed even locally in a band lim-
ited signal, is not entirely false. The fact is that superoscillations are possible but they come at a high price. It is 
well known that the superoscillations exist in limited time intervals and that the amplitude of the superoscilla-
tions is extremely small compared to typical values of the amplitude in the non-superoscillating parts of the sig-
nal. The ratio between the two depends on the ratio of superoscillation frequency to the band limit frequency but 
it depends also much stronger (exponentially) on the number of superoscillations in those intervals23 and is also 
sensitive to noise24,25. This fact and the dynamic range if the oscilloscope, limits the range of band limited func-
tions σh l t( , )n

m  that can be used to construct the superoscillatory pulse in Fig. 5.
The signal described by the red curve in Fig. 5 is based on an analytic expression given first by Aharonov, 

Popescu and Rohrlich1: 
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It is well known that fk(vt, ω/v) ≈ eiωt for ε ω< −vt k v/[( / ) 1]2 , where ε is the allowed tolerance, regardless of 
the fact that it is easily verified that fk(vt, ω/v) is band limited by v and that ω/v may be arbitrarily larger than 12.
This is an example of a superoscillating signal. It is band limited by v yet for arbitrary long time, depending on εk, 
it oscillates with a frequency ω, higher than the band limit. We chose: 

Figure 4. (a) - the generic output vs the input pulse. (b) - The special transmitted pulse vs the corresponding 
input pulse. The output pulses as well as the input pulses were normalized for clear comparison.
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The red curve is obtained using g t( )n
m  with n = 5 and m = 2. Figs. 3 and 4 become now very clear. The signal g t( )5

2  
is obtained by replacing in f5(t) the components with frequencies above the filter band limit (40kHz) by the cor-
responding APR signals, which superoscillate locally near the origin with the same frequency. This explains why 
the signals g t( )5

2  and f5(t) are very close to one another in the vicinity of the origin, as seen in Fig. 3. Next, it is clear 
from equation (1) that the constituent frequencies of f5(t) are of the form 20nkHz, with n = 0,...,5, Thus, the fre-
quencies 60, 80 and 100kHz, are removed by the low pass filter and the output signal is broadened (Fig. 4a). On 
the other hand, all the real constituent frequencies of g t( )5

2  are of the form 8nkHz, with n = 0, …, 5, and thus 
below the effective band limit. Thus, the necessary condition for the transmission of all frequency components is 
fulfilled. This however, is not yet sufficient for the central pulse to pass the filter only slightly distorted. The 
dependence of the group delay of the filter on frequency (Fig. 2), at frequencies below the band limit, is of crucial 
importance for that. Fortunately, the nonlinearity of the group delay vs. frequency of the filter in the relevant 
frequency range (Fig. 2), is not large enough to distort the transmitted pulse significantly.

Our Explanations above rely on Eqs. (1)–(3), which give the form of the idealized signals. The real input sig-
nals must be different due to the finite duration of the signal and might affect our arguments above. Therefore, we 
present in Fig. 6 Fourier transforms of the two time restricted signals corresponding to the input signals f5(t) and 
g t( )5

2 . The Fourier transform of the realization of f5(t) exhibits six distinct peaks which are to a good approxima-
tion located at 20nkHz and are more or less of the same height. A lot of weight exists at frequencies above the band 
limit. Thus, the output signal is broadened as discussed above. The Fourier transform of g t( )5

2  is mostly concen-
trated below 40kHz. This is consistent, of course, with the fact that the output pulse is not broadened. As men-
tioned above this would not have sufficed for the approximate shape recovery of the central pulse.

It is important to note, that we could have chosen on the right hand side of Eq. (4) other analytic superoscillat-
ing26–29 signals instead of the APR signals2 to obtain similar results. In fact, it could be expected that using instead 
the APR signals, yield optimized signals23 would result in better looking input superoscillating pulses. As can be 
seen, however, from the above it is not necessary for our demonstration. Off the shelf equipment and the very 
convenient APR functions are sufficient to make our point. Namely, it is actually possible to pass through a low 
pass filter “too narrow” pulses and it does not involve a high level of sophistication.

impact of phase variations on super oscillatory signal
Since superoscillation is a delicate destructive interference phenomenon, it is important to understand the sensi-
tivity of our results to random phase shifts. First, it is clear that in the pulse g t( )n

m , the contribution most sensitive 
to random phase shifts is fk(mσt, n/m). Its general form (which includes also other superoscillating signals) is 
given by: 
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Introducing random phase shifts results in: 

Figure 5. The blue curve is the full input signal, corresponding to the output pulse in Fig. 4a. The entire input 
signal corresponding to output pulse in Fig. 4b is depicted by the red curve. Fig. 3 consists of a zoom in around 
the origin of Fig. 5.
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We assume that the φj’s are not correlated, that the average of φj,  < φj > = 0, φ δ< > = 1j
2


 and therefore 
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φ δ< > = − . We will get the idea of how small δ should be by taking two averages. The first average is 
just 
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Thus the precise condition on δ, that ensure that the random phase shifts do not destroy the local high frequency 
of the superoscillation is 

Figure 6. Fourier transform of transmitted signals where (a,b) corresponds to f5(t) and g t( )5
2  respectively. Note 

that the Fourier transform in (b) seems to miss two frequencies. This is not the case but may look so because on 
the right hand side of Eq. (2) not all the frequency components appear with the same weight,contrary to the 
right hand side of Eq. (1).
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 which is considerably more stringent than just δ ≪ 1

Summary
We have presented a generic way of constructing interesting super- narrow structures, which include super posi-
tions of pure superoscillations (A different, quite interesting way of fitting a general polynomial over a finite range 
by superoscillating function had been presented in30). We have considered the transmission of electrical signals 
of that nature through low pass filters, relative to which those structures are "too narrow” . We have demonstrated 
the possibility of transmission of such narrow structures in the lab using rather basic equipment. We showed that 
the faithful transmission can be achieved with real world components even though strict superoscillation is only 
a mathematical idealization, We have also obtained the sensitivity of superoscillations to random phase shifts of 
the constituent Fourier components. We expect to come back to the fascinating phenomenon of superoscillation 
in the very near future. It seems to open many interesting directions of research31,32.
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